THE FUTURE POWER SYSTEM SECURITY PROGRAM

FREQUENCY CONTROL

August 2016

PRESENTED BY JENNY RIESZ
AGENDA:

1. Secure operating envelope for RoCoF (~15min)
2. Options for managing high RoCoF (~30min)
3. Supply-demand balance for FCAS (~15min)
4. Review of FCAS Specifications (~5min)

Aim of this session: To share our “hot off the press” results on frequency control, and seek your feedback and suggestions.

Work in progress!
SECURE OPERATING ENVELOPE FOR RATE OF CHANGE OF FREQUENCY (ROCOF)
• Following a contingency event (unexpected loss of generation/load)
 o Imbalance in supply-demand causes system frequency to rise/fall
• If “Rate of change of Frequency” (RoCoF) is too high:
 o Could result in cascading trip of load or generation
 o Emergency control schemes may not prevent system collapse
Initial RoCoF depends upon:

$$\text{RoCoF} = \frac{50 \text{Hz}}{2} \times \left(\frac{\text{Contingency size (MW)}}{\text{System inertia (MW.s)}} \right)$$
There is no system standard for RoCoF at present

Generation access standards introduced in 2007:

<table>
<thead>
<tr>
<th>Access Standard</th>
<th>Automatic</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 Hz/s for 0.25 seconds</td>
<td>1 Hz/s for 1 second</td>
</tr>
</tbody>
</table>
Historical events:

<table>
<thead>
<tr>
<th>Historical contingency event</th>
<th>Maximum RoCoF (measured over 200ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004 SA separation (08/03/2004)</td>
<td>-2.5 Hz/s</td>
</tr>
<tr>
<td></td>
<td>(-2.1 Hz/s measured over 500ms)</td>
</tr>
<tr>
<td></td>
<td>(-1.7 Hz/s measured over 1s)</td>
</tr>
<tr>
<td>2005 SA separation (14/03/2005)</td>
<td>-1.9 Hz/s</td>
</tr>
<tr>
<td></td>
<td>(-1.6 Hz/s measured over 500ms)</td>
</tr>
<tr>
<td></td>
<td>(-1.3 Hz/s measured over 1s)</td>
</tr>
<tr>
<td>2007 SA separation (16/01/2007)</td>
<td>+ 0.3 Hz/s</td>
</tr>
<tr>
<td>2009 contingency event (02/07/2009)</td>
<td>- 0.3 Hz/s</td>
</tr>
<tr>
<td>2012 contingency event (19/06/2012)</td>
<td>- 0.4 Hz/s</td>
</tr>
<tr>
<td>2015 SA separation (1/11/2015)</td>
<td>- 0.4 Hz/s</td>
</tr>
</tbody>
</table>

RoCoF withstand capabilities of the system highly uncertain
INERTIA IN SOUTH AUSTRALIA

- Total inertia available in SA: ~19,000 MW.s
 - However, synchronous units must be operating to contribute inertia
- SA inertia now observed below 2,000 MW.s in some periods

![Graph showing inertia and RoCoF](image_url)

- Low inertia
- Large potential contingency size
 - High RoCoF exposure (upon rare “non-credible” separation)

Jan-Jul 2016
ROCOF EXPOSURE UPON NON-CREDIBLE SEPARATION IN SOUTH AUSTRALIA

Non credible separation of SA has occurred 4 times in the past 16 years.

