

Appendix 3. Renewable energy zones

June 2022

Appendix to 2022 ISP for the National Electricity Market

Important notice

Purpose

This is Appendix 3 to the 2022 *Integrated System Plan* (ISP), available at <u>https://aemo.com.au/energy-systems/major-publications/integrated-system-plan-isp</u>.

AEMO publishes the 2022 ISP under the National Electricity Rules. This publication has been prepared by AEMO using information available at 15 October 2021 (for Draft 2022 ISP modelling) and 19 May 2022 (for 2022 ISP modelling). AEMO has acknowledged throughout the document where modelling has been updated to reflect the latest inputs and assumptions. Information made available after these dates has been included in this publication where practical.

Disclaimer

This document or the information in it may be subsequently updated or amended. This document does not constitute legal or business advice, and should not be relied on as a substitute for obtaining detailed advice about the National Electricity Law, the National Electricity Rules, or any other applicable laws, procedures or policies. AEMO has made every effort to ensure the quality of the information in this document but cannot guarantee its accuracy or completeness.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this document:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this document; and
- are not liable (whether by reason of negligence or otherwise) for any statements or representations in this document, or any omissions from it, or for any use or reliance on the information in it.

Copyright

© 2022 Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the <u>copyright permissions on AEMO's website</u>.

Version control

Version	Release date	Changes
1.0	30/6/2022	Initial release

AEMO acknowledges the Traditional Owners of country throughout Australia and recognises their continuing connection to land, waters and culture. We pay respect to Elders past and present.

ISP Appendices

Appendix 1. Stakeholder Engagement

Consultation on development of Draft ISP

Consultation on development of inputs, assumptions and scenarios

Consultation on scenario weightings

ISP Consumer Panel report on IASR

Consultation on Draft ISP

Notices of Consultation on non-network alternatives

Appendix 2. ISP Development Opportunities

A rapidly changing NEM will transform energy supply

ISP development outlooks across scenarios

Influence of sensitivities on ISP developments

Appendix 3. Renewable Energy Zones

REZ candidates

Social licence

REZ development overview

REZ design reports

REZ scorecards

Appendix 4. System Operability

NEM-wide operability outlook

Appendix 5. Network Investments

Transmission development overview

Committed and anticipated ISP projects

Actionable projects

Future ISP projects

Appendix 6. Cost Benefit Analysis

Approach to the cost benefit analysis

Determining the least-cost development path for each scenario

Determining the set of candidate development paths to assess the Draft optimal development path

Assessing the candidate development paths

Exploring the risks and benefits of actionable project timings

Testing the resilience of the candidate development paths

Appendix 7. Power System Security

Relationship to other AEMO planning work

System strength outlook

System inertia outlook

Contents

A3.1	Introduction	5
A3.2	REZ candidates	6
A3.3	Social licence	8
A3.4	REZ development overview	11
A3.5	REZ design reports	20
A3.6	REZ scorecards	21

Figures

Figure 1	2022 REZ including OWZ candidates	7
Figure 2	Candidate REZs and OWZs shown on the National Native Title Tribunal Indigenous Estates map	9
Figure 3	Forecast geographic dispersion of new VRE developments in the <i>Step Change</i> scenario in 2029-30 (left), 2039-40 (middle), 2049-50 (right)	12
Figure 4	Forecast geographic dispersion of new VRE developments in the <i>Progressive Change</i> scenario in 2029-30 (left), 2039-40 (middle), 2049-2050 (right)	12
Figure 5	Forecast geographic dispersion of new VRE developments in the <i>Slow Change</i> scenario in 2029 30 (left), 2039-40 (middle), 2049-50 (right)	13
Figure 6	Forecast geographic dispersion of new VRE developments in the <i>Hydrogen Superpower</i> scenario in 2029-30 (left), 2039-40 (middle), 2049-50 (right)	13
Figure 7	Projected utility-scale VRE in REZ for the NEM, economic spill and transmission curtailment	14
Figure 8	New South Wales utility-scale VRE development in REZs for <i>Step Change</i> scenario	15
Figure 9	Queensland utility-scale VRE development in REZs for Step Change scenario	16
Figure 10	South Australia utility-scale VRE development in REZs for Step Change scenario	17
Figure 11	Tasmania utility-scale VRE development in REZs for Step Change scenario	17
Figure 12	Victoria utility-scale VRE development in REZs for Step Change scenario	18
Figure 13	Offshore wind development in OWZs for the offshore wind sensitivity on the <i>Step Change</i> scenario	19

A3.1 Introduction

Renewable Energy Zones (REZs) are high-quality resource areas where clusters of large-scale renewable energy projects can be developed using economies of scale. REZs include onshore renewable energy zones and Offshore Wind Zones (OWZs), all of which are subject to the same regulatory processes including REZ Design Reports.

This ISP signals the need for significant investment in renewable generation to reduce emissions and replace retiring power stations, largely clustered into REZs. The development of new generation in areas away from coal and gas basins necessitates network investment to unlock renewables across all NEM regions. Economic and engineering assessments undertaken to develop this ISP considered the efficient network and generation needed in an optimal development plan, that can adapt over time.

This Appendix 3¹ provides detail on these REZs and the VRE development opportunities within them. It sets out:

- A3.2 REZ candidates.
 - A map of the 41 short-listed REZs including six OWZs across eastern Australia that AEMO has identified following rigorous consultation.
 - An overview of how these candidate zones were identified.
- A3.2 Social licence.
 - A map of the candidate onshore REZ and OWZs overlaid on a map that shows indigenous estates and native land titles.
 - A discussion on undergrounding transmission lines.
- A3.4 REZ development overview to help NEM stakeholders visualise the scale and speed of expected VRE development projected in all scenarios:
 - An overview of expected VRE development across the NEM, highlighting the REZs of greatest near-term interest.
 - Information on resource diversity, expected capacity factor and curtailment (as REZs with highquality wind and solar resources generally experience high network utilisation and low curtailment).
 - An outline of the process for initiating REZ design reports.
- A3.4 REZ scorecards to help NEM stakeholders target detailed data for specific REZs:
 - Individual scorecards for each REZ arranged by state, including assessments of resource quality, network capability, and preferred timing across scenarios for additional generation capacity.

¹ The outcomes presented in this appendix are based on CDP 11 which features actionable timings for Marinus Link and HumeLink, as well as a staged delivery of VNI West. CDP11 was chosen because it represents a likely path of development for the NEM, it presents a consistent transmission investment path for all scenarios, and the long-term development outcomes for generation investments are similar to those that would result from the ODP. The accompanying Generation Outlook data files contain ISP development opportunity information for other CDPs. See Appendix 6 for more details

A3.2 REZ candidates

An efficiently located REZ can be identified by considering a range of factors, primarily:

- Quality of renewable resources, diversity relative to other renewable resources, and correlation with demand.
- The cost of developing or augmenting transmission connections to transport the renewable generation produced in the REZ to consumers.
- The proximity to load, and the network losses incurred to transport generated electricity to load centres.
- The critical physical must-have requirements to enable the connection of new resources (particularly inverter-based equipment) and ensure continued power system security.

REZ candidates were initially developed in consultation with stakeholders for the 2018 ISP² and used as inputs to the ISP model. REZ candidates have been continuously updated and refined through the 2020 ISP and 2021 IASR consultation process. Futher details on the selection of REZ candidates is detailed in the IASR³, and the 41 REZ including six OWZs studied are shown in Figure 1. Details and costs of REZ augmentation options are detailed in the Transmission Cost Report⁴.

Renewable energy developers and network companies should consider opportunities for early and active engagement with communities, land title holders and affected persons as part of the detailed designs for REZs.

² At <u>https://aemo.com.au/-/media/files/electricity/nem/planning_and_forecasting/isp/2018/integrated-system-plan-2018_final.pdf?la=en&hash=40A09040B912C8DE0298FDF4D2C02C6C</u>.

³ At <u>https://aemo.com.au/energy-systems/major-publications/integrated-system-plan-isp/2022-integrated-system-plan-isp/current-inputs-assumptions-and-scenarios</u>.

⁴ At https://aemo.com.au/-/media/files/major-publications/isp/2021/transmission-cost-report.pdf?la=en.

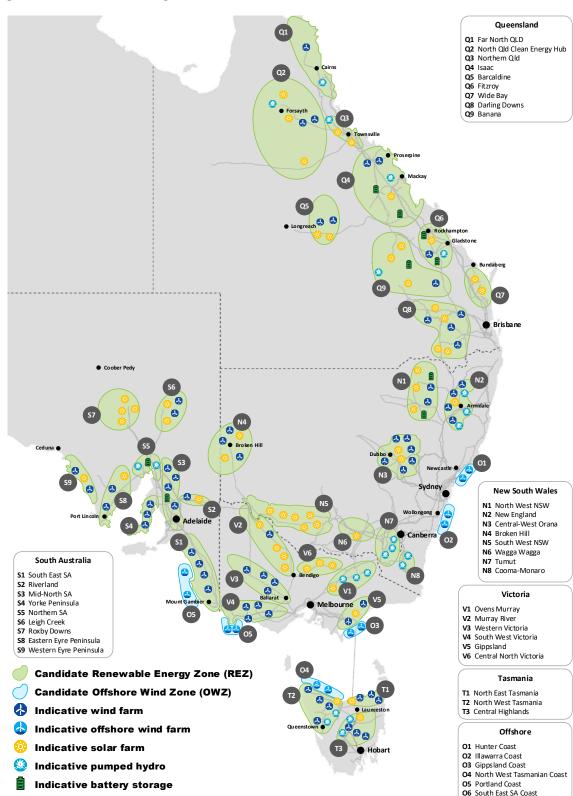


Figure 1 2022 REZ including OWZ candidates

† AEMO has updated the REZ boundaries for N5 aligned with geographical area of the SWNSW REZ in Schedule 1 of the draft REZ declaration, available at https://www.energy.nsw.gov.au/sites/default/files/2022-03/Draft%20South-West%20REZ%20Declaration.pdf. AEMO will update all relevant parameters in the 2024 ISP.

‡ EnergyCo is in the early stages of planning for two new REZs in the Hunter-Central Coast and Illawarra regions of New South Wales, as set out under the New South Wales Electricity Infrastructure Act 2020. These REZs are not shown because they are not yet geographically defined

A3.3 Social licence

Australia will need large VRE growth in each of the scenarios as coal-fired stations retire. The ISP seeks to limit the impact of VRE developments by concentrating these developments in REZs and limiting the proportion of land within a REZ that can be developed. VRE developments will tend to be concentrated or clustered in particular areas within the REZ where the network access and/or land use is most suitable. AEMO recognises that building social licence will be pivotal to the success or failure of these REZs.

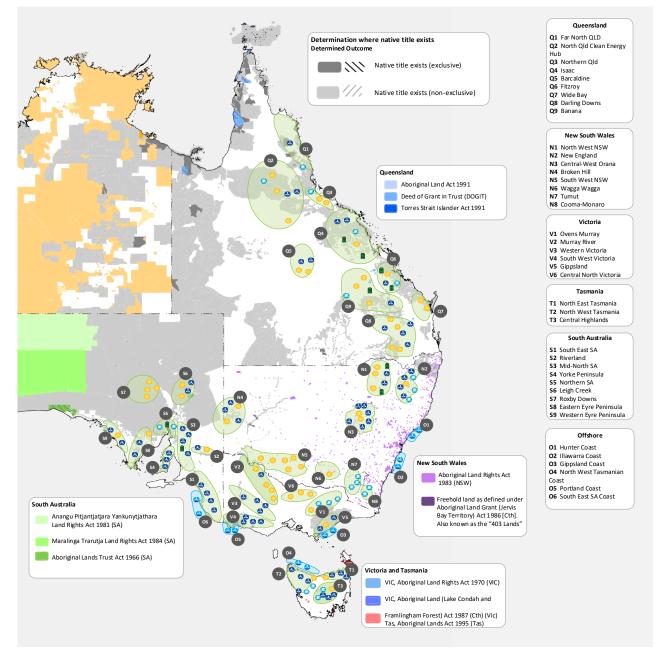
Early community engagement and integrated land use planning is key to ensure investments have appropriate social licence. In some instances, these early engagements and land use planning may lead to alternative developments. AEMO is a supporter of the Energy Charter which is progressing work on social licence issues with regards to landholder access⁵.

This section provides insights from the ISP to support governments, councils and rule-makers in evolving their frameworks to support social licence. These topics include:

- **Indigenous interests** the candidate REZs overlap significantly with native title and Indigenous estates. It is important that traditional landowners and councils are consulted early.
- **Undergrounding transmission lines** this may be feasible for generator connection assets, where distances are shorter, and the investment cost is largely dictated by the capital cost of generation
- Land acquisition the approach to, and cost of, acquiring land is an important and crucial part of any infrastructure development.

A3.3.1 Indigenous interests

REZ developments could provide a range of opportunities for Indigenous communities in regional and remote areas. As REZs progress from concepts to pre-feasibility studies, it is important that Traditional Owners and land councils are consulted early in the process. Early and genuine engagement can:


- Improve designs by considering local knowledge.
- Minimise the impact on areas of cultural significance.
- Provide training, employment and other opportunities for local First Nations people.
- Enable the social licence to deliver timely infrastructure.

The National Native Title Tribunal has developed a map of Indigenous Estates across Australia⁶. This map shows land granted under specified Indigenous land granted instruments.

