Short-Term Forecasting Trial: AEMO Intermittent Generator Forum

Carl Tidemann Australian Renewable Energy Agency

where the state of the second of the second

Agenda

- Background
- Project update
- Knowledge Sharing update
 - GHD Knowledge Sharing Agent
- Next steps
- Questions

Short-term Forecasting trial

In 2019, ARENA awarded \$9.41 million to 11 project recipients to trial short-term forecasting at large-scale wind and solar farms across Australia.

The portfolio of projects involves a range of weather forecasting technologies including:

- onsite cloud cameras that can predict the timing and impact of a passing clouds on a solar farm
- wind speed radars
- weather satellites
- infrared

ralian Government

nergy Agency

crunching of Bureau of Meteorology data and machine learning algorithms.

Where are the projects located?

The trial comprises **35%** of the NEM's registered large-scale wind and solar capacity, and collectively includes a total of around **3 GW** of renewable electricity generation.

PROTECTED - INTERNAL ARENA USE ONLY

Project share by state and funding recipient

Proponent	NSW	QLD	SA	VIC	Grand Total
Advisian		1	1		2
Aeolius				1	1
DNV GL				1	1
Fulcrum 3D (Wind)	1		1	1	3
Fulcrum 3D & Proa Analytics		1			1
IMC	1	3			4
IMC & Solcast				1	1
Meridian				1	1
Proa Analytics		1		1	2
Solcast	3	3		1	7
Vestas			2		2
Windlab		1		1	2
Grand Total	5	10	4	8	27

PROTECTED - INTERNAL ARENA USE ONLY

Project Objectives

Demonstrate the ability for:

- NEM based Semi-scheduled Generators to submit five-minute ahead self-forecasts via AEMO's web based API
- self-forecasting to be more accurate than the equivalent forecast produced by the Australian Wind Energy Forecasting System (AWEFS) or Australian Solar Energy Forecasting System (ASEFS)
- the potential commercial benefits of Market Semi scheduled Generators investing in forecasting approaches

Image: Fulcrum 3D

Knowledge Sharing Objectives

Contribute to industry knowledge sharing by:

- Examining factors that affect the accuracy of the forecasting approach trialed. e.g. in different weather, operational conditions, geographies and technologies
- Share details about the commercial and technical readiness of forecasting providers and technologies with industry

Demonstrate the ability to submit five-minute ahead self-forecasts via AEMO's web based API

Successes

- 21 sites now accredited and providing forecasts to AEMO
 - All showing improvements on AWEFS and ASEFS in certain periods

Challenges

- 6 sites are not submitting forecasts
 - Non-trial forecasters
- Still some issues with API connectivity

Demonstrate self-forecasting to be more accurate than the AWEFS or ASEFS

Successes

• 9 of 11 projects have demonstrated or modeled improvements

Challenges

- Sky cams
- Real time site data/SCADA connectivity
- Modeling is hard

Lessons learnt

- Solcast highly variable cloud cover is difficult to forecast, and is a problem more associated with tropical weather patterns in Queensland
- Meridian LIDAR users should be aware that poor visibility is often associated with high power generation fluctuations
- Proa self cleaning systems can overcome some soiling issues

Demonstrate potential commercial benefits of Market Semischeduled Generators investing in STF

Success

- A number of participants have shown that Causer Pays charges can be reduced to zero in certain time periods
 - Savings of 66% of the total amount of causer pays costs reported
- The more sites that accurately self-forecast, the more FCAS charges will decrease

ARFN

Timeline for 2020

AEMO Forum & ARENA Workshop

Progress & Lessons Learnt Reports

3 / 28 sites completed in the trial Progress & Lessons Learnt Reports 12 / 28 sites completed trial AEMO Forum

AREN

11

Progress Report (confidential)

Lessons Learnt Report (Public) Progress Report (confidential)

Lessons Learnt Report (Public)

Timing subject to project variations

Timeline for 2021

Timing subject to project variations

Timeline for 2022

Timing subject to project variations

Knowledge Sharing Update - Newsletter Analytics

Australian Renewable Energy Agency The trial's progress was featured in the ARENA Insights Newsletter (September 2020) with 683 unique opens

ARENA 1

GHD Knowledge Sharing Agent

- Enlisted to provide technical and economic analysis
 - Cost benefit analysis of forecasting investment
 - Geographical differences
 - Differences between measurement hardware and modeling techniques
 - Wind vs. solar time of day and seasonal

