AWEFS/ASEFS VENDOR WORKSHOP

21 February 2017

AGENDA

- Welcome
- Introductions & roll call
- Overspeed introduction
- AWEFS/ASEFS dispatch forecasting process
- Turbines Available SCADA signal
- Estimated Power SCADA signal
- ----- Break
- Wind speed SCADA measurement
- Emerging forecasting technologies
- Next steps & open for questions

WELCOME & PURPOSE

- Introduction to AWEFS/ASEFS Vendors Overspeed
- Education on AWEFS/ASEFS Dispatch forecasting process
- Follow-up to recent Consultation on ECM Guidelines

http://aemo.com.au/Stakeholder-Consultation/Consultations/Energy-Conversion-Model-Guidelines-Consultation---Wind-and-Solar-Farms

- Key consultation topics for discussion:
 - Local Limit SCADA
 - Wind Speed SCADA
 - Handling of high-speed cut-out
 - Estimated Power SCADA (Generator's own dispatch forecast)
- Status of Local Limit and Power Curve software updates
 - Anticipating both by early April 2017

TOPICS TO DISCUSS ANOTHER TIME

- Bidding of Availability
- Frequency Control Ancillary Services (FCAS)
 - External engagement on ancillary services is soon to commence
- Improvements to Intermittent Generation EMMS Portal
- Handling of low wind speed situations
- Further engagement will follow
- Please advise of other topics of interest

Overspeed: 25plus Years of Experience

 Core: Consulting for investors, banks, project developers

- R&D as background
- System development

• Main areas:

Dr. Hans-Peter Waldl

Windenergy Consulting

Assessments

System and Software Development

Wind and Solar Power Predictions

overspeed.de

6

Anemos@OZ Participant Workshop, Melbourne, Feb 2017

Leading edge research and development

Prediction models and modules

Wind and Solar Power Prediction System

7

Anemos Wind/Solar Power Predictions: Partners

Australian Wind Energy Forecasting System

Australian Wind Energy Forecasting System

- Fully integrated into market system
- Running locally at dispatch centres

- # "Market-system-proof"
- High-availability design
- 24/7 operation

10

Anemos for Australia

- AWEFS: Wind farms
 - Online since 2008
 - 100.00 % availability

- ASEFS 1: Solar farms
- ASEFS 2: Solar roof-top

Helios: Satellite-based solar predictions

11

AWEFS Participant Meeting Dispatch Forecasting and Wind-based Power Estimate

2017-02

Dr. Igor Waldl, Felix Dierich, Overspeed GmbH & Co. KG, Germany

Topics

AWEFS/ASEFS 5 min dispatch forecasting

- High level overview
- UIGF in curtailment situations
- SCADA channel usage for Dispatch
- Wind-based Power Estimate Characteristics Tuning

5 min Forecast Creation Overview

AWEFS 5 min Forecasts: Overview

UIGF in Curtailment Situations

UIGF in Curtailment Situations

- AWEFS/ASEFS required to produce an "Unconstrained Intermittent Generation Forecast" (UIGF), also in curtailment situations
- precise 5 min forecasts are only possible based on latest SCADA measurements
- "potential power" estimate calculated internally by AWEFS from wind measurements / irradiation for solar

Creation and Use of Potential Power: Example

SCADA and Potential Power

Example SCADA and potential power in curtailment situation:

AWEFS Participant Meeting, Melbourne, Feb 2017

SCADA and Potential Power

Example SCADA and potential power in curtailment situation:

20

SCADA, Potential Power and Forecast

Example SCADA, potential power and forecast:

SCADA Channel Use for Dispatch

SCADA Channel Use for Dispatch

AWEFS SCADA channel use relevant for five min forecasts:

- Active Power: basis for forecasts in unconstrained situations
- Turbines Available:
 - to calculate potential power
 - to scale power to 100% available farm conditions
- Set point: to detect down-regulation conditions
- Semi Dispatch Cap flag (from MMS): to detect downregulation conditions
- Wind Speed: to calculate potential power estimate
 - wind speed on wind farm level

AWEFS SCADA Channel Use

AWEFS SCADA channel use relevant for five min forecasts: soon:

- Local Limits: limit dispatch forecast
- Turbines in [extreme wind] cut-out: for "Net Turbine Capacity Available"

other channels currently not [yet] used for 5 min forecasts:

- Wind Direction
- Temperature
- soon: Estimated Power

AWEFS 5 min Forecasts: Overview

Wind-based Power Estimate Characteristics Tuning

Wind-based Power Estimate Tuning

Wind-based Power Estimate Characteristics Model

- creates tuned wind farm power characteristics
- these reflect the past average "wind speed to power conversion"
- not maximum power
- tuning runs daily and keeps a history of measurements
- correlation wind speed and power is essential

Example: Ideal for Power Estimate

Examples: Problematic for Power Estimate

- Many real-world wind farms show non-ideal behaviour
 - unsuitable wind speed measurements
 - disturbed wind speed measurements
 - changes in power characteristics

Example: Poor Correlation Wind to Power

30

Example: Poor Correlation Wind to Power

31

Example: Wake Impact on Measurement

Example: Power Limitation

33

Power Estimate Tuning Improvements

Wind-based power estimate characteristics tuning - improvements implemented Q1 2017:

- Improved filtering of data used in tuning
 - improved automatic detection of unflagged curtailment situations
- Improved robustness
 - against prolonged periods with bad data
 - against unsuitable wind speed data
 - less impact from outliers

HIGH-WIND CUT-OUT

- As discussed in ECM Consultation we need a solution for handling High-Wind Cut-out in Dispatch
- A modification to or additional signal about turbine availability is one approach.
- Current status:
 - Turbines Available represents turbines "available" to generate
 - including those cut-out due to high wind speed
 - effectively those that are not out of service
 - broadly aligns with scheduled turbine availability in portal
 - AWEFS currently uses Turbines Available SCADA to:
 - calculate wind-based dispatch forecast
 - tune pre-dispatch and STPASA models, including capturing the effect of high-wind cut-out

- Issue: High Wind Cut-out in Dispatch forecast
 - Turbines in cut-out shown as available
 - AWEFS wind-based forecast assumes they will all run
 - AWEFS needs better information to improve the accuracy of the dispatch forecast

Core Question

 How to most accurately represent the turbines that are able to produce power in the next dispatch interval?

HIGH WIND CUT-OUT

- Solution Ideas:
 - Current Turbines Generating SCADA
 - Too low in low wind speeds or downregulation
 - Estimated Power SCADA
 - Complete MW estimate
 - Requires a sophisticated implementation on-site
 - Turbines Extreme Wind Cut-Out
 - Covers only extreme wind cut-out
 - May be difficult for some farms to implement for extreme wind only (feedback received during consultation)
 - Implemented as Optional in revised ECM Guidelines

TURBINES READY-TO-RUN SCADA

- New solution ideas:
 - Define a "Turbines Ready-to-Run" SCADA
 - For input into the dispatch forecast calculation
 - Turbines that are actually able to run
 - In service
 - Not currently paused due to cut-out
 - Extra value of a "Future Turbines Ready-to-Run" SCADA
 - To give even more dispatch accuracy with a 5-7 min ahead view

TURBINES READY-TO-RUN SCADA

- Questions:
 - o How to define "ready-to-run"
 - > Name?
 - Meaning?
 - What is something that can be easily and consistently implemented?
 - Is there value in a forward turbine count?
 - Alternative approaches?

- As discussed in Consultation on ECM Guidelines
- New optional SCADA signal: wind or solar generator's estimate of active power generation at the end of the next dispatch interval, assuming no network constraints
- To discuss:
 - o Requirements
 - A proposed approach
 - Way forward

CURRENT STATE OF AWEFS & INPUTS

This is an approximation of the logical behaviour - not to be taken as the actual design

HOW TO USE ESTIMATED POWER SIGNAL?

- AEMO requirements:
 - We have to validate it to protect dispatch accuracy and for Rules compliance.
- Participants:
 - $\circ~$ It's our best forecast for dispatch.
 - We want to improve our dispatch accuracy to manage causer-pays liability.

POSSIBLE APPROACH – OVERVIEW FLOW CHART

Possible approach: Use Estimated Power unless it's performing badly. Validate Estimated Power against Actual MW.

ESTIMATED POWER - IMPLEMENTATION

- Performance metrics of Estimated Power and internal AWEFS/ASEFS estimate to be logged
- Critical implementation requirements:
 - When generator is constrained (e.g. by Semi-Dispatch Cap), Estimated Power represents the unconstrained forecast.
 - When turbines are in high-wind cut-out and not coming back next dispatch interval, the Estimated Power reflects this.

QUESTIONS

- What do you think of the possible approach?
 - Concerns?
 - o Alternative suggestions?
- How precise will Estimated Power be sub-MW?
- What information do you need to start implementing your Estimated Power signal?

ESTIMATED POWER NEXT STEPS

- AEMO to further refine proposed implementation
- Wind/solar farms to provide spreadsheet and/or SCADA data for operational and accuracy assessment
- AEMO to work with individual farms on performance
- AEMO to report back to all stakeholders on outcomes of performance assessment
- Further meetings on this topic to discuss details

WIND SPEED SCADA IMPROVEMENT

- ECM consultation refined definition of farm-wide "Wind Speed" SCADA signal
 - This drives the dispatch forecast when output is constrained through the tuned power curve
 - Wind speed signal better correlated with output gives more accurate dispatch forecast.
- Recommendation: provide an average wind speed from all nacelles.
- Any questions on implementation?

EMERGING FORECASTING TECHNOLOGIES

- New technologies to improve forward forecasting of wind and solar farm output
 - Discuss with AEMO and the vendors of AWEFS and ASEFS the emerging technologies around forward forecasting of wind and solar.
 - We would like to be informed about any technologies you have come across, to provide AEMO the opportunity to potentially integrate or facilitate use of these technologies in future.
- AEMO encourages you to review AEMC work on the future power system and make a submission if appropriate.

NEXT STEPS

- Please send follow-up questions and ideas by email to <u>op.forecasting@aemo.com.au</u>
- AEMO is looking forward to receiving Estimated Power spreadsheets and SCADA.
- Further meetings will be organised to discuss:
 - details of Estimated Power implementation and progress in assessing candidate signals
 - other issues, including a broader review of AWEFS & ASEFS
 - implementation of any change or addition to Turbines
 Available