Figure 2 overlays candidate REZs across the native title map to illustrate the broader impacts that energy infrastructure development could have on Indigenous lands and interests, and to highlight a significant overlap between Indigenous land granted and potential energy infrastructure.

⁵ See <u>https://www.theenergycharter.com.au/landholder-and-community-engagement/</u>.

⁶ National Native Title Tribunal Indigenous Estates, as of April 2022, at <u>http://www.nntt.gov.au/Maps/Indigenous_Estates_and_</u> <u>Determinations_A1L.pdf</u>.

Figure 2 Candidate REZs and OWZs shown on the National Native Title Tribunal Indigenous Estates map

This figure has been reproduced with the permission of the National Native Title Tribunal.

A3.3.2 Undergrounding transmission lines

Overhead lines are often an economic, flexible, and responsive design choice for augmenting the high-voltage transmission network. Overhead lines represent the vast majority of the Australian transmission network, and have reliably served the community for many years.

In the 2021 *Transmission Cost Report*⁷, AEMO found that the costs of underground cables are approximately four to 25 times higher than overhead lines – depending on a range of design factors such as voltage, capacity and whether the cables can be direct buried or require tunnels. AEMO publishes a Transmission Cost Database⁸ that allows stakeholders to explore cost estimates for overhead transmission lines and underground cables.

In contrast to transmission projects in countries that have high population and energy density, Australian transmission projects tend to stretch very long distances. Implementing underground transmission network over these long distances will often be cost-prohibitive, and should only be considered on a case-by-case basis. Opportunities for undergrounding network may be feasible for generator connection assets, where distances are shorter, and the investment cost is largely dictated by the capital cost of generation (for example, wind or solar farms).

A3.3.3 Land acquisition for transmission easements

The approach to, and cost of, acquiring land is an important and crucial part of any infrastructure development.

Once a project has passed the RIT-T, the current NEM framework typically involves the TNSP requesting an allowance to acquire land based on market rates and an estimation for negotiating with landowners above that rate. The AER is then required to review whether that allowance is prudent and efficient. Once an investment is approved, the TNSP then has a financial incentive (via the capital expenditure sharing scheme [CESS]) to acquire land for the lowest cost.

For Project EnergyConnect, as an example, the approved cost of acquiring land was approximately 5% of the total capex, including a margin for negotiating above market rates.

Stage 2 of the AEMC's Transmission Planning Investment Review is considering the issue of land acquisition and how this links to social licence⁹. AEMO supports revisions to the framework that can improve incentives to acquire land through negotiation.

⁷ AEMO. 2021 Transmission Cost Report, at <u>https://aemo.com.au/en/consultations/current-and-closed-consultations/transmission-costs-for-the-2022-integrated-system-plan</u>.

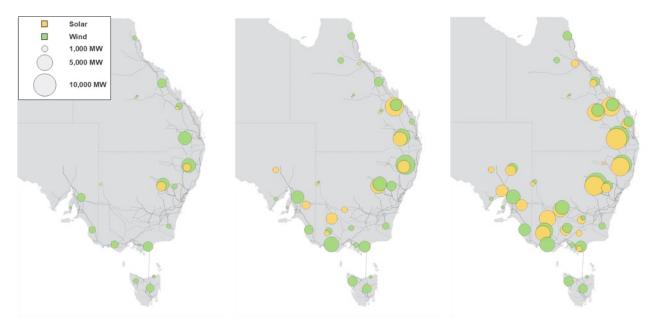
⁸ AEMO. *Transmission Cost Database*, at <u>https://aemo.com.au/en/consultations/current-and-closed-consultations/transmission-costs-for-the-2022-integrated-system-plan</u>.

⁹ See https://www.aemc.gov.au/market-reviews-advice/transmission-planning-and-investment-review.

A3.4 REZ development overview

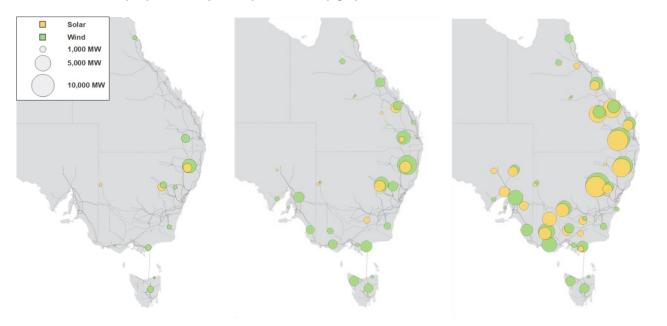
The following section presents AEMO's prioritisation and development of identified REZs within each NEM region. AEMO has worked with state governments as part of defining the locations and renewable resources within the REZs in each state.

Factors that generally affect the development of a REZ include, but are not limited to:


- Energy targets, policies and scenarios.
- Resource quality.
- Existing transmission network capacity.
- Demand correlation and correlation with other favourable REZs.
- · Cost of developing or augmenting the transmission network.
- Proximity to the load centre.
- Social licence for development of the generation, storage and associated network.

Under every scenario – *Progressive Change, Step Change, Slow Change and Hydrogen Superpower* – large increases in VRE are needed. Targeted and strategic investment is required to balance resources across states and unlock much-needed REZs.

There is already approximately 15 GW of utility scale VRE installed in the NEM, and approximately another 6 GW is expected to be operational over the next few years, as either committed or anticipated projects¹⁰. Allowing for the strong growth in DER, Australia will still need an additional 44 GW to 540 GW of new VRE in REZs by 2050, depending on the scenario.


Figure 3 to Figure 6 show the forecast geographical dispersion of VRE for 2029-30, 2039-40 and 2049-50 for each scenario. In the next decade, more wind capacity is needed to complement the strong uptake of distributed PV. Once there is sufficient storage and network investment to take advantage of cheaper solar resources, grid-scale solar is projected to accelerate again.

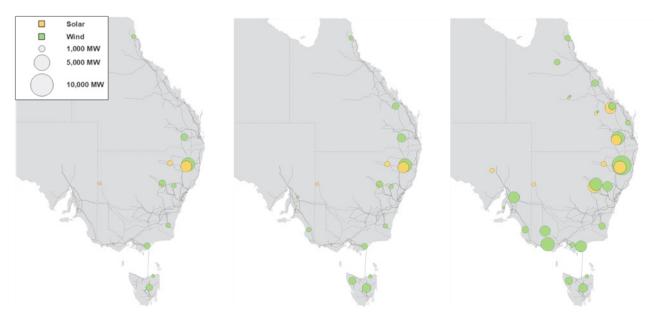

¹⁰ Data is as of February 2022, AEMO Generation Information Page, at <u>https://www.aemo.com.au/energy-</u> systems/electricity/nationalelectricity-market-nem/nem-forecasting-and-planning/forecasting-and-planning-data/generation-information. Definitions of committed and anticipated are included in each Generation Information update.

Figure 3 Forecast geographic dispersion of new VRE developments in the Step Change scenario in 2029-30 (left), 2039-40 (middle), 2049-50 (right)

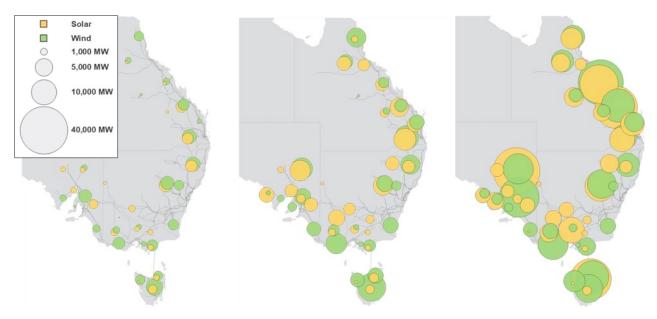

Figure 4 Forecast geographic dispersion of new VRE developments in the Progressive Change scenario in 2029-30 (left), 2039-40 (middle), 2049-2050 (right)

Figure 5 Forecast geographic dispersion of new VRE developments in the Slow Change scenario in 2029 30 (left), 2039-40 (middle), 2049-50 (right)

Figure 6 Forecast geographic dispersion of new VRE developments in the Hydrogen Superpower scenario in 2029-30 (left), 2039-40 (middle), 2049-50 (right)

A3.4.1 Diversity of resources in REZs

In the 2022 ISP, AEMO optimised investment in wind, solar and transmission development within each REZ. This optimisation allowed for the consideration of resource diversity and economic levels of energy spill¹¹ and curtailment¹² to maximise the development of VRE while minimising the transmission network expansion.

As an example, Figure 7 shows forecasts of cumulative utility-scale VRE for REZs across the NEM for the *Step Change* scenario, and the economic levels of energy spill and transmission curtailment. To accommodate the projected utility-scale VRE¹³ of approximately 135 GW by 2050, the forecast economic spill is 15% and transmission curtailment is approximately 5%.

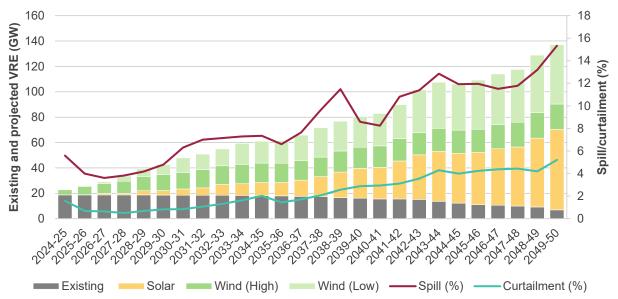


Figure 7 Projected utility-scale VRE in REZ for the NEM, economic spill and transmission curtailment

A3.4.2 REZ development

This section provides a high-level overview of long-term REZ development across the NEM. Detailed projections for individual REZs are provided in Section A3.6. Transmission augmentations required to facilitate these large VRE developments is described in more detail in Appendix 5.

New South Wales

In New South Wales, almost 40 GW of new utility-scale wind and solar VRE in REZs is projected as being required by 2050 to assist in replacing retiring coal-fired generation capacity. Figure 8 shows the utility-scale VRE projected for each REZ in New South Wales under the *Step Change* scenario. This modelling indicates:

From the start of the study horizon, there is an immediate increase in VRE in the Central-West Orana REZ, with 3,700 MW new VRE capacity by 2028-29. By 2031-32 this has increased to over 5,000 MW, and by 2041-42 is over 10,000 MW.

¹¹ Economic spill happens when generation reduces output due to market price.

¹² Curtailment happens when generation is constrained down or off due to operational limits.

¹³ Figures referring to "utility-scale VRE" do not include DER, for example rooftop PV.

- Starting from 2027-28 significant VRE begins to be installed in the New England REZ, with installed capacity developing at a rate similar to that of the Central-West Orana REZ to also reach 5,000 MW new VRE capacity by 2028-29 and 10,000 MW by 2037-38.
- South West NSW only shows VRE developments later in the scenario, with over 2,000 MW new VRE projected by 2040-41, and over 6,500 MW by 2046-47.
- Other REZs in New South Wales, such as Wagga Wagga and Cooma-Monaro, also see smaller developments later in the study horizon, and account for less than 10% of the total projected utility-scale VRE developments in New South Wales.
- No offshore wind development is projected in the *Step Change* scenario results for New South Wales, largely due to the assumptions around cost and availability. See Section A3.4.3 for information about offshore wind development in the offshore wind sensitivity.

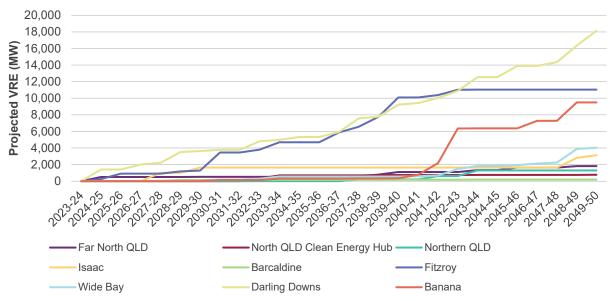


Figure 8 New South Wales utility-scale VRE development in REZs for Step Change scenario

Queensland

In Queensland, approximately 48 GW of new utility-scale wind and solar VRE is projected as being required by 2050 to assist in replacing retiring generation. Figure 9 shows the utility-scale VRE projected for each REZ in Queensland under the *Step Change* scenario. This modelling indicates:

- VRE developments are mostly split between Fitzroy and Darling Downs, with developments also shown in the Banana REZ after 2040.
- Darling Downs sees the largest amount of projected new VRE capacity, with immediate developments taking advantage of spare network capacity, and with 4,000 MW new VRE by 2032-33, and 10,000 MW by 2041-42.
- From the start of the study horizon, there is an increase in VRE in Fitzroy, with over 3,000 MW new VRE capacity installed by 2030-31. By 2039-40 this has increased to over 10,000 MW.
- The Banana REZ is projected to see developments later in the scenario, with 9,500 MW new VRE capacity by 2049-50.

