FORWARD-LOOKING TRANSMISSION LOSS FACTORS

PREPARED BY: AEMO Operations – System Performance & Commercial
VERSION: 7.0
EFFECTIVE DATE: 8 February 2017
STATUS: FINAL

Approved for distribution and use:
APPROVED BY: Craig Price
TITLE: Acting Chief Operating Officer

SIGNED: [Signature]
DATE: 7/2/2017

AEMO
AUSTRALIAN ENERGY MARKET OPERATOR
VERSION RELEASE HISTORY

<table>
<thead>
<tr>
<th>VERSION</th>
<th>DATE</th>
<th>BY</th>
<th>CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0</td>
<td>8 Feb 2017</td>
<td>SP&C</td>
<td>Amended following 2016 Rules Consultation</td>
</tr>
<tr>
<td>6.0</td>
<td>30 Oct 2014</td>
<td>SP&C</td>
<td>Amended following 2014 Rules Consultation</td>
</tr>
<tr>
<td>5.0</td>
<td>18 Sept 2014</td>
<td>SP&C</td>
<td>Updates to Methodology to include changes resulting from the Draft Determination of the 2014 Rules Consultation.</td>
</tr>
<tr>
<td>4.0</td>
<td>29 June 2011</td>
<td>ESOPP</td>
<td>Updates to methodology for calculating dual marginal loss factors for a transmission network connection point.</td>
</tr>
<tr>
<td>3.0</td>
<td>1 April 2010</td>
<td>ESOPP</td>
<td>Methodology for Calculating Forward-Looking Loss Factors: Final Methodology updated to include changes resulting from the more recent Rules Consultation completed on 27 February 2009.</td>
</tr>
</tbody>
</table>

© 2017 Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the copyright permissions on AEMO’s website.
CONTENTS

1. INTRODUCTION 4
 1.1 Scope 4
 1.2 Definitions and interpretation 4

2. PURPOSE 5
 2.1 MLFs and electrical losses 5
 2.2 Marginal losses 5

3. REGULATORY REQUIREMENTS 5

4. PRINCIPLES 6

5. FORWARD-LOOKING LOSS FACTOR METHODOLOGY 6
 5.1 Network data 7
 5.2 Load forecast data 7
 5.3 Controllable network element flow data 8
 5.4 Generation data 8
 5.5 Supply-demand balance 9
 5.6 Intra-regional static loss factors 12
 5.7 Inter-regional loss factor equations 13
 5.8 Publication 14
 5.9 Unexpected and unusual system conditions 14
 5.10 New connection points or interconnectors 14

APPENDIX A. TIMELINE 15

APPENDIX B. NEW GENERATING UNITS 15

APPENDIX C. DATA REQUIRED BY AEMO 16

APPENDIX D. NEB CALCULATION EXAMPLE 17

APPENDIX E. METHOD FOR CALCULATING AVERAGE TRANSMISSION LOSS FACTORS FOR VTNS 18
1. INTRODUCTION

1.1 Scope

This document specifies how AEMO calculates and applies inter-regional loss factor equations, intra-regional loss factors and average transmission loss factors using a forward looking loss factor (FLLF) methodology (the Methodology), and prepares load and generation data to calculate the applicable marginal loss factors (MLFs). This Methodology is made under clauses 3.6.1(c), 3.6.2(d), (d1) and (g), and 3.6.2A(b) of the National Electricity Rules (NER), and has effect only for the purposes set out in clauses 3.6.1, 3.6.2 and 3.6.2A of the NER. If there is any inconsistency between this Methodology and the NER, the NER will prevail to the extent of that inconsistency.

1.2 Definitions and interpretation

The words, phrases and abbreviations set out in the table below have the meanings given opposite them when used in this Methodology. Terms defined in the NER have the same meanings in this Methodology. NER-defined terms are intended to be identified by italicising them, but failure to italicise a defined term does not affect its meaning.

