

Managing Frequency

An overview of the RIS technical appendix B

Watch the whole series

RIS series available at: <u>https://www.aemo.com.au/energy-systems/Major-publications/Renewable-Integration-Study-RIS</u>

Presenters

RIS stream lead Future Energy Systems AEMO

Jane Yu

RIS team member Future Energy Systems AEMO

Today's Webinar

Key concepts

Approach

Core areas of analysis

Going forward

Frequency

Frequency is the **heartbeat of the power system** that ensures everything is in sync. It tells us information about the electricity supply and demand balance in real time.

Frequency disturbances

- If electricity demand suddenly exceeds supply, power system frequency will decrease; and vice versa
- Frequency can change too quickly or go outside the designed boundaries under sudden loss of supply or demand on the system. Without frequency control, **equipment or devices can be damaged or trip off**

Frequency control

Contingency FCAS Automatic Generation Control Provides a base level of **frequency sensitive reserve** Regulation FCAS/Energy Re-dispatch 50Hz Inertia Secondary Frequency Control Slows frequency Changes unit set points to restore decline frequency to 50Hz Slope = RoCoF**Primary Frequency** Control Arrests decline 49.5Hz Frequency arrested

Study objectives

Under the projected system conditions out to 2025:

What is required to manage frequency for **credible events?**

What are the **inertia requirements** (for system intact)?

What are the changes to the risk profile of noncredible events?

Changes to frequency control

Since the introduction of FCAS markets:

- Increased credible risk size
- Decreasing inertia
- Decreasing load relief
- Changing reserve dynamics
- Secondary risks
- Changing nature of **Non-credible events**

Changing System - Decreasing Inertia

 Online inertia will reduce as more synchronous generation is displaced by wind and solar increasing potential RoCoF.

Mainland NEM Inertia duration curves 2015-19 actuals vs 2025 forecasts

Changes to frequency control

Since the introduction of FCAS markets:

- Increased credible risk size
- Decreasing inertia
- Decreasing load relief
- Changing reserve dynamics
- Secondary risks
- Changing nature of **Non-credible risks**

Impact on Frequency sensitive reserve requirements for **Credible events**

Power system model

Power system model

Simulation Parameters

- Inertia [MWs]
- Load Relief [pu/pu]
- Reserve [MW]
 - Base reserve model[MW]
 - Faster reserve [%]
- Size of Risk [MW]
 - Primary Risk [MW]
 - Secondary Risks [MW]

Frequency trace assessment

Load = 18860MW, Inertia = 100GWs, Risk = 750MW, Load relief = 1.5

 To arrest frequency, replacement power needs to fully replace the lost active power.

- When frequency is arrested depends on the speed of response
- With the same speed, more frequency sensitive reserve is required.

Decreasing inertia

17

Changing reserve dynamics

- Faster reserve: programmable to respond in 100s of milliseconds
- Switched reserve: typically interruptible loads with switching controllers

Secondary risks

- Secondary risk: the trip or reduction of generation that may occur alongside the trip of a large generator
- For the same amount of reserve, secondary risks can exacerbate underfrequency events

Managing Credible Risks

1	Χ	

Volume of required **frequency sensitive reserve** needed increases under lower inertia

Introduction of faster reserve can help but where and how it is provided needs to be considered

A minimum amount of dynamic response is required on the system

How we manage Secondary risks such as DPV needs to be considered

Non-credible risks

• Non-credible events:

- More onerous than credible events
- Trip of multiple generation units OR
- Trip of double transmission lines
- Managed using a combination of:
 - Primary frequency response
 - Emergency frequency control schemes e.g. UFLS

Changing non-credible risks

Rate of change of frequency

- Reduced inertia and load relief
- Loss of generation on RoCoF
 protection

Increasing Complexity

- Loss of DPV during an event
- DPV behaviour, IBR behaviour, and intertrip schemes
- DPV penetration into UFLS

Separation

• Non-credible separation can island a part of the network

Managing non-credible risks

Managing the transition

System characteristics will continue to shift into **new** operating territory

Revision of ancillary service arrangements

Improved knowledge and tools are enablers for progressing to lower inertia

A staged approach to operating at lower inertia is recommended

Staged approach to operating at lower inertia

Actions going forward

AEMO to publish a detailed **frequency control workplan** in 2020 covering:

- Revising ancillary service arrangements to match future operating conditions
- Investigating the introduction of a system inertia safety net for the mainland NEM
- Defining System RoCoF limits
- Continued investigation into DPV penetration into UFLS load blocks
- Applying appropriate limits to the total proportion of switched FCAS
- Investigating appropriate regional contingency FCAS requirements
- Improving AEMO's existing system frequency model

Actions to support changing power system

- By 2025 the instantaneous penetration of wind and solar will exceed 50%
- The RIS provides an action plan to securely meet penetrations up to and beyond 75%
- If action is not taken, wind and solar may be limited to 50-60% of total generation
- No insurmountable reasons why the NEM cannot operate securely at even higher levels of instantaneous wind and solar penetration in future

Watch the rest of the series

RIS series available at: https://www.aemo.com.au/energy-systems/Major-publications/Renewable-Integration-Study-RIS