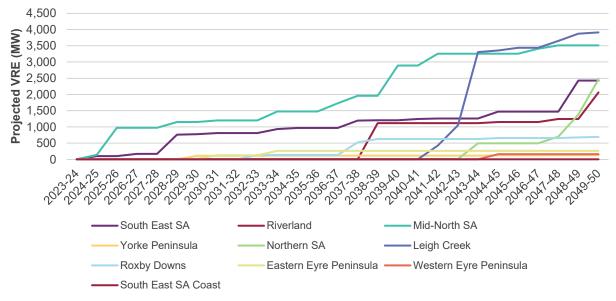


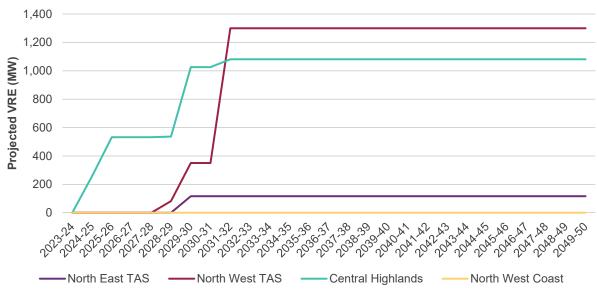
Figure 9 Queensland utility-scale VRE development in REZs for Step Change scenario

South Australia

In South Australia, approximately 15.5 GW of new utility-scale wind and solar VRE is projected as being required by 2050 to assist in replacing retiring gas generation capacity, utilising the additional capacity provided by the Project EnergyConnect interconnector. Figure 10 shows the utility-scale VRE projected for each REZ in South Australia under the *Step Change* scenario. This modelling indicates:

- The projected VRE is eventually dispersed over many REZs throughout South Australia, with the largest share of early development occurring in the South East SA and Mid-North SA REZs due to the high-quality wind resource.
- The Mid-North SA REZ sees an immediate increase in VRE, with an additional 1,000 MW of new VRE capacity by 2028-29, and 2,900 MW by 2039-40.
- The South East SA REZ also sees an immediate increase in VRE with over 750 MW new capacity by 2028-29 and over 1,200 MW by 2038-39.
- The Leigh Creek REZ is projected to see developments after 2041-42, with 3,900 MW new VRE capacity by 2049-50.

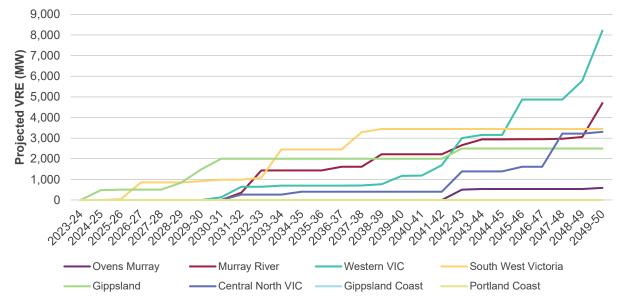
Figure 10 South Australia utility-scale VRE development in REZs for Step Change scenario


Tasmania

In Tasmania, close to 2.5 GW of new utility-scale wind VRE is projected as being required by 2031-32, utilising transmission capacity released by the development of Marinus Link.

Figure 11 shows the utility-scale VRE projected for each REZ in Tasmania under the *Step Change* scenario. This modelling indicates:

- Over 1,000 MW of new wind is projected for the Central Highlands REZs by 2029-30.
- 1,300 MW of new wind is projected for the North West Tasmania REZs by 2031-32.
- No further additional utility-scale VRE capacity is forecast as required from 2032-33.
- No offshore wind development is projected in the Step Change scenario results in Tasmania.



Victoria

In Victoria, over 22.7 GW of new utility-scale wind and solar VRE in REZs is projected as being required by 2049-50 to assist in replacing retiring generation.

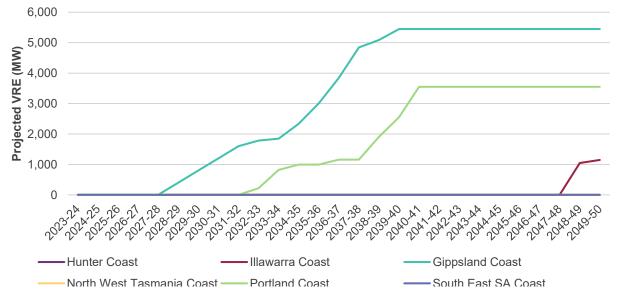
Figure 12 shows the utility-scale VRE projected for each REZ in Victoria under the *Step Change* scenario. This modelling indicates:

- Approximately 3,000 MW new utility-scale VRE is forecast as required in Victoria by 2030-31. This new VRE is predominantly located in the South West Victoria and Gippsland REZs, utilising the existing spare network capacity.
- Over 2,000 MW of new VRE capacity is projected in the Murray River and Western Victoria REZs combined in the early 2030s, utilising the additional REZ network capacity from VNI West. Both of these REZs show larger developments after 2040, with over 8,000 MW in Western Victoria and 4,700 MW in Murray River by 2050.
- After 2040, new utility-scale VRE is projected to connect to the Central North Victoria, with up to 3,300 MW by 2050.
- No offshore wind development is projected in the *Step Change* scenario results for Victoria, largely due to the assumptions around cost and availability. See Section A3.4.3 for information about offshore wind development in the offshore wind sensitivity.

Figure 12 Victoria utility-scale VRE development in REZs for Step Change scenario

A3.4.3 Offshore Wind sensitivity

In March 2022, the Victorian Government announced a new target to build 9 GW of offshore wind by 2040¹⁴. Subsequently, in April 2022, the Commonwealth Government announced Gippsland as Australia's first


¹⁴ Victorian Government. Victoria Launches Australia's First Offshore Wind Targets, at <u>https://www.premier.vic.gov.au/victoria-launches-australias-first-offshore-wind-targets</u>.

offshore wind priority assessment¹⁵. AEMO has conducted an *Offshore Wind* sensitivity on the *Step Change* scenario to explore the potential impact of the Victorian Government's ambition for offshore wind development. This sensitivity included:

- Offshore wind ramping up to 2 GW by 2032, 4 GW by 2035, and 9 GW by 2040 (with gradual developments between these years). To meet the early developments from 2028 to 2032, the lead time for Gippsland developments has been reduced, reflecting the growing maturity of announced projects in that OWZ.
- Updated offshore wind build cost projections based on updated capital costs from the Draft GenCost 2021-22 report¹⁶. The *Global NZE post 2050* scenario has been applied to reflect this lower anticipated cost.

Figure 13 shows the VRE development in OWZs under the Offshore Wind sensitivity on the Step Change scenario. By 2049-50, just over 10,000 MW of offshore wind in the NEM is developed under this sensitivity. This modelling indicates:

- Offshore wind development is projected for Victoria off the Gippsland Coast in the late 2020s increasing to over 3,000 MW by 2035-36 and almost 5,500 MW by 2040-41.
- In Victoria, Portland Coast offshore wind development is projected for 2032-33, increasing to approximately 1,000 MW by 2035-36 and to over 3,500 MW by 2040-41.
- Illawarra Coast in NSW is projected to develop just over 1,100 MW in the late 2040s.
- No offshore wind development is projected in the Hunter Coast in NSW, North West Tasmania Coast and South East SA Coast under this *Step Change* sensitivity.

Figure 13 Offshore wind development in OWZs for the offshore wind sensitivity on the Step Change scenario

¹⁵ Commonwealth Government. Gippsland for Australia's first offshore wind priority assessment, at <u>https://www.minister.industry.gov.au/ministers/wilson/media-releases/gippsland-australias-first-offshore-wind-priority-assessment#:~:text=%E2%80%9CThe%20Morrison%20Government%20is%20getting,Energy%20and%20Emissions%20 <u>Reduction%20Tim</u>.</u>

¹⁶ CSIRO. Draft GenCost 2021-22, at <u>https://publications.csiro.au/publications/publication/PIcsiro:EP2021-3374</u>.

A3.5 REZ design reports

REZ design reports¹⁷ are part of a new framework that relates to improving network planning for REZs. This framework allows AEMO to trigger REZ designs by the jurisdictional planning body if:

- Transmission network development is required on the ODP within 12 years, and
- The decision is supported by the Minister of the relevant jurisdiction.

In addition to the network design and costing details, REZ design reports place additional obligations on the jurisdictional planning bodies to undertake consultation with potential generators, local councils, local community members and members of the public.

AEMO is continuing to work with state governments to align future REZ design reports with state initiatives. For the 2022 ISP no REZ design reports have been requested, but a need for preparatory activities for some REZ network developments has been determined (see Appendix 5 for more details on preparatory activities). In the event that a state government declares a priority REZ, AEMO can trigger a REZ design report by issuing an ISP update notice.

¹⁷ NER clause 5.24.1

A3.6 REZ scorecards

A3.6.1 REZ scorecard details

The REZ scorecards in this section provide an overview of the characteristics of each REZ. The following table explains the criteria in the scorecards.

REZ report card details												
REZ assessments												
REZ grouping	 REZs where de REZs where the REZs where training the second second	 REZs are grouped into the following: REZs where design and community engagement are progressing. REZs where the coordination of generation infrastructure may be required. REZs where transmission and generation infrastructure coordination is required. REZs where infrastructure coordination can start later. 										
Renewable resources												
Map legend	Indicative generati	ion is sh	iown l	based	on the	e reso	ource av	ailability:				
	Wind		Offshore Wind		I	Solar		Hydro				
	geographic area o options shown are	The green shading shows the indicative geographic area of the REZ. Augmentation options shown are described in more detail in the Transmission Cost Report ¹⁸ .										
Metrics	Solar average cap	Solar average capacity factor based on eleven reference years:										
	≥30%	≥28%	, D	≥26%		≥24	4%	≥22%	<22%			
	Α	В		С		D		E	F			
	Wind average cap	Wind average capacity factor based on eleven reference years:										
	≥45%	≥4()%	≥35%)	≥30%		<30%			
	A	В			С		D		E			
	time as the region	Correlation between demand describes whether the REZ resources are available at the same time as the regional demand, using a statistical correlation factor. A higher correlation represents that the resource is more available at regional demand:										
	≥0.12	≥0.0	6	≥0.0)	≥-	-0.10	≥-0.20	<-0.20			
	A	В		с		D		E	F			
	inside the REZ. Th	nis is ca	lculate	ed us	ng the	Step	chang	e scenario	F) to additional generation outcomes. The measure used changes by -0.05:			
	≥1000	≥800)	≥60	0	≥2	400	≥200	<200			
	A	В		С		D		E	F			
Renewable resources	REZ. Additional ca modelling, but this	Estimated potential REZ size in MW based on the geographical size and resource quality in the REZ. Additional capacity (MW) above the resource limit is allowed for within the market modelling, but this incurs a penalty factor to account for likely social licence and community support costs. This can occur for all scenarios, but is predominantly seen in the Hydrogen						for within the market I licence and community				

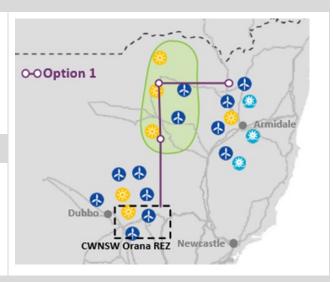
¹⁸ At https://aemo.com.au/-/media/files/major-publications/isp/2021/transmission-cost-report.pdf?la=en.

REZ report card details						
Climate hazard						
		varature score is based on the projected once in 10-year maximum temperatures ^A 30 and 2050. Temperature scores for OWZs consider the area on land that the ed to connect.				
	Score	Description				
	A	Once in 10-year maximum temperature projections range between 28°C and 38°C for the years 2030 and 2050.				
	В	Once in 10-year maximum temperature projections range between 30°C and 44°C for the years 2030 and 2050.				
	С	Once in 10-year maximum temperature projections range between 32°C and 48°C for the years 2030 and 2050.				
	D	Once in 10-year maximum temperature projections range between 34° C and 50° C for the years 2030 and 2050.				
	E	Once in 10-year maximum temperature projections range between 44°C and 52°C for the years 2030 and 2050.				
Bushfire	days ^B around th	re score is based on the projection of annual average FFDI "high" fire danger ie years 2030 and 2050 and the probability of large bushfires occurring (a . Bushfire scores for OWZs consider the area on land that the OWZ is expected to				
	Score	Description				
	A	Model projections associate less than half the days of a year with high fire danger days and a probability of zero large fires in 20 years.				
	В	Model projections associate less than half the days of a year with high fire danger days and a probability of one large fire in 20 years.				
	С	Model projections associate more than half the days of a year with high fire danger days and a probability of one large fire in 20 years.				
	D	Model projections associate more than half the days of a year with high fire danger days and a probability of between one and four large fires in 20 years.				
	E	Model projections associate more than half the days of a year with high fire danger days and a probability of one large fire in three years.				
Variable generation outlook						
Scenario	Slow Change a	et simulations of different scenarios named <i>Progressive Change, Step Change,</i> nd <i>Hydrogen Superpower</i> . The offshore wind zone scorecards also capture the ensitivity for each scenario.				
Existing, committed and anticipated generation	The existing, co Summer capaci	mmitted and anticipated generation as of 22/02/2022, based on the advised Not ties.				
Projected variable generation	generation at di	tet simulations projected variable energy outlook for utility-scale solar and wind fferent times intervals across all scenarios. All VRE projections are based on n addition to existing, committed and anticipated generation. All values are round W.				
Transmission expansion forecasts						
Transmission limit	The limit represents the network limit for the total VRE within a REZ. REZ expansion options are linearised, they are not discrete options.					
Transmission curtailment	is represented a	pens when generation reduces output due to transmission network congestion. It as a percentage of VRE. The transmission curtailment is calculated based on the ork model representation and is rounded to nearest 1%.				
Economic spill		happens when generation reduces output due to market price. It is represented as VRE and rounded to nearest 1%.				

A. Once in 10-year maximum temperature data was provided by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) for 2030 and 2050.
B. A "high" fire danger day is defined as any day where the Forest Fire Danger Index (FFDI) is greater than 12.
C. Advised seasonal generation capacities are taken into account in the modelling, and are detailed in the Inputs and Assumptions Workbook.