This Methodology is subject to the principles of interpretation set out in Schedule 2 of the National Electricity Law.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEMO</td>
<td>Australian Energy Market Operator Limited</td>
</tr>
<tr>
<td>AER</td>
<td>Australian Energy Regulator</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>Commissioning Date</td>
<td>The anticipated date of commercial service.</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DNSP</td>
<td>Distribution Network Service Provider</td>
</tr>
<tr>
<td>EMS</td>
<td>Energy management system</td>
</tr>
<tr>
<td>ESOO</td>
<td>Electricity statement of opportunities – published annually by AEMO in August</td>
</tr>
<tr>
<td>FLLF</td>
<td>Forward looking loss factors</td>
</tr>
<tr>
<td>MLF</td>
<td>Marginal loss factors</td>
</tr>
<tr>
<td>MNSPs</td>
<td>Market Network Service Provider</td>
</tr>
<tr>
<td>MT PASA</td>
<td>Medium Term projected assessment of system adequacy</td>
</tr>
<tr>
<td>NER</td>
<td>National Electricity Rules</td>
</tr>
<tr>
<td>Outlier</td>
<td>A year excluded from the five-year historical average when determining the generation energy cap. An outlier can be identified if the annual energy generated in a particular year is outside the range $\pm 1.645\sigma$ (where σ is one standard deviation from the five-year historical average).</td>
</tr>
<tr>
<td>Pump Storage Schemes</td>
<td>A hydro generating unit, or group of hydro generating units, that can operate both as a generator and a pump</td>
</tr>
<tr>
<td>Reference Year</td>
<td>The previous financial year (1 July – 30 June) in which historical data is to be used as an input to the loss factor calculation. (e.g. Target Year is 2015-16 and Reference Year is 2013-14)</td>
</tr>
<tr>
<td>RRN</td>
<td>Regional reference node</td>
</tr>
<tr>
<td>TNSP</td>
<td>Transmission Network Service Provider</td>
</tr>
<tr>
<td>Target Year</td>
<td>The financial year (1 July - 30 June) in which particular loss factors and loss equations determined under this Methodology are to be applied</td>
</tr>
<tr>
<td>VTN</td>
<td>Virtual transmission node</td>
</tr>
</tbody>
</table>
2. PURPOSE

MLFs are used in the National Electricity Market (NEM) to adjust electricity prices to reflect the energy lost in transporting electricity across networks. Intra-regional loss factors and inter-regional loss factor equations apply for a financial year (1 July – 30 June).

2.1 MLFs and electrical losses

Electrical losses are a transport cost that need to be priced and factored into electrical energy prices. In the NEM, MLFs represent electrical losses between a connection point and a regional reference node (RRN). The factors are used to adjust electricity spot prices set at the RRN to reflect electrical losses between the RRN and a relevant connection point.

In a power system electrical losses are a function of the load, network and generation mix which is constantly changing. Another feature of electrical losses is that they increase quadratically to the electrical power transmitted (losses \(\propto \) current\(^2\)). These variables mean that a single MLF for each connection point is necessarily an approximation.

2.2 Marginal losses

The NEM uses marginal costs as the basis for setting spot prices in line with the economic principle of marginal pricing. There are three components to a marginal price in the NEM: energy, losses and congestion.

The spot price for electrical energy is determined, or is set, by the incremental cost of additional generation (or demand reduction) for each dispatch interval. Consistent with this, the marginal loss is the incremental change in total losses for each incremental unit of electricity. The MLF of a connection point represents the marginal losses to deliver electricity to that connection point from the RRN.

3. REGULATORY REQUIREMENTS

This Methodology applies to AEMO and any Registered Participants who are required to provide information and assistance to AEMO in the calculation of the MLFs and the preparation of load and generation data for those purposes.

Clauses 3.6.1 and 3.6.2 of the NER require AEMO to calculate, annually, intra-regional loss factors and inter-regional loss factor equations, respectively, for a financial year, and publish the results by April 1. Clause 3.6.2A requires AEMO to prepare load and generation data to calculate the MLFs. Clauses 3.6.1(c), 3.6.2(d), (d1) and (g) and 3.6.2A(b) of the NER require AEMO to detail the methodology to be used in these calculations.

There are extensive requirements to be met in developing the Methodology, all of which are reflected in this document.
4. **PRINCIPLES**

Consistent with the NER requirements detailed in clauses 3.6.1, 3.6.2 and 3.6.2A, AEMO has established the following principles to develop this Methodology:

- Best approximation to full nodal pricing in line with *market* design principles.
- Loss factors to be forward looking.
- Complete year of historical data rather than a representative sample.
- Minimal extrapolation to modify data from the Reference Year.
- Loss factors to be based on marginal losses at each *connection point*.

5. **FORWARD-LOOKING LOSS FACTOR METHODOLOGY**

An overview of this Methodology is illustrated below, and a timeline is set out in Appendix A. Data requirements are listed in Appendix C.

- **Network data**
 - Prepare a network model that best represents the power system in the Target Year

- **Load forecast data**
 - Prepare load forecasts for existing and new connection points for the Target Year

- **Controllable network element flow data**
 - Prepare flow data used for existing controllable Market Network Service Provider (MNSP) network elements and controllable regulated network elements
 - Estimate flow data for new controllable MNSP network elements and controllable regulated network elements

- **Generation data**
 - Prepare Reference Year data for existing generation units
 - Estimate generation profiles for new generating units
 - Determine maximum capacities of existing and new generating units

- **Supply and demand balance**
 - Determine the Interconnector limits
 - Restore supply-demand balance by applying minimal extrapolation to generating units

- **Intra-regional loss factors**
 - Calculate loss factors at each connection point for each trading interval
 - Calculate volume weighted marginal loss factors

- **Inter-regional loss factor equations**
 - Determine inter-regional loss factor equations

- **Publication and updates**
 - Publish intra-regional loss factors and inter-regional loss factor equations by 1 April
5.1 Network data
A model of the power system for the Target Year is required to simulate load flows. This section describes how the network model is constructed.