* 2015 data, with Northern generation replaced by increased Heywood flows up to 650MW limit
INTERNATIONAL EXPERIENCE

• Ireland provides an analogue for South Australia:

<table>
<thead>
<tr>
<th></th>
<th>South Australia</th>
<th>Ireland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>1 – 3.4 GW</td>
<td>2.3 – 6.8 GW</td>
</tr>
<tr>
<td>% of energy from non-synchronous sources (2015)</td>
<td>42.5% (1.5 GW wind, 600 MW PV)</td>
<td>23% (wind)</td>
</tr>
<tr>
<td>Interconnectors</td>
<td>1 AC 1 HVDC</td>
<td>2 HVDC</td>
</tr>
</tbody>
</table>

• EirGrid work program since 2010 to identify secure operating envelope for RoCoF
 o Progressed slowly (breaking new ground)

<table>
<thead>
<tr>
<th></th>
<th>Present RoCoF System Limit</th>
<th>Targeted future RoCoF Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland (EirGrid/SONI)</td>
<td>0.5 Hz/s</td>
<td>1 Hz/s (measured over 500ms)</td>
</tr>
<tr>
<td>UK (National Grid)</td>
<td>0.125 Hz/s</td>
<td>0.5 Hz/s for synchronous generators, 1 Hz/s for non-synchronous generators</td>
</tr>
</tbody>
</table>

• Very little other international experience with high RoCoF in **large** power systems
POSSIBLE FAILURE MECHANISMS

Mechanical stress

- High torque (wear and tear), eventually leading to pole slipping

Protective relays

- Some types of relays may maloperate during periods of extreme RoCoF

Controls

- May introduce additional vulnerabilities (related to control settings or structure)

Pole slipping: A synchronous generator “falls out of step” with the rest of the AC network

(rotor goes beyond a critical angle, at which the magnetic coupling fails).
POSSIBLE FAILURE MECHANISMS

• What do we know so far?

Synchronous units
- EirGrid analysis shows signs of instability for 1.5 - 2 Hz/s
- Depends upon leading or lagging power factor
- Gas turbines may be more sensitive to positive RoCoF (rising frequency) because of risk of combustion instability

Wind turbines
- Type 3 & 4 wind turbines typically very insensitive to RoCoF (but may experience issues with control / protection systems)
- Type 1 & 2 wind turbines may experience impacts on the mechanical drive train

Embedded generation
- Anti-islanding protection (preventing operation of electrical islands, fed by embedded generation) can be very sensitive to high RoCoF

Demand
- EirGrid is conducting analysis (DNV-GL)
WORK PACKAGES: ROCOF

Advising on RoCoF System Limits

- What are the possible RoCoF failure mechanisms?
- What is the secure operating envelope for RoCoF in the NEM, based upon the best available knowledge and tools at present?
- Develop a plan for reducing uncertainty.

RoCoF Withstand Capabilities of South Australian Generators

- What are the RoCoF withstand capabilities of South Australian generating units?
- Modelling each individual unit
- Wind & synchronous

Will not be conclusive (breaking new ground), but will provide significant insights, and clarify the path forward.
DISCUSSION:

• What are your experiences with high RoCoF?
 o Are you aware of system elements that are sensitive to, or will not operate properly at, high RoCoF?
 o What is the mechanism by which that element fails?
 o At what RoCoF level is this likely to occur?
 o Can this response be adjusted?

• Should a system limit for RoCoF be maintained in the NEM?
 o If so, what RoCoF limit would be suitable, and why?

jenny.riesz@aemo.com.au
OPTIONS FOR MANAGING HIGH ROCOF
OPTIONS FOR MANAGING HIGH ROCOF

Increase inertia
- Operate existing synchronous generation
- Install new synchronous generation (solar thermal, geothermal, biomass, gas, etc)
- High inertia synchronous condensers
- Retrofit retiring units as synchronous condensers

Decrease contingency size
- Reduce interconnector flows
- Special protection schemes
- Fast Frequency Response (FFR) from batteries, wind, PV, demand, etc.

Other possible “partial” solutions:
- Improve UFLS / OFGS
- New AC interconnectors
FAST FREQUENCY RESPONSE (FFR)

- Fast power injection, to arrest the initial fall in frequency
- Gives governors (6 second contingency FCAS) time to act
THREE DISTINCT SERVICES

- Primary Frequency Response (PFR)
 - 6 second contingency service (governor response)

- Synchronous Inertia Response (SIR)
 - Quantities of each required will be interrelated

- Fast Frequency Response (FFR)
 - Fast power injection (1 second or less)
 - Includes “synthetic inertia”

Synchronous inertia
NO SYNCHRONOUS INERTIA?