A3.6.2 New South Wales

N1 – North West NSW


Summary

The North-West New South Wales (NWNSW) REZ is located to the west of the existing QNI. While this zone has high-quality solar resources, the wind resource is estimated to be mostly inadequate for wind farm development.

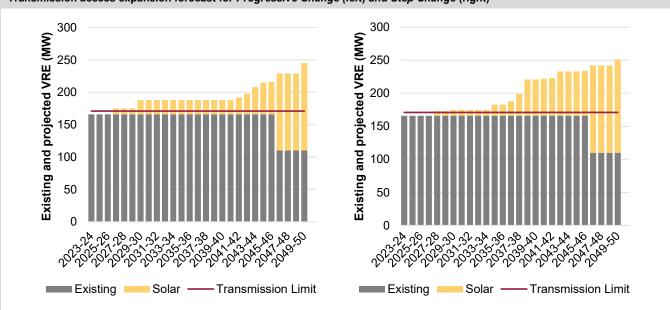
If generation significantly increases in NWNSW and New England REZs, increased connection capacity between the two REZs may be required. The sharing of resources across the network augmentation will allow for better transmission utilisation and reduction in transmission build.

Existing network capability

The existing 132 kV network is weak and would require significant network upgrades to accommodate VRE greater than the transmission network limit of approximately 170 MW.

REZ grouping

Infrastructure coordination can start later


Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

Metrics

Weulcs								
Resource		Solar			Wind			
Resource Quality		В		D				
Renewable Potential (MW)		6,385			-			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Correlation	F	F	F	В	В	В		
MLF Robustness	202	2024-25		2029-30		034-35		
MEI KODUSIIIESS	I	F		F		F		
Climate hazard								
Temperature score	D		Bushfire score	re		E		

VRE outlook

		Solar PV	/ (MW)		Wind (MW)						
	Existing/		Projected		Existing/	0		l			
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50			
Progressive Change		-	-	150							
Step Change	56/110/0	-	50	150		xisting, committed or anticipated wind generation					
Slow Change	30/110/0	550	550	550		is REZ. The modelling outcomes, for all scenarios, did no project any additional wind for this REZ.					
Hydrogen Superpower		50	3,350	6,400							

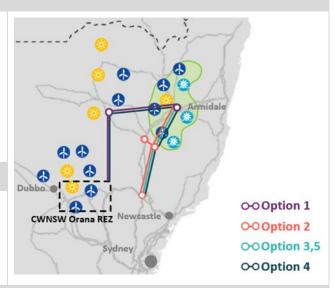
Transmission access expansion forecast for Progressive Change (left) and Step Change (right)

VRE curtailment

Scenario	2029	-30	2039	-40	2049-50		
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	1%	24%	1%	14%	3%	34%	
Step Change	-	19%	2%	27%	2%	40%	
Slow Change	9%	62%	34%	31%	21%	43%	
Hydrogen Superpower	1%	28%	2%	20%	-	33%	

N2 – New England

Summary


The New England REZ was formally declared under the *NSW Electricity Infrastructure Investment Act 2020* on 17 December 2021¹⁹, and has legislated this REZ to be declared with an intended 8,000 MW of additional transmission network capacity.

New England is located to the east of and along the existing QNI[†]. This REZ has moderate to good wind and solar resources in close proximity to the 330 kV network. Interest in the area includes large scale solar and wind generation as well as pumped hydro generation.

The sharing of resources across the network augmentation will allow for better transmission utilisation and reduction in transmission build.

Existing network capability

The existing network capacity, following completion of the committed QNI Minor upgrade, is limited by transient and voltage stability on the circuits between Bulli Creek, Sapphire and Dumaresq. Thermal limits on the 330 kV circuits between Armidale, Tamworth, Muswellbrook and Liddell can also restrict flows on this network.

REZ grouping

Matrice

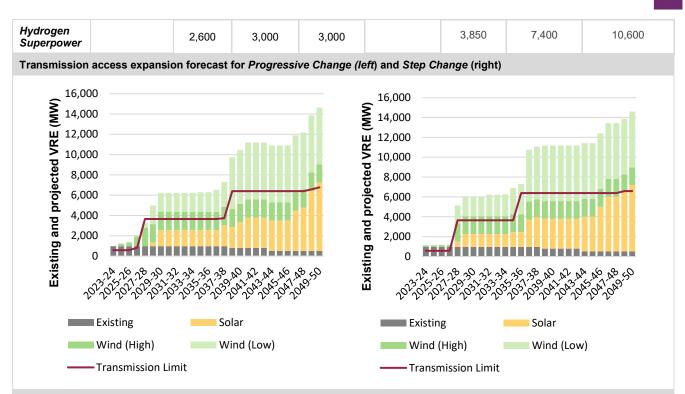
REZ design and community engagement is progressing

A registration of interest, initiated by the NSW Government, closed on 23 July 2021[‡]. This, along with the formal REZ declaration on 17 December 2021 are the first step in ongoing engagement with the community and industry to help inform network design.

Metrics							
Resource	Solar			Wind			
Resource Quality	D			С			
Renewable Potential (MW)		2,985			7,400		
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
Demand Correlation	F	F	F	В	B B		
MLF Robustness	2024-25		2029-30		2034-35		
MEI RODOSINESS	E	3	A*		А		

*New England REZ Transmission Link and Sydney Ring improve the MLF robustness for VRE within this REZ.

Climate hazard


Temperature score	С	Bushfire score	E

VRE outlook

			Wind (MW)					
	Existing/	Projected			Existing/	Projected		
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change		1,600 2,550 6,700	3,650	7,100	7,400			
Step Change	20/515/0	1,300	3,000	6,700	442/0/0	3,700	7,400	7,400
Slow Change		2,500	2,500	3,000		3,450	3,450	7,400

¹⁹ NSW Government, New England Renewable Energy Zone declaration, at <u>New England Renewable Energy Zone declaration | Energy NSW</u>

REZ scorecards - New South Wales

VRE curtailment

	2029	9-30	2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	1%	6%	-	3%	1%	9%	
Step Change	1%	4%	1%	5%	1%	12%	
Slow Change	-	18%	1%	4%	1%	5%	
Hydrogen Superpower	1%	8%	-	7%	-	15%	

† Options shown are a subset of the Central New South Wales to Northern New South Wales flow path options.

⁺ New South Wales Government New England Expression of Interest, available at <u>https://www.energy.nsw.gov.au/renewables/renewable-energy-</u> zones#-why-is-the-nsw-government-delivering-renewable-energy-zones-

N3 – Central-West Orana

Summary

The Central West Orana REZ is electrically close to the Sydney load centre and has moderate wind and solar resources.

Central West Orana REZ has been identified by the New South Wales Government as the State's first pilot REZ[†]. The *NSW Electricity Infrastructure Investment Act 2020* legislates the REZ be declared with an intended 3,000 MW of additional transmission network capacity.

Due to the nature of the project, which is currently going through consultation on corridor selection, specific information on the project is not able to be provided, but it is expected to include new transmission lines connecting to a 500 kV and 330 kV loop in the vicinity of the Central-West Orana REZ indicative location.

Existing network capability

The project to establish the Central West Orana REZ is considered anticipated, and as such the existing network capability is approximately 3,900 MW.

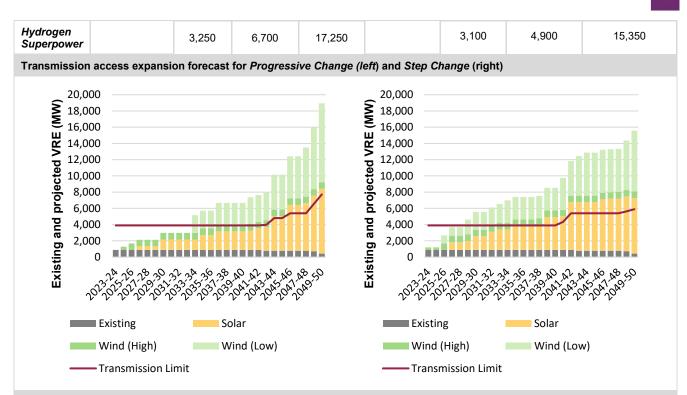
Note: The transmission study corridor is currently under consultation. More information is available at https://energy.nsw.gov.au/renewables/renewable-energy-zones.

REZ grouping

REZ design and community engagement is progressing

In May 2020, the NSW Department of Planning, Industry and Environment called for renewable energy, energy storage and emerging energy project proponents to register their interest in being part of the first pilot REZ. They received expression of interest of 27,000 MW of new generation and storage projects[‡]. Consultations with local communities and regional stakeholders have been initiated by New South Wales Government.

In early November 2021, Central-West Orana was formally declared a Renewable Energy Zone as the first step to formalising the REZ under the *Electricity Infrastructure Investment Act 2020*.


Metrics

Resource		Solar			Wind			
Resource Quality		С			С			
Renewable Potential (MW)		6,850			3,000			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
	F	F	F	В	В	С		
MLF Robustness	202	4-25	2029-30		2034-35			
	ļ	А		А		А		
Climate hazard								

Temperature score	С	Bushfire score	Е
VRE outlook			

		Solar PV (MW)				Wind (MW)			
	Existing/	Projected		Existing/	Projected				
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change	657/150/0	1,300	2,300	8,000	113/0/0	800	3,500	10,550	
Step Change		1,700	4,050	6,850		3,000	3,600	8,300	
Slow Change		100	100	3,000		800	800	3,000	

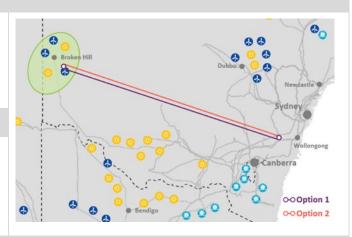
REZ scorecards - New South Wales

VRE curtailment

	2029	-30	2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	7%	-	3%	2%	11%	
Step Change	-	3%	1%	9%	1%	16%	
Slow Change	-	17%	-	3%	-	7%	
Hydrogen Superpower	-	6%	1%	12%	-	18%	

† See <u>https://energy.nsw.gov.au/renewables/renewable-energy-zones#-centralwest-orana-renewable-energy-zone-pilot-</u> ‡ New South Wales Government Central-West Orana REZ at: <u>https://www.energy.nsw.gov.au/renewables/renewable-energy-zones#-centralwest-</u> orana-renewable-energy-zone-.

N4 – Broken Hill


Summary

Broken Hill REZ has excellent solar resources. It is connected to the New South Wales grid via a 220 kV line from Buronga with an approximate length of 270 km.

Existing network capability

Due to the existing utility-scale solar and wind generation projects already operating in this REZ, there is no additional network capacity within this REZ.

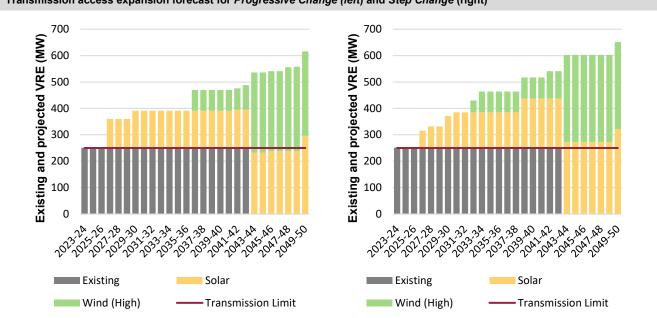
Further development of new generation development in this REZ requires significant transmission network augmentation due to the distance of the REZ from the main transmission paths of the shared network.

REZ grouping

Metrics

Infrastructure coordination can start later

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.


Weth 105							
Resource		Solar			Wind		
Resource Quality		В			D		
Renewable Potential (MW)		8,000			5,100 029-30 2039-40 2049-50		
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
	F	F	E	В	В	С	
MLF Robustness	202	2024-25		-30	2034-35		
MLI KODOSHICSS	F	=	F		F		

Climate hazard

 Temperature score
 E
 Bushfire score
 C

VRE outlook

		Solar PV	Solar PV (MW)			Wind (MW)			
	Existing/	Projected		Existing/	Projected				
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change		150	150	300	198/0/0	-	100	300	
Step Change		100	200	300		-	100	350	
Slow Change		200	200	250		-	-	-	
Hydrogen Superpower		150	200	400		-	-	-	

Transmission access expansion forecast for Progressive Change (left) and Step Change (right)

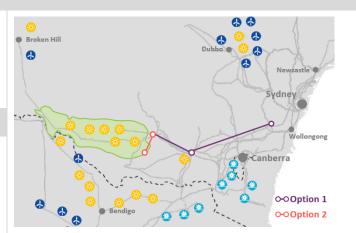
VRE curtailment

	2029	2029-30		-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	1%	11%	1%	8%	1%	32%	
Step Change	-	10%	1%	15%	1%	36%	
Slow Change	1%	25%	2%	9%	-	23%	
Hydrogen Superpower	1%	15%	-	29%	1%	51%	

N5 – South West NSW

Summary

The South West REZ has good solar resource and incorporates the Darlington Point substation which marks the transition from 330 kV to 220 kV. Further west, the 220 kV links to North West Victoria and Broken Hill.


This REZ is one of three REZs which are being targeted for further development under the NSW Electricity Infrastructure Roadmap.