5.1.1 Identify future augmentations
AEMO consults with Transmission Network Service Providers (TNSPs) to identify committed transmission augmentations expected to be commissioned during the Target Year. The TNSPs check that identified augmentations satisfy the commitment criteria set out in the AEMO Electricity Statement of Opportunities (ESOO). TNSPs then supply AEMO with sufficient network data for the identified augmentations to be represented in the network model.

5.1.2 Prepare a base case load flow
AEMO takes a single snapshot of the NEM transmission network from the AEMO Energy Management System (EMS). AEMO then modifies the snapshot to:

- Include all known connection points (existing and planned).
- Represent anticipated system normal operation.
- Include committed network augmentations.
- Maintain a voltage profile that represents high load conditions.

5.2 Load forecast data
Load flow simulation studies require load forecasts for the Target Year. AEMO, or the relevant TNSP, forecasts load at each connection point based on data from the Reference Year.

5.2.1 Forecasting connection point load
AEMO, or the TNSP, produces connection point load forecasts for each load connection point by 15 January each year. If the TNSP produces the forecast, then AEMO provides to the TNSPs, by 15 October, relevant historical connection point load data for the Reference Year.

The connection point load forecasts are:

- Based on Reference Year connection point data (retaining the same weekends and public holidays).
- Consistent with the latest annual regional load forecasts prepared by AEMO or the TNSP.
- Based on 50% probability of exceedance and medium economic growth conditions.
- To include any known new loads.
- To include existing and committed generation that is embedded in the distribution network.
- An estimate of the active and reactive power at each connection point for each trading interval.

5.2.2 AEMO due diligence
Where a TNSP provides the connection point forecasts, AEMO reviews the forecasts to ensure that:

- The aggregated connection point annual energies (accounting for estimated transmission losses) match the latest ESOO.
- The aggregated maximum demand matches the latest ESOO (accounting for estimated transmission losses and generating unit auxiliaries).
- The differences between the Reference Year and forecast data for selected connection points are acceptable.

AEMO and TNSPs consult to resolve any apparent discrepancies in the connection point data.
5.3 Controllable network element flow data

Controllable network elements (DC links) include both controllable Market Network Service Providers (MNSPs) and controllable regulated network elements. Flows on DC links form an input to load flow simulation studies unless they operate in parallel to other regulated network elements (AC circuits).

Flows on DC links that operate in parallel with AC circuits are not inputs to load flow simulation studies. Such flows are determined by load flow simulation studies and are described in section 5.5.3 (Parallel AC and DC links).

5.3.1 Controllable Network Elements with historical flow data

AEMO assumes that flows in MNSP DC links are unchanged from Reference Year flows. If flows in MNSP DC links are likely to change in response to modified generation profiles, in accordance with section 5.5.6 or 5.9, then AEMO adjusts Reference Year flows on MNSP DC links to reflect the change in generation profiles.

5.3.2 New Controllable Network Elements

For new or recently commissioned DC links where there is no Reference Year flow, AEMO assumes a value of zero (less than 1 MW) for each trading interval.

5.4 Generation data

Load flow simulation studies require a base set of generation data as an input. For existing generating units, AEMO uses generation data from the Reference Year. For new generating units AEMO estimates generation from similar generating units.

5.4.1 New generating units

AEMO calculates loss factors based on committed and existing generating units published in the latest ESOO. AEMO updates this list of generating units, up to 15 January, with new generation information published on the AEMO website.

5.4.2 New generating unit dispatch

AEMO assumes the dispatch of new committed generating units to be zero for trading intervals prior to the committed Commissioning Date reported in the latest ESOO. Once commissioned, AEMO estimates the output of committed new generating units by shaping and scaling appropriate Reference Year data for generating units of similar technology and fuel type as follows:

1. Identify generating units in the NEM that use similar technology and fuel type, and are up to five years old. Where there are no appropriate generating units up to five years old, use data up to 10 years old.
2. Find the average output of the similar generating units as a percentage of their winter rating from the latest ESOO.
3. Determine the output of the new generating units by scaling the average output profile by the nameplate rating of the new generating unit.

A new generating unit in the second year of operation will generally have incomplete data for the Reference Year. In this case, the procedure above is used to estimate the dispatch for the period prior to the Reference Year data being available.

5.4.3 Hydro and wind generating units

AEMO consults with the proponents of new hydro or wind generating units to determine an anticipated generation profile. AEMO assesses the generation profile in accordance with Appendix B to ensure that the information supplied by the proponent is credible.

1 The Generation Information Page on AEMO’s website. AEMO periodically updates this page.
Where the proponent is unable to provide such a profile, then AEMO uses a flat *generation* profile equal to the product of the anticipated utilisation factor and the nameplate rating of the *generating unit*.