• Is it possible to operate a large power system with no synchronous inertia?
 o Would require new technology to set and maintain frequency
 o Not possible in a large power system at present, but may be in future
 ➢ “Sharing duty” and coordinated frequency setting remains challenging

• FFR alone (or “synthetic inertia”) is not sufficient
 ➢ Will always be a delay for detection and response
 o But FFR can probably reduce the amount of synchronous inertia required

• For now, some minimum amount of synchronous inertia is required to manage large power systems
INTERNATIONAL EXPERIENCES

- Only a few international jurisdictions have introduced or considered FFR services

<table>
<thead>
<tr>
<th></th>
<th>Response time</th>
<th>Sustain duration</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland</td>
<td>2 seconds</td>
<td>8 seconds</td>
<td>-</td>
</tr>
<tr>
<td>(EirGrid/SONI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>1 second</td>
<td>15 minutes</td>
<td>Tendering process (July 2016)</td>
</tr>
<tr>
<td>(National Grid)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>0.5 seconds</td>
<td>10 minutes</td>
<td>Rejected (June 2016)</td>
</tr>
<tr>
<td>(ERCOT)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FAST FREQUENCY RESPONSE (FFR)

- How fast does it need to be?

<table>
<thead>
<tr>
<th>RoCoF</th>
<th>Time to 49Hz (UFLS)</th>
<th>Number of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>4Hz/s</td>
<td>250ms</td>
<td>12.5</td>
</tr>
<tr>
<td>2Hz/s</td>
<td>500ms</td>
<td>25</td>
</tr>
<tr>
<td>1Hz/s</td>
<td>1s</td>
<td>50</td>
</tr>
<tr>
<td>0.5Hz/s</td>
<td>2s</td>
<td>100</td>
</tr>
</tbody>
</table>

50Hz frequency

1 cycle = 20ms

More inertia means FFR can be slower

More inertia
VISUALISING ROCOF

- **0.5 Hz/s**
 - (2s to UFLS)

- **4 Hz/s**
 - (250ms to UFLS)

- **UFLS**
• How fast *can* it be?

Detection & Identification

Activate & Respond

Signalling
DETECTION

• Very fast detection devices do exist
 o Eg. PMUs: RoCoF detection in 1.2 – 3.25 cycles (24-65ms)
 o But…

Super fast detection may not be a good idea, from a system perspective…
• In the initial period following a large disturbance, system dynamics result in multi-modal swings.

• Until inter-area swings damp out, frequency varies with location.

• Could cause false triggering of local detection.

Frequency of different buses (WECC, USA)

- Buses close to disturbance
- Bus far from disturbance
OSCILLATORY PHENOMENON

Sufficient sampling window important to distinguish between overall grid frequency, and local dynamic effects following a disturbance.

Source: EirGrid & SONI Position Paper, Sept 2012
DISTINGUISHING BETWEEN EVENTS

Severe frequency event (Needs FFR)

Fault on interconnector that clears (Doesn’t need FFR)

Difficult to distinguish

Graph:
- X-axis: Time (seconds)
- Y-axis: Frequency
- Measured
- Simulation
- Fault example

Graph shows a decrease in frequency followed by a recovery over time.
DISTINGUISHING BETWEEN EVENTS

100ms: Fault and severe frequency event still show same frequency

150 - 200ms: Measurement device starts providing useful information

Problematic to distinguish between these two very different events in <100ms
DIRECT EVENT DETECTION

- **Direct event detection** offers an alternative for managing specific events
 - Bypass need to wait to measure RoCoF/Frequency

- Suitable for managing separation events
 - Constantly monitor interconnector flows, and pre-calculate & “arm” FFR response
 - Communication latencies are the key limitation
 - Proximity of FFR resources may be important
• What technologies can provide FFR?