Existing network capability

Due to the existing utility-scale solar projects already operating within this REZ, there is no additional capacity. Further development of new generation in this REZ requires network augmentation towards the greater Sydney load centre.

The capacity within this REZ and ability to transfer energy from the REZ to the main load centres in the greater Sydney area will be improved with the construction of Project

EnergyConnect and HumeLink projects. Furthermore, one option for VNI West (Kerang route) would also increase the capacity of this REZ.

AEMO has updated the REZ boundaries for N5 aligned with geographical area of the SWNSW REZ in Schedule 1 of the draft REZ declaration, available at https://www.energy.nsw.gov.au/sites/default/files/2022-03/Draft%20South-West%20REZ%20Declaration.pdf. AEMO will update all relevant parameters in the 2024 ISP.

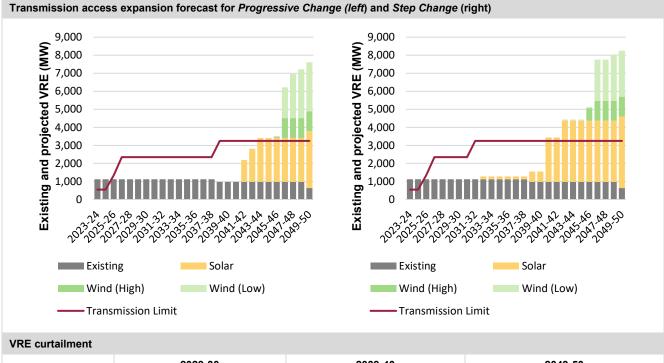
REZ grouping

REZ design and community engagement is progressing

A registration of interest, initiated by the NSW Government, closed on 24 November 2021[†]. This was the first step in engaging the industry to help inform network design.

Metrics							
Resource		Solar		Wind			
Resource Quality		С			E		
Renewable Potential (MW)		3,964			4,300		
Demand Correlation	2029-30	2029-30 2039-40		2029-30	2039-40	2049-50	
	F	F F		В	В	В	
MLF Robustness	202	2024-25		2029-30		2034-35	
MLF KODUSINESS	(С		A*		А	

* Project EnergyConnect and HumeLink improve the MLF robustness for VRE within this REZ


Climate hazard

	Temperature score	E	Bushfire score	D
--	-------------------	---	----------------	---

VRE outlook

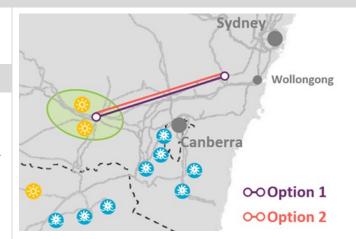
		Solar PV (MW)			Wind (MW)				
	Existing/	Projected		Existing/	Projected				
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change		-	-	3,150		-	-	3,800	
Step Change	972/122/0	-	600	3,950		-	-	3,650	
Slow Change		-	-	-	-	-	-	-	
Hydrogen Superpower		700	2,550	3,950		-	-	-	

REZ scorecards - New South Wales

	2029	9-30	2039	-40	2049	-50
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill
Progressive Change	-	10%	-	4%	-	21%
Step Change	-	5%	-	9%	-	25%
Slow Change	-	25%	-	2%	-	8%
Hydrogen Superpower	-	10%	-	24%	-	36%

† New South Wales Government South-West REZ registration of Interest, available at <u>https://www.energy.nsw.gov.au/renewables/renewable-energy-zones#-southwest-renewable-energy-zone-</u>.

N6 – Wagga Wagga


Summary

This REZ extends to the west of Wagga Wagga and has moderate wind and solar resources.

Existing network capability

There is no additional capacity within this REZ due to congestion in the surrounding 330 kV networks. Further development of new generation in this REZ requires network augmentation towards the greater Sydney load centre.

Additionally, the capacity within this REZ and ability to transfer energy from the REZ to the main load centres in the greater Sydney area are improved with the proposed HumeLink project. Options shown do not depend upon HumeLink as a pre-requisite.

REZ grouping

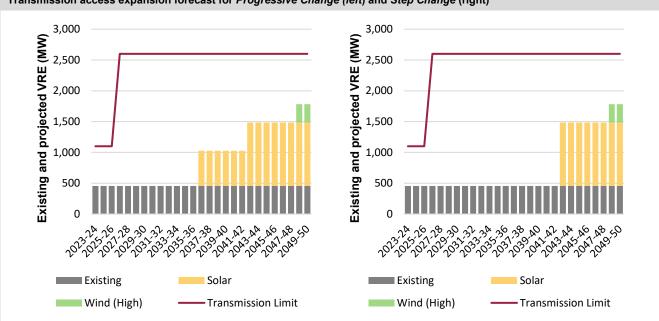
Metrics

Coordination of generation infrastructure may be required

The modelling outcomes identify this zone for development of solar generation in the 2030s across the Step Change and Hydrogen Superpower scenarios.

This REZ could benefit from community engagements and from coordination of generation.

Resource		Solar			Wind		
Resource Quality		С			E		
Renewable Potential (MW)		1,028			1,000 2039-40 2049-50		
Demand Correlation	2029-30	2029-30 2039-40		2029-30	2039-40	2049-50	
	F	F F		В	В	С	
MLF Robustness	2024	2024-25		2029-30		2034-35	
MEL RODOSITIESS	E	В		А*		А	


*HumeLink improves the MLF robustness for VRE within this REZ.

Climate hazard

D **Bushfire score** D **Temperature score**

VRE outlook

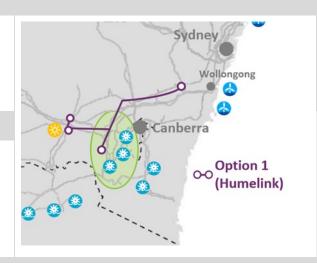
		Solar PV	/ (MW)		Wind (MW)				
	Existing/ committed/ anticipated	Projected			Existing/	Projected			
		2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change	121/369/0	-	550	1,050		-	-	300	
Step Change		-	-	1,050		-	-	300	
Slow Change		-	-	-	_	-	-	-	
Hydrogen Superpower		-	1,050	1,050		-	-	-	

Transmission access expansion forecast for Progressive Change (left) and Step Change (right)

VRE curtailment

Scenario	2029	9-30	2039	-40	2049-50		
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	12%	-	6%	-	28%	
Step Change	-	9%	-	13%	-	29%	
Slow Change	-	28%	-	3%	-	8%	
Hydrogen Superpower	-	11%	-	28%	-	7%	

N7 – Tumut


Summary

The Tumut REZ has been identified due to the potential for additional pumped hydro generation in association with Snowy 2.0 and the proposed actionable ISP HumeLink.

The HumeLink project † will enable the connection of more than 2,000 MW of pumped hydro generation (Snowy 2.0) in the Tumut REZ area.

Existing network capability

There is no additional capacity within this REZ. Further development of new generation in this REZ is associated with the HumeLink project. Currently the 330 kV transmission network around Lower and Upper Tumut is congested during peak demand periods. A careful balance of generation from the existing hydro units and flow between Victoria and New South Wales is required to prevent overloads within this area.

REZ grouping

Design and community engagements are progressing

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years. Ongoing community engagements is underway for HumeLink.

Metrics

Resource		Solar			Wind			
Resource Quality		D		В				
Renewable Potential (MW)		-			-			
Demond Completion	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Correlation	F	F	F	С	С	С		
MLF Robustness	202	24-25	2029-30		2034-35			
MEI KODOSINESS	Ν	N/A*		N/A		N/A		
*No VRE is projected for this RE	Ζ.							
Climate hazard								
Temperature score	С	С		Bushfire score		E		
VRE outlook								

		Solar F	PV (MW)		Wind (MW)				
	Existing/ committed/ anticipated	Projected		Existing/	Projected				
		2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change					There is no existing, committed or anticipated wind generation for this REZ. The modelling outcomes, for all scenarios, did not project any additional wind for this REZ.				
Step Change	generation for	this REZ. The		tcomes, for all					
Slow Change	scenarios, dio		any additional EZ.	solar for this					
Hydrogen Superpower									
Transmission	access expansi	ion forecast	and VRE curt	ailment					

There is no existing, committed, anticipated VRE projects for this REZ and the modelling outcomes, for all scenarios, did not project any additional VRE for this REZ. Therefore, no VRE curtailment or transmission expansion occurs in this REZ.

† See https://www.transgrid.com.au/humelink.

N8 – Cooma-Monaro

Summary

The Cooma-Monaro REZ has been identified for its pumped hydro potential. This REZ has moderate to good quality wind resources.

Existing network capability

The existing 132 kV network connecting Cooma-Monaro REZ to Canberra, Williamsdale and Munyang can accommodate approximately 200 MW of additional generation.

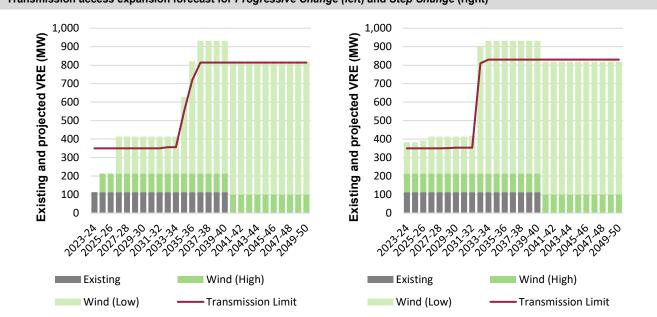
REZ grouping

Coordination of generation and transmission infrastructure may be required

The modelling outcomes identify this zone for development of wind generation in the 2020s for all scenarios.

This REZ could benefit from early community engagements and from the coordination of generation.

Metrics									
Resource		Solar Wind							
Resource Quality		D B							
Renewable Potential (MW)		-			300				
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50			
Demand Correlation	F	F	E	С	С	С			
MLF Robustness	20	2024-25		2029-30		34-35			
Mili KODUSINESS		F	F		C*				


*The indicative 330 kV expansion from Stockdill area to this REZ will increase the MLF robustness for VRE if developed.

Climate hazard

Temperature score	В	Bushfire score	E

VRE outlook

		Solar I	PV (MW)		Wind (MW)				
	Existing/ committed/ anticipated	Projected		Existing/	Projected				
		2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change					113/0/0	300	800	800	
Step Change			nmitted or antio	cipated solar utcomes, for all		300	800	800	
Slow Change		id not project	any additional EZ.			300	300	800	
Hydrogen Superpower						1,800	4,100	4,100	

Scenario	2029	-30	2039	-40	2049	9-50
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill
Progressive Change	1%	6%	1%	4%	-	9%
Step Change	1%	6%	-	7%	-	17%
Slow Change	1%	12%	1%	5%	-	7%
Hydrogen Superpower	-	4%	-	9%	-	15%

A3.6.3 Queensland

Q1 – Far North QLD

Summary

The Far North Queensland (FNQ) REZ is at the most northerly section of Powerlink's network. It has excellent wind and moderate solar resources and has existing hydroelectric power stations.

Three options are proposed that progressively increase network capacity and allow for upgrades based on where generation develops.

Existing network capability

Maximum export capability from the FNQ REZ is limited by voltage stability for a contingency of a Ross to Chalumbin 275 kV circuit. The existing network will allow for a total of approximately 750 MW of VRE to be connected.

Output from this REZ can also be limited by network capacity further south which can result in the need for additional network augmentations. Output from this REZ is included in the NQ1, NQ2 and NQ3 Group Constraints to take this into account.

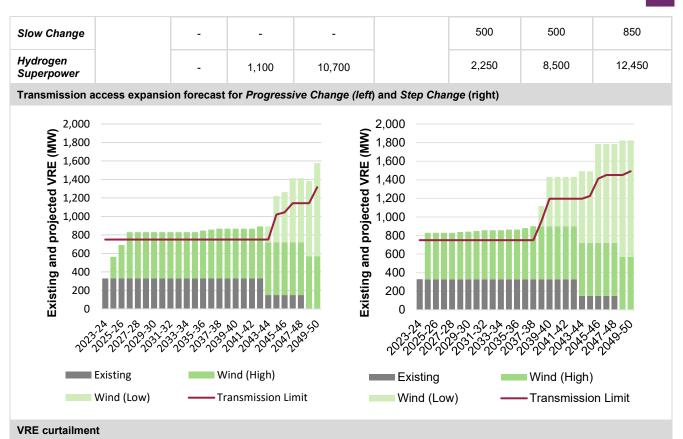
Powerlink has also recently announced plans for upgrades to transmission networks in the Q1 REZ as part of the Northern Queensland Renewable Energy Zone²⁰. AEMO considers this to be an anticipated project.

REZ grouping

Coordination of generation infrastructure may be required

The modelling outcomes identify this zone for development of wind generation in all scenarios in the 2020s and further expanded in the 2030s and 2040s. This REZ could benefit from early community engagements and from the coordination of generation.

Metrics


Resource		Solar Wind				
Resource Quality		C A				
Renewable Potential (MW)		1,100		2,280		
Demonstration	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50
Demand Correlation	F	F	E	С	В	С
MLF Robustness	202	2024-25 2029-30		203	4-35	
MEL KODOSIIIG22		E	E			E
Climate hazard						

Temperature score	В	Bushfire score	А

	Solar PV (MW)				Wind (MW)				
	Existing/ committed/ anticipated		Projected	i	Existing/ Projected			t	
		2029-30	2039-40	2049-50	committed/ anticipated	2029-30 2039-4	2039-40	2049-50	
Progressive Change		-	-	-	180/150/0	500	550	1,600	
Step Change	_	-	-	-		500	1,100	1,800	

²⁰ Powerlink. Queensland Renewable Energy Zones, at <u>https://www.powerlink.com.au/queensland-renewable-energy-zones</u>.