5.4.4 New technologies and fuel types

For new *generating units* that utilise a new technology or fuel type, AEMO assesses the *generation* profile in accordance with Appendix B to ensure that the information supplied by the proponent is credible.

5.4.5 Retired generating units

Generating units that retire in the Target Year are identified in the latest ESOO or AEMO website. The dispatch output of retiring plant is set to zero from the retirement date specified in the latest ESOO. AEMO consults with the *Generator* for the retiring *generating unit* if the information in the latest ESOO or on AEMO’s website is insufficient to provide an exact retirement date.

5.4.6 Generating unit capacities

AEMO sets the maximum capacity of each *generating unit* to the value published in the latest ESOO. AEMO uses separate values for summer and winter, where summer is defined as 1 December to 31 March. AEMO then estimates sent-out capacity because *load* flow simulation studies require sent-out *generation* data. AEMO estimates the sent out capacity of *generating units* for both summer and winter, by subtracting an estimate of auxiliary *load* from the maximum capacity. AEMO estimates the auxiliary *load* from the difference between SCADA *generating unit* terminal output, as obtained from the AEMO EMS, and the sent-out value for the same *trading interval*. Where the auxiliary *loads* are separately measured or negligible, AEMO will not correct the Reference Year *generation* data.

Reductions in capacity

AEMO will consider using a reduced generating capacity if the capacity of a *generating unit* is forecast to be reduced. AEMO will consult with the *Generator* to determine the reason for the forecast capacity reduction. If the capacity has been restored from a reduced capacity in the prior year(s), then AEMO in consultation with the *Generator* will backfill the Reference Year profile of the *generating unit* to represent the restored capacity.

5.5 Supply-demand balance

AEMO uses the minimal extrapolation principle to balance supply and demand. AEMO uses *generation* data from the Reference Year and then extrapolates this data to balance supply and demand. This follows updating of the network model, scaling the *connection point loads*, and including any committed new *generating units*.

The availability of a *generating unit* is used to denote the level to which it can be *dispatched*. An availability of zero means the *generating unit* is unavailable for *dispatch*. A *generating unit* is considered available in a period if its availability in the equivalent Reference Year period was greater than zero.

AEMO obtains the availability status of each *generating unit* for each *trading interval* from market data. The availability of a *generating unit* is a factor that is considered in the adjustment of the supply-demand balance for those trading periods when it is necessary to increase the level of *generation*. This is discussed in section 5.5.2.

5.5.1 Excess generation

There will be an excess of *generation* for each *trading interval* where the forecast connection point loads have grown by less than the initial forecast of the output of the new *generating units*. For these *trading intervals*, AEMO reduces the net *generation* by scaling the output of all the *generating units* in proportion to their Reference Year output.

2 Or as updated on AEMO’s website - Generation Information Page.
3 Network augmentations also affect the supply/demand balance by altering the network losses.
For new generating units, AEMO scales the initial estimate of the output in the same manner as the Reference Year output of the existing generating units. For energy limited generating units, including Pump Storage Schemes, AEMO does not adjust the output.

5.5.2 Insufficient generation

There will be a deficit of generation for each trading interval where the connection point loads have grown by more than the initial estimate of the output of the new generating units. For these trading intervals, AEMO increases the net generation in the following order of priority:

1. The spare capacity of non-energy limited generating units that are currently running (ON) is dispatched in proportion to the spare capacity of each generating unit.
2. The capacity of the non-energy limited generating units that were not running (OFF) but available is dispatched in proportion to the capacity of each generating unit.
3. Dispatchable Pump Storage Schemes are reduced in proportion to their Reference Year load.
4. The capacity of the non-energy limited generating units that were not running (OFF) and are unavailable is dispatched in proportion to the capacity of each generating unit.
5. The spare capacity of hydro generating units is dispatched in proportion to the spare capacity of each generating unit.
6. Dummy generating units (created in the load flow simulation due to a generation shortfall created) are dispatched at the RRN.

The extrapolated generation energy is subject to the following:

$$Gen_{\text{forecast}} < Gen_{\text{hist}} \times (1 + Gen_{\text{change,\%}} + \text{Percent_demand_change} + \text{Percent_buffer})$$

where:

- $$Gen_{\text{forecast}}$$ = Extrapolated generation energy (GWh)
- $$Gen_{\text{hist}}$$ = five-year historical average (GWh) ignoring outliers in years t-2 to t-5
- $$Gen_{\text{change,\%}}$$ = Generation change in the Target Year as a % total NEM generation (%)
- $$\text{Percent_demand_change}$$ = Percentage change in NEM demand in the Target Year compared to Reference Year (%)
- $$\text{Percent_buffer}$$ = Factor to account for variations from the five-year average and/or conditions where insufficient generation exists

AEMO will not substitute prior years when excluding outliers from the historical average. i.e:

- If no outliers, use a five-year historical average
- If one outlier, use four-year historical average
- If two outliers, use three-year historical average

AEMO does not adjust the output of transmission connected wind farms, and for new generating units, AEMO scales the initial estimate of the output in the same manner as the Reference Year output of the existing generating units.