Detection & Identification

Signalling

Activate & Respond
WIND TURBINES

- Two types of fast active power response from wind turbines:

<table>
<thead>
<tr>
<th>Pitch Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Adjust blade pitch to vary active power</td>
</tr>
<tr>
<td>• In order to provide more active power, plant must be pre-curtailed</td>
</tr>
<tr>
<td>• Usually controlled through plant supervisory control system (communication latencies 200-500ms)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“Inertia-based FFR” (Synthetic inertia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Accesses stored rotational energy in the turbine rotor and drive-train</td>
</tr>
<tr>
<td>• Energy available is limited, and active power must be reduced again afterwards (to prevent stalling)</td>
</tr>
<tr>
<td>• Does not require pre-curtailment</td>
</tr>
<tr>
<td>• Usually controlled at individual turbines (minimises latencies)</td>
</tr>
</tbody>
</table>
When operating above rated wind speed, pitch control can provide additional power (no recovery deficit).

Need for power recovery at moderate wind speeds.

Turbines can typically provide ~10% of rated power, with full response in ~500ms (once control is activated).

Limited response at low wind speeds.
Instead of a prescribed shape, specify an amount of energy to be delivered over a prescribed time?

IESO (Ontario) – minimum performance requirement for wind plants (June 2016)
SOLAR PV

- Unlike wind, no physical inertia
 - Would typically need to pre-curtail to provide FFR
- However:
- Now common to size inverters to be less than power of the panels
- Excess PV energy available for FFR
- **Option 1**: Utilise short-term overload capability of inverter, and/or
- **Option 2**: allow active power priority over reactive power (temporarily)

![Diagram showing DC Power vs Hour of Day](image)

Short-time overload capability of reduced rating inverter *and/or* move closer to unity power factor operation

New ground! There is no industry precedence for this approach, to date
OTHER TECHNOLOGIES

A range of other technologies that can respond very quickly (following detection & identification) – 10-100ms

- Lithium batteries
- Flow batteries
- Lead acid batteries
- Super capacitors
- Flywheels
- Loads
- HVDC

Main limitation is inverter and controls response times
 - Location of controls is important, to minimise latencies
OVER-FREQUENCY VS UNDER-FREQUENCY EVENTS

- FFR is not symmetric
 - Different costs and implications for raise and lower services
- For some emerging FFR resources, cost to provide FFR lower services is likely to be small
 - Can reduce power output quickly, to low levels, with little risk of tripping
 - No need to pre-curtail
 - Some additional control systems required
- Mandated response in some jurisdictions
 - EirGrid, ERCOT, South Africa
- Have focused this discussion on raise services, but lower services will also be required.
FAULTS AND WEAK SYSTEM ISSUES

• **Faults:**
 - Large frequency excursions are often triggered by faults
 - Power electronics nearby experience active power disruptions (during and following the fault)
 - May make it difficult to provide FFR following a fault

• **Weak systems:**
 - Voltage must be restored following a fault before active power can be evacuated – reactive power given priority
 - In weak systems, active power recovery tends to be slower, FFR is delayed
SOLUTIONS OVERLAP

• Important to consider the overlap between different challenges, for efficient holistic solutions

System Strength

High RoCoF

Synchronous capacity

FFR

New AC interconnectors
Work Package:

- What are the capabilities and limitations of technologies that can provide a FFR service?
- To what degree can FFR substitute for synchronous inertia?
- How should new ancillary services be specified?
- What further insights can we draw from international experiences?
SUPPLY-DEMAND BALANCE FOR FCAS
FREQUENCY CONTROL ANCILLARY SERVICES

Contingency FCAS
• Corrects the generation / demand imbalance following major contingency events

Regulation FCAS
• Continually corrects the generation / demand imbalance in response to minor deviations in load or generation
OBJECTIVES

• Will there be sufficient regulation FCAS in future?