REZ scorecards - Queensland

2039-40 Scenario 2029-30 2049-50 Transmission Transmission Transmission Economic spill Economic spill Economic spill curtailment curtailment curtailment Progressive 1% 4% 16% -_ _ Change Step Change 5% 10% 18% 1% -_ Slow Change 3% 6% ----Hydrogen 2% 6% 8% 25% -_ Superpower

Q2 – North Queensland Clean Energy Hub

Summary

The Clean Energy Hub REZ is at the north-western section of Powerlink's network and has excellent wind and solar resources.

Existing network capability

Currently the REZ is supplied via a 132 kV line from Ross. Interest in this area includes the development of Kidston pumped storage project, for which Powerlink has received a 'Notice to Proceed' to develop a single-circuit 275 kV line†. Due to there being only a single circuit line, maximum output may be limited to the largest allowable generator contingency size.

Output from this REZ can also be limited by network capacity further south which can result in the need for additional network augmentations. Output from this REZ is included in the NQ1, NQ2 and NQ3 group constraints.

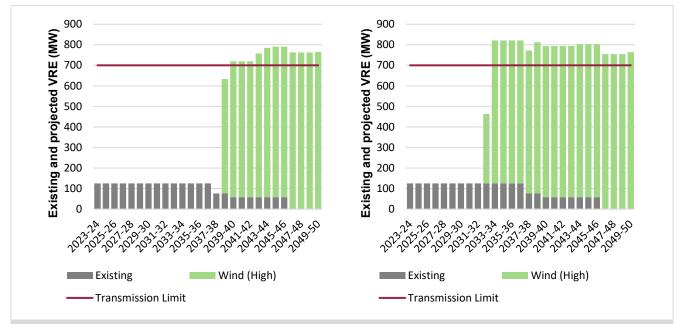
REZ grouping

Coordination of generation infrastructure may be required

The modelling outcomes identify this zone for development of wind generation in the 2030s across the *Progressive Change* and *Step Change* scenario. This build is brought forward under the *Hydrogen Superpower* scenario.

This REZ could benefit from early community engagements and from the coordination of generation.

Metrics


Methos							
Resource	Solar Wind						
Resource Quality		А		В			
Renewable Potential (MW)		8,000		18,600			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
Demand Correlation	F	F	E	В	В	В	
MLF Robustness	2024	4-25	2029	-30	2034-35		
F F F							
Climate hazard							

 Temperature score
 D
 Bushfire score
 C

VRE outlook

	Solar PV (MW)					Win	d (MW)	
	Existing/ committed/ anticipated		Projected		Existing/ Projected			
		2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change		-	-	-		-	650	750
Step Change	07/45/0	-	-	-	0/40/0	-	750	750
Slow Change	67/15/0	-	-	-	0/43/0	-	-	750
Hydrogen Superpower		150	4,350	8,000		750	4,700	11,250

Transmission access expansion forecast for Progressive Change (left) and Step Change (right)

VRE curtailment

Scenario	2029	9-30	2039	-40	2049	-50
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill
Progressive Change	-	13%	-	3%	-	16%
Step Change	-	11%	-	9%	-	18%
Slow Change	-	21%	-	9%	-	5%
Hydrogen Superpower	1%	10%	-	14%	-	24%

+ Powerlink, Genex-Kidston connection project, at https://www.powerlink.com.au/projects/genex-kidston-connection-project.

Q3 – Northern Queensland

Summary

The North Queensland REZ encompasses Townsville and the surrounding area. It has good quality solar and wind resources and is situated close to the high capacity 275 kV network. There are already a number of existing utility-scale solar generation projects operational within this REZ.

Existing network capability

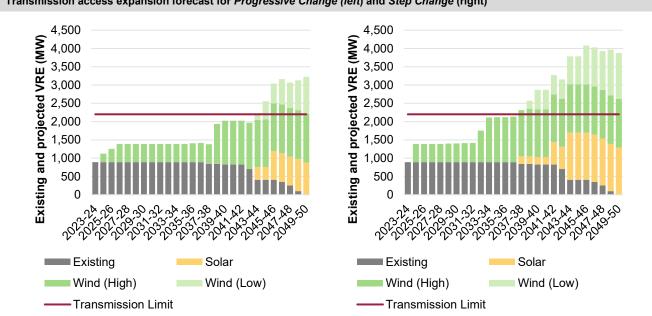
Due to the existing high voltage infrastructure, there are no augmentation options specifically for this REZ. Existing network capacity can allow for up to approximately 1,200 MW of new generator connections, shared between Q1, Q2 and Q3.

Output from this REZ can be limited by network capacity further south which can result in the need for additional network augmentations. Output from this REZ is included in the NQ1, NQ2 and NQ3 group constraints.

REZ grouping

Metrics

Infrastructure coordination can start later


Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

mounoo								
Resource		Solar			Wind			
Resource Quality		В		С				
Renewable Potential (MW)		3,400		-				
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Correlation	F	F	Е	В	В	В		
MLF Robustness	202	4-25	2029	9-30	2034-35			
MEI KODUSIIIESS	E	Ē	E			E		

Climate hazard

	Temperature score	С	Bushfire score	E
--	-------------------	---	----------------	---

		Solar P	/ (MW)			Wind (MW)					
	Existing/		Projected		Existing/		Projected				
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50			
Progressive Change		-	-	900							
Step Change	448/0/0	-	200	1,300		s no existing, committed or anticipated wind					
Slow Change	448/0/0	-	-	-	generation for this REZ. The modelling outcomes, for scenarios, did not project any additional wind for this R						
Hydrogen Superpower		-	3,400	3,400							

Note: The transmission access expansion forecasts show the results for NQ1 group constraint augmentation, which includes VRE projections for Q1, Q2 and Q3

VRF	curtail	ment
	cuitan	III EIIL

Scenario	2029	-30	2039	-40	204	9-50
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill
Progressive Change	-	4%	-	4%	-	18%
Step Change	-	18%	-	25%	-	31%
Slow Change	-	14%	-	8%	-	-
Hydrogen Superpower	-	13%	-	12%	-	30%

Transmission curtailment for this REZ is not captured. The transmission infrastructure required to upgrade this REZ increases capacity on the 275 kV back bone for Q1, Q2 and Q3.

Q4 – Isaac

Summary

The Isaac REZ has good wind and solar resources covering Collinsville and Mackay areas ,and has a number of utility-scale solar generation projects already in operation.

There are numerous potential pumped hydro locations to the north east and south east of Nebo. This REZ has a good diversity of resources – wind, solar and storage. Locating storage in this zone could maximise transmission utilisation towards Brisbane.

Existing network capability

The Isaac REZ forms part of the NQ transmission backbone from Nebo to Strathmore. Due to the existing high voltage infrastructure, there are no augmentation options specifically for this REZ. The associated augmentations are the NQ2 and NQ3 group constraint augmentations that facilitate power from Q1 to Q5 to be transmitted south to the load centres.

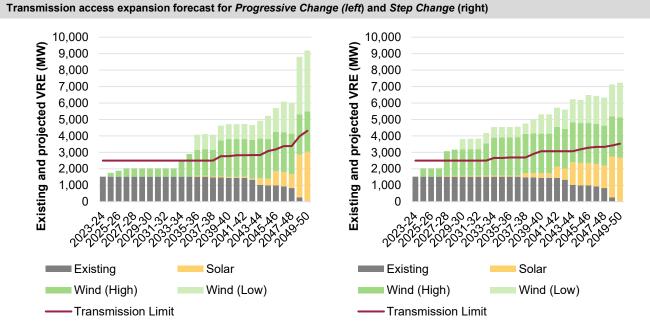
The network has the ability to support up to a total of 2,500 MW of generation across the REZs in northern Queensland, depending on the level of storage in these REZs.

REZ grouping

Metrics

Coordination of generation infrastructure may be required

The modelling outcomes identify this zone for development of wind generation in the 2020s across the *Step Change* and *Hydrogen Superpower* scenarios. This REZ could benefit from early community engagements and from coordination of generation.


_								
Resource		Solar		Wind				
Resource Quality		В		С				
Renewable Potential (MW)		6,900		3,800				
	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Correlation	F	F	Е	В	В	С		
MLF Robustness	202	4-25	2029	-30	30 2034			
		В	С		С			

Climate hazard

	Temperature score	С	Bushfire score	С
--	-------------------	---	----------------	---

		Solar PV	(MW)		Wind (MW)			
	Existing/ committed/ anticipated	Projected		Existing/	Projected			
		2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change		-	-	2,050	-	-	1,900	3,700
Step Change	622/0/0	-	-	1,250		1,650	1,650	1,850
Slow Change	622/0/0	-	-	-		-	-	1,000
Hydrogen Superpower		350	3,500	33,500		1,000	2,350	45,200

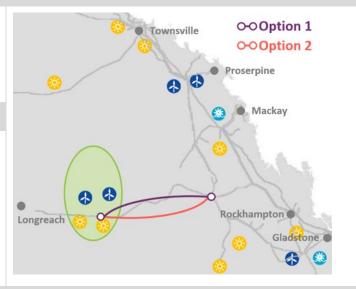
REZ scorecards - Queensland

Note: The transmission access expansion forecasts show the results for NQ2 group constraint augmentation, which includes VRE projections for Q1, Q2, Q3, Q4 and Q5.

	2029	-30	2039	-40	2049	9-50
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spil
Progressive Change	-	16%	-	3%	-	13%
Step Change	-	6%	-	11%	-	19%
Slow Change	-	23%	-	5%	-	5%
Hydrogen Superpower	-	7%	-	10%	-	9%

Transmission curtailment for this REZ is not captured. The transmission infrastructure required to upgrade this REZ increase capacity on the 275 kV back bone for the connection of Q1, Q2, Q3, Q4 and Q5.

Q5 – Barcaldine


Summary

This REZ has excellent solar resources and moderate wind resources but is located a long way from the Queensland transmission backbone. Barcaldine REZ has not been identified as having significant potential pumped hydro capability.

Existing network capability

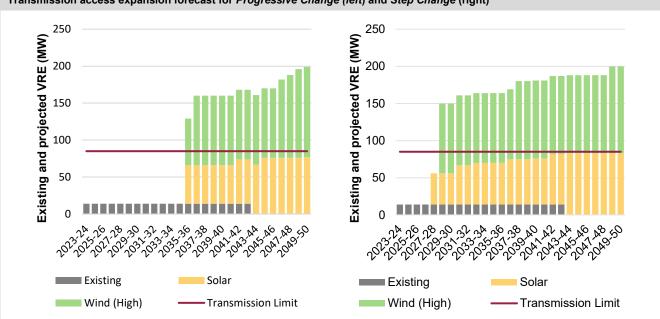
This REZ is fed via a 132 kV line from Lilyvale.

Currently there is limited spare network capacity available within the Barcaldine REZ. Output from this REZ can be limited by network capacity further south which can result in the need for additional network augmentations. Output from this REZ is included in the NQ2 and NQ3 group constraints to take this into account.

REZ grouping

Infrastructure coordination can start later

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.


Metrics

Resource	Solar			Wind			
Resource Quality	A			D			
Renewable Potential (MW)	8,000			3,900			
	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
Demand Correlation	F	F	E	В	В	С	
MLF Robustness	2024-25		2029-30		2034-35		
	F		F		F		

Climate hazard

Temperature score D Bushfire score	С
--	---

		Solar PV	/ (MW)		Wind (MW)					
	Existing/		Projected		Existing/		Projected			
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50		
Progressive Change	14/0/0		50	100		-	100	100		
Step Change		50	50	100		100	100	100		
Slow Change		-	-	100	-	-	-	100		
Hydrogen Superpower		50	50	8,000		100	100	3,900		

	2029-30		2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	20%	-	11%	1%	34%	
Step Change	-	12%	1%	25%	1%	39%	
Slow Change	-	25%	-	18%	1%	18%	
Hydrogen Superpower	1%	18%	1%	31%	-	32%	

Q6- Fitzroy

Summary

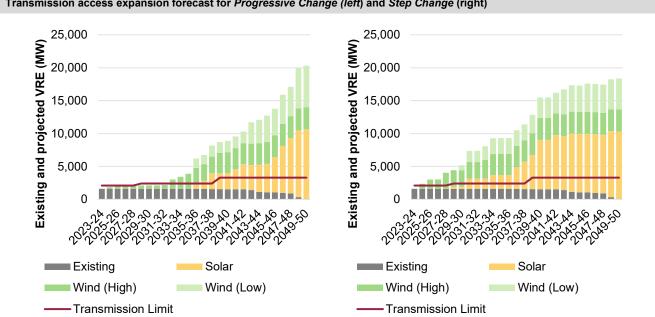
The Fitzroy REZ is in Central Queensland and covers a strong part of the network where Gladstone and Callide generators are connected. This REZ has good solar and wind resources.

Existing network capability

The network has the ability to support up to 2,100 MW of power transfer from Central Queensland to Southern Queensland (CQ-SQ) which is defined as the transient stability limit of the network (for a contingency of Calvale–Halys 275 kV circuit).

Due to the existing high voltage infrastructure, there are no augmentation options specifically for this REZ. The associated augmentations are the NQ3 group constraint augmentations that facilitate power from Q1 to Q6 to be transmitted south to the load centres.