5.5.3 Parallel AC and DC links

For inter-regional flows where a regulated DC link is in parallel to other AC circuits, AEMO apportions flow between the DC and AC elements in proportion to the maximum capabilities of the DC and AC circuits. AEMO uses different ratios where the capabilities are not the same in each direction.

* Dispatching a dummy generating unit at the RRN is equivalent to load shedding.
AEMO treats new regulated DC links in parallel with other AC circuits in the same manner as existing DC links in parallel with other AC circuits.

5.5.4 Interconnector limits

AEMO implements representative interconnector limits for summer and winter, and peak and off-peak periods for the Target Year consistent with the limits described in the latest ESOO. AEMO consults with TNSPs when developing these representative limits.

AEMO may need to adjust generation to maintain inter-regional flows within the respective transfer capabilities. This requirement could arise through the interaction of interconnector limits and load growth and new generation.

5.5.5 Switchable connection points

A generating unit or load may be physically switchable between two (or more) connection points. An example is Yallourn Unit 1 which can either be connected to the Victorian 500 kV or 220 kV networks. For these types of connections, AEMO allocates the load or generating unit metering data to the appropriate connection point. AEMO then calculates separate loss factors for each connection point and volume weights these loss factors to give a single MLF.

AEMO assumes that for trading intervals where the generating unit is ON, the connection point is unchanged from the state in the Reference Year generating unit data. Further, when the generating unit or load is OFF but is required to be dispatched, then AEMO assume that the connection point state has not changed since the last known state. This is in accordance with the principle of minimum extrapolation.

The operator of a switchable load or generating unit may consider that in the Target Year, the switching pattern of their generating unit will differ significantly from the Reference Year switching pattern. Where the operator expects that the generating unit switching will differ by more than five days in aggregate, then the associated TNSP consults with the operator of the generating unit, to prepare an appropriate switching profile for the Target Year.

5.5.6 Abnormal generation patterns

This clause applies when a Generator or AEMO believes that a Reference Year generation profile will not reflect the Target Year generation profile.

A Generator may, on its own initiative or at AEMO’s request, provide an adjusted generation profile to AEMO by 15 November. AEMO then reviews the adjusted generation profile, and considers whether to use the adjusted generation profile in lieu of the Reference Year generation profile.

AEMO will use the most recent MT PASA data, as of 15 January, as a trigger for initiating discussions with participants with the potential to use an adjusted generation profile for the loss factor calculation.

AEMO may only decide to accept an adjusted generation profile if it is satisfied that:

- The Reference Year generation profile is clearly unrepresentative of the expected generation profile for the Target Year.
- The adjusted generation profile is independently verifiable and based on physical circumstances only. Some examples are:
 - Drought conditions.
 - Low storage levels or rainfall variability for hydroelectric generating units.
 - Outages of greater than 30 continuous days.
 - Failure in the supply chain impacting on fuel availability.
- The adjusted generation profile is not market-related and does not arise as a result of the financial position of the Generator.
- The adjusted generation profile is not claimed to be confidential, as AEMO will publish it along with its reasoning for using an adjusted generation profile as part of the report accompanying the publication of the MLFs.
AEMO may seek an independent review of any adjusted generation profile submitted by a Generator.

If AEMO accepts an adjusted generation profile, this information is published on 1 April. The information is aggregated quarterly on a regional or sub-regional level.

AEMO historically reviews how adjusted generation profiles compared with actual generation profiles. AEMO publishes a summary of the review, with generation profiles aggregated quarterly on a regional or sub-regional level.

AEMO calculates, and publishes in October each year, indicative extrapolated generation data for scheduled generating units along with key inputs and modelling assumptions to assist Generators to identify grossly incorrect Reference Year generation data. The calculation will be approximate and will:

- Only reflect information known at the time.
- Only include existing and major new connection points.
- Only include an approximate load forecast.
- Be based on the previous year’s network model, and will not include new augmentations.

5.6 Intra-regional static loss factors

AEMO uses TPRICE or an equivalent software application to calculate loss factors. The calculation algorithm can be summarised as:

- A load flow is solved for each trading interval using the supplied generation and load data.
- The MLFs for the load flow swing bus are calculated for each connection point and trading interval from a Jacobian matrix.
- The MLFs for the associated RRN are calculated for each trading interval as the ratio of the connection point loss factor to the associated RRN loss factor.
- For each connection point, the marginal loss factors (with respect to the RRN) for each trading interval are volume weighted by connection point MLFs (with respect to the RRN) to give the static MLF.

AEMO may include a number of voltage control buses to improve the stability of the load flow solution. AEMO limits the use of voltage controlled buses to those on the backbone of the high voltage network.