 Increased variability in supply and demand may lead to increasing need for regulation services

 Only synchronous units registered to provide regulation (retirements anticipated)

• Develop a first principles methodology for projecting regulation FCAS requirements

• Work in progress!
 o Suggestions welcome
METHODOLOGY

• Minimum quantities of regulation enabled have been determined empirically, by operational experience

• No methodology for determining regulation requirements from first principles
 ○ Need to develop this to project forward
NEM Mainland Frequency Operating Standards – interconnected system

<table>
<thead>
<tr>
<th>Condition</th>
<th>Containment</th>
<th>Stabilisation</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accumulated time error</td>
<td>5 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no contingency event or load event</td>
<td>49.75 to 50.25 Hz, 49.85 to 50.15 Hz 99% of the time</td>
<td>49.85 to 50.15 Hz within 5 minutes</td>
<td></td>
</tr>
<tr>
<td>generation event or load event</td>
<td>49.5 to 50.5 Hz</td>
<td>49.85 to 50.15 Hz within 5 minutes</td>
<td></td>
</tr>
<tr>
<td>network event</td>
<td>49 to 51 Hz</td>
<td>49.5 to 50.5 Hz within 1 minute</td>
<td>49.85 to 50.15 Hz within 5 minutes</td>
</tr>
<tr>
<td>separation event</td>
<td>49 to 51 Hz</td>
<td>49.5 to 50.5 Hz within 2 minutes</td>
<td>49.85 to 50.15 Hz within 10 minutes</td>
</tr>
<tr>
<td>multiple contingency event</td>
<td>47 to 52 Hz</td>
<td>49.5 to 50.5 Hz within 2 minutes</td>
<td>49.85 to 50.15 Hz within 10 minutes</td>
</tr>
</tbody>
</table>

Broad indication that regulation should be sufficient to manage ~99% of supply-demand imbalance events, under normal conditions.
If regulation is intended to cover 99% of imbalances, might expect a 1% **Probability of Exceedence (POE) measure** to broadly equate to empirically determined regulation requirements.

At present, one of the main drivers of regulation needs is demand forecast errors.

Calculate 1% POE for 5min demand forecast errors:

Suggests that a 1% POE measure does provide an indication of regulation needs.

<table>
<thead>
<tr>
<th></th>
<th>Regulation Raise / Lower (MW)</th>
<th>Demand forecast error (5 min) 1%POE (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEM</td>
<td>130 / 120</td>
<td>190</td>
</tr>
<tr>
<td>QLD</td>
<td>110</td>
<td>130</td>
</tr>
<tr>
<td>SA</td>
<td>70 / 35</td>
<td>43</td>
</tr>
<tr>
<td>TAS</td>
<td>50</td>
<td>31</td>
</tr>
</tbody>
</table>
Applied the 1% POE metric to NEM wind generation (change in 5min), to provide an estimate of regulation requirement related to wind generation.

Geographic smoothing leads to reduced marginal increase in regulation needs, as installed capacity increases.

Data points each represent aggregate wind in a region, in a particular year.
PROJECTING WIND VARIABILITY

- Project forward (based upon logarithmic fit).
- Variability of wind remains within minimum NEM regulation requirement until ~6-10GW of installed wind capacity.
- Beyond this point, wind variability may cause enablement of more regulation FCAS in some periods.
- Can be managed under present frameworks.
Wind variability is lower when operating at low or high levels.
UTILITY PV

• Consider utility-scale PV first
 o Distributed PV analysis to come later

• Very limited utility PV data available

<table>
<thead>
<tr>
<th>Utility PV</th>
<th>Installed Capacity (MW)</th>
<th>Commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyngan</td>
<td>102</td>
<td>Mar-June 2015</td>
</tr>
<tr>
<td>Moree</td>
<td>55</td>
<td>Feb-Mar 2016</td>
</tr>
<tr>
<td>Broken Hill</td>
<td>53</td>
<td>Sept-Oct 2015</td>
</tr>
<tr>
<td>Royalla</td>
<td>21</td>
<td>Apr 2015</td>
</tr>
</tbody>
</table>

• Only possible to do an initial preliminary assessment
 o Will improve as more units are installed, for a longer duration
• **Very limited utility-PV data available** – preliminary assessment only!