REZ grouping


Transmission and generation infrastructure coordination is required

Preparatory activities were done for the 2020 ISP relating to the CQ-SQ upgrade and Gladstone Grid re-enforcement options. To assess the potential need for actionable status in the next ISP, AEMO will escalate the costs from the preparatory activities requested in the 2020 ISP as the options presented are not expected to change for these projects.

Metrics

Resource		Solar			Wind			
Resource Quality		В		С				
Renewable Potential (MW)		7,533			3,500			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Correlation	F	F F		А	А	В		
MLF Robustness	202	2024-25		2029-30		2034-35		
		А		A		А		
Climate hazard								
Temperature score	С		Bushfire sco	re	В			

		Solar PV	/ (MW)		Wind (MW)			
	Existing/ Projected		Existing/		Projected			
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change	0/0/82	-	2,400	7,550		-	1,700	3,500
Step Change		250	7,250	7,550		1,000	2,850	3,500
Slow Change		-	-	2,700	_	-	900	1,200
Hydrogen Superpower		3,150	7,450	38,150		2,550	3,500	24,300

Note: The transmission access expansion forecasts show the results for the NQ3 group constraint augmentation, including projected VRE for all REZs north of the NQ3; this includes Q1, Q2, Q3, Q4, Q5 and Q6. The transmission limit is modelled using the CNQ-SQ flow path limit as opposed to a static number.

VRE curtailment

Scenario	2029	-30	2039	-40	2049-50		
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	23%	-	2%	-	8%	
Step Change	-	5%	-	6%	-	11%	
Slow Change	-	43%	-	2%	-	6%	
Hydrogen Superpower	-	8%	-	9%	-	16%	

Transmission curtailment for this REZ is not captured. The transmission infrastructure required to upgrade this REZ increase capacity on the 275 kV back bone for the connection of Q1, Q2, Q3, Q4, Q5 and Q6.

Q7 – Wide Bay

Summary


The Wide Bay area has moderate solar resources and already has a number of large solar generators operational within the REZ.

Rebuild of the existing single-circuit lines as double-circuits to help reduce challenges around obtaining easements, should the generation interest exceed the current network capacity.

The Queensland Government has announced additional storage development plans to support the transition to renewable generation. A key project being considered is the Borumba Pumped Hydro project, located in the Wide Bay REZ, which has a storage capacity in excess of 24 hours.

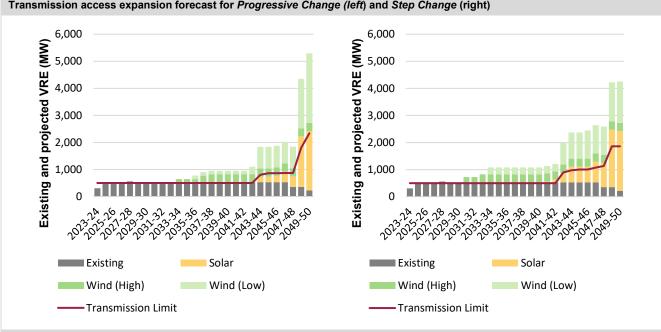
Existing network capability

The existing network facilitates power transfer from Central Queensland to the load centre in Brisbane. This is a 275 kV transmission backbone and can support up to approximately 500 MW of generation connecting in the area north of Brisbane up to Gympie.

REZ grouping

Coordination of generation infrastructure may be required

The modelling outcomes identify this zone for development of wind and solar generation. This REZ could benefit from early community engagements and from the coordination of generation.


Metrics

Resource		Solar		Wind				
Resource Quality		С		D				
Renewable Potential (MW)		2,200			1,100			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
	F	F	F	В	В	В		
MLF Robustness	202	2024-25		2029-30		34-35		
	ŀ	4	A		A			

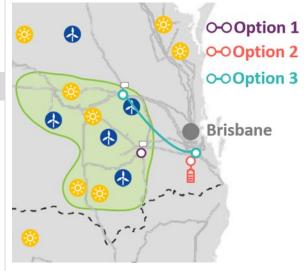
Climate hazard

Temperature score	В	Bushfire score	E

	Solar PV (MW)				Wind (MW)				
	Existing/		Projected		Existing/	Projected			
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change		-	-	2,200		-	400	2,850	
Step Change	131/176/274	-	-	2,200	_	-	550	1,850	
Slow Change	131/170/274	-	-	-	_	-	-	600	
Hydrogen Superpower		-	5,100	11,450		450	4,800	7,600	

	2029	9-30	2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	21%	1%	8%	1%	15%	
Step Change	-	16%	-	18%	1%	22%	
Slow Change	-	27%	-	11%	-	11%	
Hydrogen Superpower	1%	14%	-	9%	-	20%	

Q8 – Darling Downs


Summary

The Darling Downs REZ extends from the border of NSW around Dumaresq, up to Columboola within the Surat region of Queensland, and has good solar and wind resources. A number of large solar and wind projects are already connected within the zone.

Existing network capability

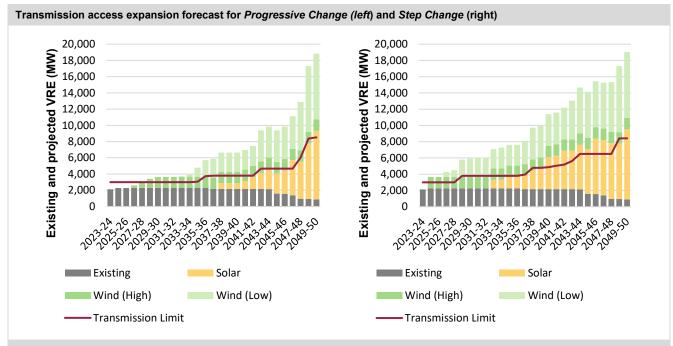
The Darling Downs REZ has high network capacity and is near QNI and Brisbane. Furthermore, the ultimate retirement of generation within this REZ will allow for increased VRE connections.

Under high demand conditions, this corridor can only facilitate 1,300 MW into the greater SEQ area from generation connected around the Bulli Creek area. Generation connected around the Halys area will be required to allow the full 3,000 MW REZ capacity to be able to be utilised. The Middle Ridge site is very constrained – further investigation is required to determine the feasibility of any expansion of this substation.

REZ grouping

Transmission and generation infrastructure coordination is required

Preparatory activities relating to the development of this REZ are required to assess the potential need for actionable status in the next ISP.


Metrics								
Resource		Solar			Wind			
Resource Quality		С			С			
Renewable Potential (MW)		6,992			5,600			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Correlation	F	F	F	А	А	В		
MLF Robustness	202	4-25	2029	-30	2034-35			
MEI KODUSIIIESS	ļ	А		А		A		
Climate hazard								

-

Temperature score	C	Bushfire score	E

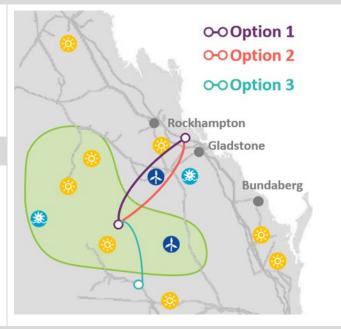
		Solar PV	/ (MW)		Wind (MW)				
	Existing/		Projected		Existing/	Projected			
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change		-	700	8,450		1,400	3,750	9,500	
Step Change	202/1 067/0	-	3,900	8,650	453/173/300 -	3,650	5,300	9,500	
Slow Change	293/1,067/0	-	-	2,050		850	1,400	3,650	
Hydrogen Superpower		2,400	9,750	13,200		3,900	11,350	13,200	

REZ scorecards – Queensland

	2029	9-30	2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	4%	-	3%	1%	9%	
Step Change	-	4%	1%	9%	-	11%	
Slow Change	-	7%	-	3%	-	7%	
Hydrogen Superpower	1%	7%	-	7%	-	16%	

Q9 – Banana

Summary


The Banana REZ is located roughly 200 km south-west of Gladstone and lies north of the CQ-SQ flow path. It has moderate wind and excellent solar resources. There are currently no generators and very little high voltage network in this area.

The first two options are proposals that transport the power to the Gladstone region. Substation location both within the Banana REZ and the connection point within the Gladstone section will be based on where generation and load develop.

Existing network capability

There is very little high voltage network in the area currently. There is some low capacity 132 kV network on the edge of the REZ to support the townships of Moura and Biloela.

There is very little spare capacity within the current network, which does not extend very far into the REZ.

REZ grouping

Infrastructure coordination can start later

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

Metrics


Resource		Solar			Wind			
Resource Quality		В			D			
Renewable Potential (MW)		6,100			3,400			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Correlation	F	F	F	А	А	В		
MLF Robustness	2024	4-25	2029-30		2034-35			
MEI KODOSIIIESS	E	E		F		F		
Climate hazard								

Temperature score	С	Bushfire score	В

VRE outlook

		Solar PV	/ (MW)		Wind (MW)			
	Existing/	Projected		Existing/	Projected			
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change		-	150	6,100		-	-	3,400
Step Change		-	150	6,100		-	150	3,400
Slow Change	-	-	-	150	-	-	-	150
Hydrogen Superpower		200	1,800	6,100		-	900	3,400

Transmission access expansion forecast for Progressive Change (left) and Step Change (right)

. .	2029	9-30	2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	-	-	14%	1%	13%	
Step Change	-	-	1%	23%	1%	15%	
Slow Change	-	-	-	-	-	18%	
Hydrogen Superpower	1%	27%	1%	17%	-	28%	

A3.6.4 South Australia

S1 – South East SA

Summary

The South East SA REZ lies on the major 275 kV route of the South Australia – Victoria Heywood interconnector. The REZ has moderate to good quality wind resources, as evidenced by the high proportion of wind generation (over 300 MW) in or near the South East border with Victoria.

Existing network capability

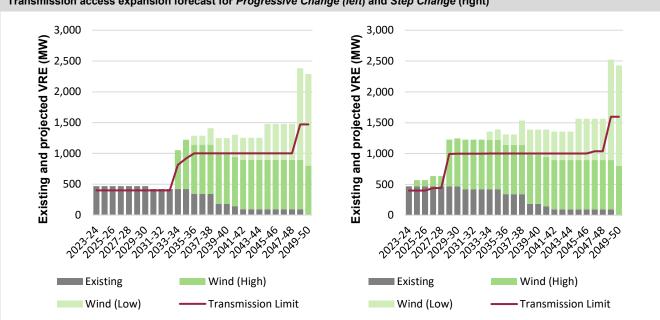
The existing network capacity of this REZ is approximately 400 MW. Further network augmentation is required to allow additional generation to be built. Network augmentations would be smaller if generation is located relatively close to Adelaide, and larger if located further south towards Mount Gambier.

REZ grouping

Transmission and generation infrastructure coordination is required

Preparatory activities relating to Tailem Bend to Tungkillo 275 kV upgrade options are required to assess the potential need for actionable status in the next ISP.

Metrics


Resource		Solar			Wind			
Resource Quality		E			С			
Renewable Potential (MW)		100			3,200			
Demond Convelation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Correlation	F	F	E	С	С	С		
MLF Robustness	202	4-25	2029-30		2034-35			
MLF RODUSINESS	N	/A	N/A		N/A			

*No MLF robustness scores are shown as the MLF robustness for VRE in this REZ is heavily dependent on market conditions and interconnector flows.

Climate hazard

Temperature score D Bushfire score D
--

		′ (MW)		Wind (MW)				
	Existing/	Projected		Existing/	Projected			
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change		-	-	-		-	1,050	2,300
Step Change	05/00/44	-	-	-	005/0/0	800	1,200	2,450
Slow Change	95/33/14	-	-	-	325/0/0	-	300	800
Hydrogen Superpower		-	-	100		900	3,200	3,200

Scenario	2029	-30	2039	-40	2049-50		
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	14%	-	5%	1%	22%	
Step Change	-	9%	1%	14%	1%	25%	
Slow Change	-	27%	-	12%	-	11%	
Hydrogen Superpower	1%	9%	-	12%	-	12%	

S2 - Riverland

Summary

The Riverland REZ is on the South Australian side of the proposed Project EnergyConnect route. It has good solar quality resources.

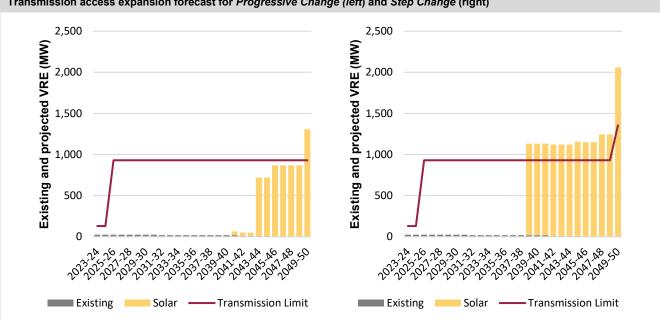
Existing network capability

There is minimal existing renewable generation in the zone. Prior to Project EnergyConnect, approximately 130 MW can be connected in this REZ. Once Project EnergyConnect is commissioned, approximately 800 MW can be accommodated.

REZ grouping

Infrastructure coordination can start later

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.