5.6.1 Dual MLFs

AEMO calculates dual MLFs for transmission network connection points where a single MLF for the transmission network connection point does not satisfactorily represent transmission network losses for active energy generation and consumption. AEMO applies to duals MLFs to:

- Transmission network connection points classified as Pump Storage Schemes.
- Other transmission network connection points where the net energy balance (NEB) is less than 30%.

The NEB threshold test is as follows:

Determine the percentage NEB by expressing the net energy at a transmission network connection point as a percentage of the total energy generated or consumed at a transmission network connection point, whichever is greater.

\[
NEB = \frac{\text{Absolute(Sum of energy generated and consumed)}}{\text{Maximum(Absolute(energy generated), Absolute(energy consumed))}}
\]

5 The TPrice application calculates the loss factor for each connection point and RRN referred to the load flow swing bus defined in the network model. The loss factor of connection point A referred to connection point B is defined as the ratio of their respective loss factors with respect to the swing bus.

6 The selection of swing bus does not directly affect the marginal loss factors with respect to the assigned regional reference node. There is a small effect on the flows in the network flows from changing the swing bus and this has a small indirect effect on the loss factors.
Where

\[\text{Absolute}(x) \text{ is the absolute value of } x; \text{ and} \]

\[\text{Maximum}(x, y) \text{ is the maximum value of } x \text{ and } y. \]

Refer to Appendix D for a worked example.

5.6.2 Virtual transmission nodes (VTN)

AEMO calculates intra-regional loss factors which are averaged over an adjacent group of transmission network connection points collectively defined as a VTN. Refer to Appendix E for the calculation methodology.

5.7 Inter-regional loss factor equations

5.7.1 Regression procedure

AEMO determines inter-regional marginal loss factor equations by using linear regression analysis. The procedure is as follows:

- The marginal loss factors for each of the RRNs, defined with respect to the swing bus, are extracted from the output of the TPRICE run used to calculate the intra-regional loss factors.

- For each pair of adjacent RRNs:
 - The inter-regional marginal loss factors are calculated for each trading interval as the ratio of marginal loss factors of the associated RRNs.
 - The inter-regional loss factor equations are estimated by regressing the inter-regional marginal loss factors against the associated interconnector flow and selected regional demands.

The regional demands are included in the inter-regional loss factor equations if they significantly improve the fit of the regression equation.

Where the fit of an inter-regional loss factor regression is poor, then AEMO considers using additional variables in the regression analysis, including:

- The output of specific generating units that affect the inter-regional losses (for example losses on QNI would be affected by generation at Millmerran).

- Transfers on other interconnectors.

Including these variables would require alterations to the AEMO market systems.

5.7.2 Loop flows

At present the regional model of the NEM is linear because interconnectors between regions do not form loops. Loop flows may be introduced in the future if additional interconnectors are built between regions that are not currently interconnected or if the region model is modified.

If loops are introduced into the NEM regional model, then the FLLF methodology may need to be revised.

5.7.3 Modelled generating unit and load data

Where the range of interconnector flows is less than approximately 75% of the technically available range of the interconnector flows or where the regression fit is poor, the resulting inter-regional loss fraction equation will be unrepresentative.

For these scenarios the load and generating unit data are scaled in a power simulation tool to produce a set of randomly distributed flows covering the technically available range of the interconnector flows. The regression analysis is repeated using the modelled data obtained from these flows. The modelled generating unit and load data would not be used for calculating intra-regional loss factors.
5.8 Publication
AEMO publishes the intra-regional loss factors and inter-regional loss factor equations by 1 April prior to the Target Year.

5.9 Unexpected and unusual system conditions
In developing this methodology, AEMO used best endeavours to cover all expected operating and system conditions that could arise when producing the load, generating unit and network dataset that represents the Target Year.

In practice, unexpected operating or system conditions can arise that are not covered in this Methodology. If this arises, then AEMO will make a judgement based on the principles listed in the NER and in section 5. All such judgements that AEMO is required to make while developing the MLFs will be identified in the published report listing the loss factors.

5.10 New connection points or interconnectors
AEMO publishes MLFs and inter-regional loss factor equations by 1 April prior to each Target Year. If AEMO is notified after 1 April of new connection points or new interconnectors that require MLFs or inter-regional loss factor equations, then AEMO follows the procedure specified in this section.

5.10.1 Network
The network representation used to calculate the MLFs for the new connection point is based on the network used to perform the most recent annual MLF calculation.

The network representation is modified to incorporate the new connection point. This may include addition of new or changed transmission elements or modifications to existing connection points.

5.10.2 Generation and Load data
The connection point load and generating unit data used to calculate the MLFs for the new connection point is based on the connection point data used to perform the most recent annual MLF calculation.

If the new connection point is a load, the relevant TNSP supplies AEMO with the load data for each trading interval following the commissioning of the connection point. If the new connection point is a generating unit, AEMO determines an estimate of the dispatch for the new generating unit using the procedure set out in section 5.4.