• Variability of utility PV remains within minimum NEM regulation requirement until ~1-2GW of installed capacity.

• Beyond this point, PV variability may cause enablement of more regulation FCAS in some periods.

• Can be managed under present frameworks.

Diagram

- **Estimation of Regulation Requirement**
 - **Installed capacity (MW)**
 - **Estimated Regulation Requirement (MW)**
 - **Min. regulation raise requirement (NEM-wide)**
 - **Min. regulation lower requirement (NEM-wide)**

- **Data Types**:
 - Wind Data
 - Wind Logarithmic Fit
 - Utility PV Data
 - Utility PV Logarithmic Fit
Utility PV appears to be generally more variable than wind generation, on short timescales.

Likely to be a more significant driver of regulation needs, in the absence of smoothing measures.

However, no additional variability overnight, regardless of installed capacity.

~80MW drop in 5min
Registered capacity:

<table>
<thead>
<tr>
<th>Region</th>
<th>Regulation Raise (MW)</th>
<th>Regulation Lower (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEM</td>
<td>7,055</td>
<td>7,023</td>
</tr>
<tr>
<td>QLD</td>
<td>1,026</td>
<td>1,054</td>
</tr>
<tr>
<td>SA</td>
<td>380</td>
<td>320</td>
</tr>
<tr>
<td>TAS</td>
<td>2,141</td>
<td>2,141</td>
</tr>
</tbody>
</table>

No shortfall in regulation supply anticipated soon, unless:

- Significant growth in utility PV/wind, particularly if concentrated in one region
- Significant retirement of regulation providers, without new entrants
NEXT STEPS & DISCUSSION POINTS:

• Explore opportunities for more efficient regulation
 o Suggestions?
• Distributed PV variability assessment
 o Sources of distributed PV generation data, 1-5min resolution, NEM-wide?
• Further insights on utility-scale PV generation
 o International data? (1-5min resolution)
• Contingency FCAS services supply-demand balance
 o What factors may influence the demand for contingency services in future?

• jenny.riesz@aemo.com.au
REVIEW OF FCAS SPECIFICATIONS
REVIEW OF FCAS SPECIFICATIONS

• To date, no emerging technologies registered to provide FCAS
 o Is this simply a lack of economic incentives? Or are there technical barriers?

• Program of work to:
 - Identify & remove unnecessary technical barriers, to facilitate broadest possible participation in FCAS
 - Ensure specifications adequately describe power system needs

• Specifications currently defined in the MASS (Market Ancillary Services Specification)
Efficient management of new types of events, eg:
- High speed cut-out events (wind)
- Utility PV intermittent cloud cover days
- EV/battery switching

Is regulation appropriate for managing these new types of events?
- Eg. “everyday” regulation for normal variability, and “occasional” regulation for larger, rarer events?
CONTINGENCY SERVICES

• Response times originally selected to allow all participants with a useful response to contribute
• May not be optimal for emerging technologies
• Would further subdivision of these timeframes allow broader participation?
• Do we need to specify any aspects of the response more precisely?
DISCUSSION:

Work package:

• Can emerging technologies provide all existing FCAS services?
• Are there any technical barriers to participation of emerging technologies in FCAS?
• Does the specification adequately define power system needs?
• How can FCAS frameworks be adapted for broader participation?

jenny.riesz@aemo.com.au