5.10.3 Methodology
The procedure in section 5.5 is applied to restore the supply-demand balance by making adjustments to the output of generating units. This would be the same procedure used by AEMO to perform the most recent annual MLF calculation. The intra-regional loss factor for the new connection point would be calculated using the procedure in section 5.6.

When AEMO calculates the MLF for a new connection point, MLF values for existing connection points in the vicinity may also be affected. However, when a new connection point is established after the MLFs have been published, AEMO will not revise the published MLFs for the existing connection points.
APPENDIX A. TIMELINE

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>August</td>
<td>AEMO commences work for Target Year commencing on the following 1 July</td>
<td></td>
</tr>
<tr>
<td>August to December</td>
<td>AEMO publishes backcast MLF study for the previous financial year</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>AEMO publishes indicative generation extrapolation results and modelling assumptions paper</td>
<td>5.5.6</td>
</tr>
<tr>
<td>15 November</td>
<td>Deadline for Generators to inform AEMO of abnormal generation conditions in the Target Year</td>
<td>5.5.6</td>
</tr>
<tr>
<td>15 January</td>
<td>Deadline for updates on AEMO website (Generation page) to be included.</td>
<td>5.4.1</td>
</tr>
<tr>
<td>15 January</td>
<td>Deadline for latest MT PASA results to use as trigger for initiating discussions with participants regarding use of adjusted generation profiles</td>
<td>5.5.6</td>
</tr>
<tr>
<td>1 March</td>
<td>AEMO publishes draft intra-regional loss factors and inter-regional loss equations on website</td>
<td>5.8</td>
</tr>
<tr>
<td>1 April</td>
<td>AEMO publishes intra-regional loss factors and inter-regional loss equations on website</td>
<td></td>
</tr>
</tbody>
</table>
| 1 April to end of Target Year | AEMO calculates and publishes, as required
- MLFs for newly registered connection points, and
- inter-regional loss factor equations for new interconnectors | 5.11 |
| 1 July | Intra-regional loss factors and inter-regional loss equations effective in market systems | 2 |

APPENDIX B. NEW GENERATING UNITS

This appendix describes the process where proponents of a new generating unit provide to AEMO the information necessary to determine the forecast generating data. The process ensures that proponents provide credible information. The process is:

- AEMO assumes each new generating unit operates continuously at full capacity from its installation date.
- Reductions from full capacity are valid only if AEMO receives credible advice from the operator detailing:
 - Forced outages.
 - Planned outages.
 - An energy limit.
 - An intent to operate only when the relevant spot price exceeds a stated value, or
 - Generation being determined by factors outside the control of the Generator such as the seasonal nature of the fuel source.
- Any specified reductions due to forced outages are incorporated as a uniform reduction in availability.
- Any specified reduction due to planned outages is applied during periods specified by the Generator.
- Any specified energy limit shall be applied by distributing generation, from the Reference Year, from the highest price settlement period to lower-priced periods until the specified energy is exhausted.
- Where an intent to operate only above a specified price is applied, the generation profile comprises full capacity when the corresponding historical price exceeds the specified value, and zero at other times.
- Where an external factor is limiting production, the generation profile is as specified by the generator, provided this is accepted as reasonable by AEMO.
APPENDIX C. DATA REQUIRED BY AEMO

The following table summarises the data necessary for AEMO to implement the forward-looking loss factor methodology. The table includes a description and the source of each item of data.

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Load Connection Points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection point load</td>
<td>MW & MVAR by trading interval</td>
<td>AEMO or relevant TNSP (AEMO will estimate the data if it is not supplied)</td>
</tr>
<tr>
<td>New Load Connection Points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated commissioning date</td>
<td>Date of commercial operation</td>
<td>Latest ESOO, confirmed with proponent</td>
</tr>
<tr>
<td>Connection point load</td>
<td>MW & MVAR by trading interval</td>
<td>AEMO or relevant TNSP</td>
</tr>
<tr>
<td>Existing generating units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator terminal capacity for summer and\winter</td>
<td>Summer and winter MW values</td>
<td>Latest ESOO</td>
</tr>
<tr>
<td>Auxiliary requirements for summer and winter</td>
<td>Summer and winter MW values</td>
<td>AEMO estimate with consultation with the Generator</td>
</tr>
<tr>
<td>Historical generation profile</td>
<td>MW by trading interval</td>
<td>AEMO settlements data</td>
</tr>
<tr>
<td>Availability status by trading interval</td>
<td>Status by trading interval</td>
<td>AEMO market systems</td>
</tr>
<tr>
<td>New generating units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated commissioning date</td>
<td>Date of commercial operation</td>
<td>Latest ESOO, confirmed with the owner</td>
</tr>
<tr>
<td>Nameplate rating</td>
<td>MW</td>
<td>Latest ESOO, confirmed with the owner</td>
</tr>
<tr>
<td>Similar generating units</td>
<td>List of generating units</td>
<td>AEMO discussions with the owner</td>
</tr>
<tr>
<td>Generation profile of similar generating units</td>
<td>MW by trading interval</td>
<td>AEMO settlements data</td>
</tr>
<tr>
<td>Existing MNSP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historical energy transfer profile</td>
<td>MW by trading interval</td>
<td>AEMO settlements data</td>
</tr>
<tr>
<td>New MNSP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated commissioning date</td>
<td>Date of commercial operation</td>
<td>Latest ESOO, confirmed with the proponent</td>
</tr>
<tr>
<td>Interconnector Capability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity in each</td>
<td>MW by trading interval</td>
<td>Latest ESOO, in consultation with the TNSPs</td>
</tr>
<tr>
<td>Existing transmission network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network data and configuration</td>
<td>Load flow, representative of system normal</td>
<td>EMS and operating procedures</td>
</tr>
<tr>
<td>Transmission network augmentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>List of network augmentations</td>
<td>List of augmentations</td>
<td>Latest ESOO, in consultation with the TNSPs</td>
</tr>
<tr>
<td>Estimated commissioning date</td>
<td>Date of commercial operation</td>
<td>Latest ESOO, in consultation with the relevant TNSP</td>
</tr>
<tr>
<td>Network element impedances</td>
<td>Network element impedances</td>
<td>Relevant TNSPs</td>
</tr>
</tbody>
</table>
APPENDIX D. NEB CALCULATION EXAMPLE

Consider a transmission network connection point that includes two generators and two loads.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Gen 1 (GWh)</th>
<th>Gen 2 (GWh)</th>
<th>Load 1 (GWh)</th>
<th>Load 2 (GWh)</th>
<th>Flow on transmission network connection point (GWh)</th>
<th>Net</th>
<th>Generation</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>-10</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>Period 2</td>
<td>13</td>
<td>5</td>
<td>-2</td>
<td>-20</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>Period 3</td>
<td>11</td>
<td>8</td>
<td>0</td>
<td>-10</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Period 4</td>
<td>10</td>
<td>8</td>
<td>-1</td>
<td>-30</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
<td>-13</td>
</tr>
<tr>
<td>Period 5</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-25</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Period 6</td>
<td>21</td>
<td>8</td>
<td>-2</td>
<td>-10</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Period 7</td>
<td>15</td>
<td>2</td>
<td>-1</td>
<td>-15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Period 8</td>
<td>13</td>
<td>0</td>
<td>-2</td>
<td>-25</td>
<td>-14</td>
<td>-14</td>
<td>-14</td>
<td>-14</td>
</tr>
<tr>
<td>Period 9</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>-30</td>
<td>-19</td>
<td>-19</td>
<td>-19</td>
<td>-19</td>
</tr>
<tr>
<td>Period 10</td>
<td>23</td>
<td>8</td>
<td>-1</td>
<td>-10</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>130</td>
<td>55</td>
<td>-9</td>
<td>-185</td>
<td>-9</td>
<td>51</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Net energy at transmission network connection point = 9 GWh

Net generation at transmission network connection point = 51 GWh

Net load at transmission network connection point = -60 GWh

\[
\text{NEB} = \frac{\text{Absolute(Sum of energy generated and consumed)}}{\text{Maximum(Absolute(energy generated), Absolute(energy consumed))}}
\]

\[
\text{NEB} = \frac{\text{Absolute(9)}}{\text{Maximum(Absolute(51), Absolute(-60))}}
\]

\[
\text{NEB} = 15\%
\]
APPENDIX E. METHOD FOR CALCULATING AVERAGE TRANSMISSION LOSS FACTORS FOR VTNS

Each Distribution Network Service Provider (DNSP) must provide to AEMO by 1 March:

- A description of the DNSP’s proposed VTNs, including an unambiguous specification of which transmission network connection points constitute the VTN; and
- Written approval from the AER for each proposed VTN as required by clause 3.6.2(b)(3) of the NER.

AEMO calculates the average loss factor for each VTN using the annual energy for the respective transmission network connection points as weightings for the marginal loss factors for the transmission network connection points that constitute the VTN.

The average transmission loss factor for a VTN proposed by the DNSP and approved by the AER (V_{TN_V}) is calculated according to:

$$MLF_V = \frac{\sum (MLF_n \times P_n)}{\sum P_n}$$

where

- MLF_V is the marginal loss factor that applies for the Target Year to VTN V;
- MLF_n is the intra-regional loss factor that applies for the Target Year to transmission connection point n; and
- P_n is the annual energy for each transmission connection point n that was used to calculate the MLF_n for the Target Year.

The connection point data used by AEMO to calculate the P_n values used as weights is the same connection point data used to calculate MLF_n.

AEMO determines and publishes the intra-regional loss factors for each VTN requested by the DNSP in by 1 April. These VTN loss factors are to apply for the next financial year.

AEMO applies the intra-regional loss factors for each VTN from 1 July.