Metrics

Resource	Solar			Wind			
Resource Quality	С			E			
Renewable Potential (MW)	4,000			1,400			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
Demand Correlation	F	F	E	В	В	В	
MLF Robustness	2024-25		2029-30		2034-35		
MLI KODOSINESS	ŀ	4	А		A		

Climate hazard

Temperature score E Bushfire score C	
--	--

		Solar PV	/ (MW)			W	ind (MW)				
	Existing/		Projected		Existing/	Projected					
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50			
Progressive Change		-	-	1,300							
Step Change	0/25/0	-	1,100	2,050		is no existing, committed or anticipated wind generations REZ. The modelling outcomes, for all scenarios, did n project any additional wind for this REZ.					
Slow Change	0/25/0	-	-	-							
Hydrogen Superpower		1,300	3,200	4,000	-						

Scenario	2029	-30	2039	-40	2049-50		
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	25%	-	18%	-	40%	
Step Change	-	24%	-	27%	-	44%	
Slow Change	-	36%	-	27%			
Hydrogen Superpower	-	11%	-	37%	-	48%	

S3 – Mid-North SA

Summary

The Mid-North SA REZ has moderate quality wind and solar resources. There are several major wind farms in service in this REZ, totalling > 950 MW installed capacity.

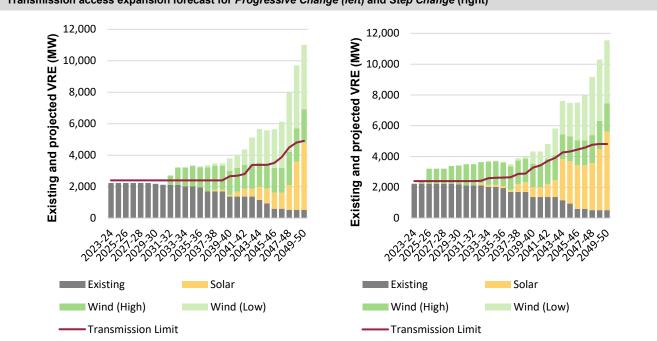
Four 275 kV parallel circuits provide the bulk transmission along the corridor from Davenport to near Adelaide (Para) which traverse this REZ. This transmission corridor forms the backbone for exporting power from REZs north and west of this REZ in South Australia.

Existing network capability

This REZ can accommodate approximately 1,000 MW additional generation along the 275 kV corridor.

The capability of this zone to accommodate new generation is subject to the MN1 mid-north group constraint $^{\dagger}\!\!\!\!$.

REZ grouping


Transmission and generation infrastructure coordination is required

Preparatory activities relating to the Davenport to Adelaide 275kV upgrade options (including need for control schemes and underlying 132 kV network upgrades) are required to assess the potential need for actionable status in the next ISP.

Metrics

Resource		Solar			Wind			
Resource Quality		D			С			
Renewable Potential (MW)		1,300			4,600			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
	F	F	E	С	С	С		
MLF Robustness	202	2024-25		2029-30		2034-35		
MEI KODOSIIIESS		А		١	А			
Climate hazard								
Temperature score	D		Bushfire sco	re		D		

		/ (MW)		Wind (MW)					
	Existing/	Projected			Existing/	Projected			
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change		-	-	-		-	1,950	3,950	
Step Change		-	-	-	1,335/0/0	1,150	2,900	3,500	
Slow Change	-	-	-	-	1,333/0/0	-	200	2,300	
Hydrogen Superpower		-	1,300	1,300		2,950	4,600	28,900	

Transmission access expansion forecast for Progressive Change (left) and Step Change (right)

Note: The transmission access expansion forecasts show the results for the MN1 group constraint augmentation.

	2029	9-30	2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	6%	-	4%	-	15%	
Step Change	-	6%	-	9%	-	17%	
Slow Change	-	15%	-	5%	-	9%	
Hydrogen Superpower	-	4%	-	13%	-	17%	

Transmission curtailment for this REZ is not captured. The transmission infrastructure required to upgrade this REZ increases capacity on the 275 kV back bone for S3, S4, S6, S7, S8 and S9.

† Additional augmentation is required in Mid-North when the combination of generation in S3, S4, S5, S6, S7, S8, S9 >2,400 MW.

S4 – Yorke Peninsula


Summary

The Yorke Peninsula REZ has good quality wind resources. A single 132 kV line extends from Hummocks to Wattle Point (towards the end of Yorke Peninsula).

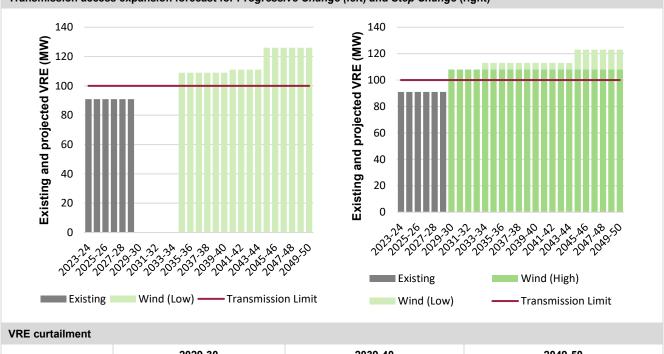
Existing network capability

The existing 132 kV network has no additional network capacity. Transmission augmentation is required to connect any significant additional generation in this REZ.

The capability of this zone to accommodate new generation is subject to the MN1 mid-north group constraint^{\dagger}.

REZ grouping

Infrastructure coordination can start later


Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

Metrics	;
mounos	

Resource		Solar			Wind			
Resource Quality		D			С			
Renewable Potential (MW)		-		1,400				
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
	F	F	E	С	С	С		
MLF Robustness	202	2024-25		9-30	2034-35			
MLF RODUSINESS	F	F		F		F		
Climate hazard								

 Temperature score
 D
 Bushfire score
 C

		Solar PV	/ (MW)		Wind (MW)				
	Existing/		Projected		Existing/	Projected			
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change						-	100	150	
Step Change	There is no ex generation for				111/0/0	100	100	100	
Slow Change		all scenarios, did not project any additional solar for this REZ.				-	-	100	
Hydrogen Superpower						100	1,400	1,400	

Scenario	2029	9-30	2039	-40	2049-50		
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	-	-	9%	-	34%	
Step Change	-	11%	-	23%	-	39%	
Slow Change	-	-	-	-	-	16%	
Hydrogen Superpower	-	11%	-	19%	-	45%	

† Additional augmentation is required in Mid-North when the combination of generation in S3, S4, S5, S6, S7, S8, S9 >2,400 MW.

S5 – Northern SA

Summary

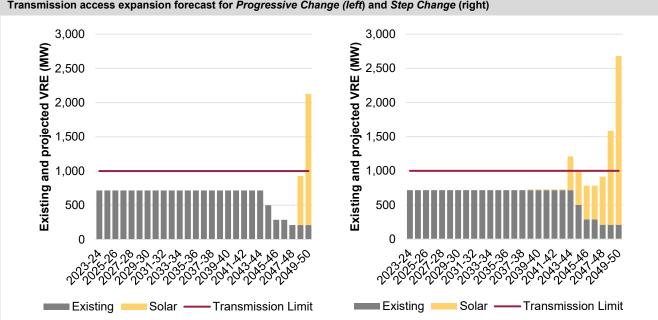
The Northern SA REZ has good solar and moderate wind resources. This REZ forms a candidate for a hydrogen electrolyser facility in South Australia.

Existing network capability

The capability of this zone to accommodate new generation is subject to the MN1 mid-north and NSA1 northern group constraint^{\dagger}.

REZ grouping

Infrastructure coordination can start later


Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

Metrics							
Resource		Solar			Wind		
Resource Quality		С			С		
Renewable Potential (MW)		2,900		-			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
Demand Correlation	F	F	Е	С	С	С	
MLF Robustness	202	2024-25		-30	20)34-35	
MLI RODOSITESS	(С			С		

Climate hazard

Temperature score	E	Bushfire score	D

		Solar PV	/ (MW)		Wind (MW)			
	Existing/ committed/ anticipated	Projected			Existing/			
		2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change	270/0/79	-	-	1,900	126/86/210	-	-	-
Step Change		-	-	2,450		-	-	-
Slow Change		-	-	-		-	-	-
Hydrogen Superpower		550	2,900	2,900		-	-	-

Note: S5 forecast shows results for the NSA1 group constraint augmentation.

VRE curtailment

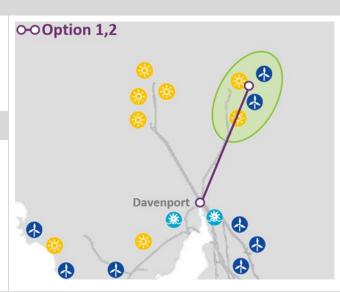
Scenario	2029	9-30	2039	-40	2049	2049-50		
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill		
Progressive Change	-	11%	-	7%	-	31%		
Step Change	-	10%	-	15%	-	39%		
Slow Change	-	22%	-	12%	-	8%		
Hydrogen Superpower	-	11%	-	25%	-	48%		

Transmission curtailment for this REZ is not captured. The transmission infrastructure required to upgrade this REZ increases capacity on the 275 kV back bone for S5, S8 and S9.

† Additional augmentation is required in Mid-North when the combination of generation in S3, S4, S5, S6, S7, S8, S9 >2,400 MW or in Eyre Peninsula when S5, S8, S9 > 500 MW.

S6 – Leigh Creek

Summary


The Leigh Creek REZ is located between 150 and 350 km north-east of Davenport. It has excellent solar resources and good wind resources.

This REZ is currently supplied with a single 132 kV line.

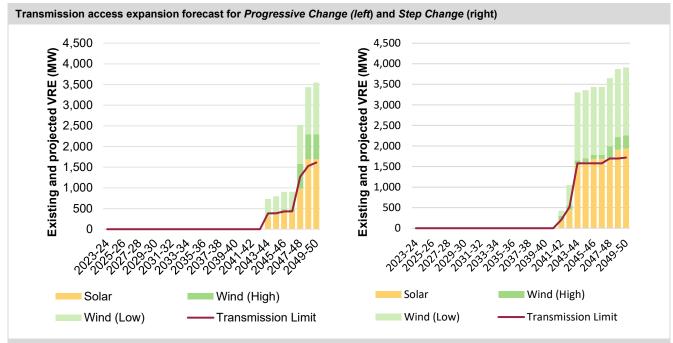
Existing network capability

There is no additional network capacity within this REZ.

The capability of this zone to accommodate new generation is subject to the MN1 mid-north group constraint $^{\dagger}\!\!\!\!$.

REZ grouping

Infrastructure coordination can start later


Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

Metrics							
Resource	Solar			Wind			
Resource Quality		А		В			
Renewable Potential (MW)	6,500			2,400			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
Demand Correlation	F	F	E	С	С	С	
MLF Robustness	2024-25		2029	-30	2034-35		
MEI KODOSINESS	F		F		F		
Climate hazard							

 Temperature score
 D
 Bushfire score
 C

		Solar PV	/ (MW)		Wind (MW)			
	Existing/ committed/ anticipated		Projected			Projected		
		2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change		-	-	1,700		-	-	1,850
Step Change		-	-	1,950		-	-	1,950
Slow Change	-	-	-		_	-	-	-
Hydrogen Superpower		500	7,950	41,800		600	8,900	17,200

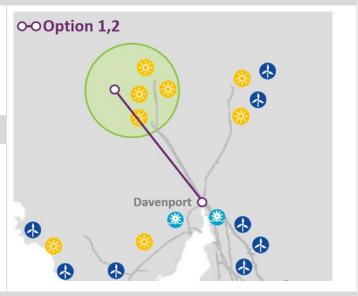
REZ scorecards - South Australia

VRE curtailment

Scenario	2029	9-30	2039	-40	2049	2049-50	
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	-	-	-	1%	27%	
Step Change	-	-	-	-	-	32%	
Slow Change	-	-	-	-	-	-	
Hydrogen Superpower	1%	13%	-	12%	-	23%	

† Additional augmentation is required in Mid-North when the combination of generation in S3, S4, S5, S6, S7, S8, S9 >2,400 MW.

S7 – Roxby Downs


Summary

The Roxby Downs REZ is located a few hundred kilometres north-west of Davenport. It has excellent solar resources. The only significant load in the area is the Olympic Dam and Carrapateena mines.

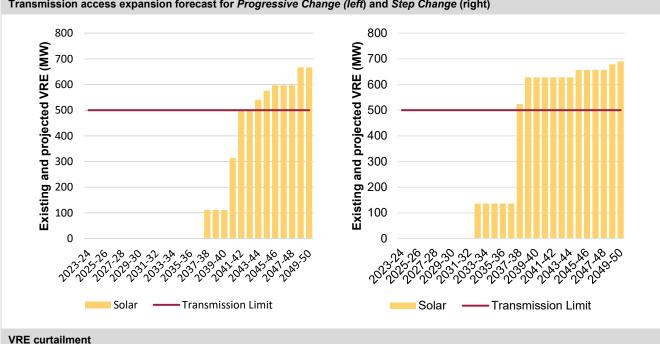
This REZ is currently connected with a 132 kV line that provides supply to small loads, and two privately owned 275 kV lines from Davenport that provide supply to large mines in the area.

Existing network capability

The existing network capacity of this REZ is 500 MW, although the capability of this zone to accommodate new generation is subject to the MN1 mid-north group constraint[†].

REZ grouping

NA - 4-1 - -


Infrastructure coordination can start later

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

Metrics							
Resource		Solar Wind					
Resource Quality		А		D			
Renewable Potential (MW)		3,400		-			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
Demand Correlation	F	F	E	В	В	С	
MLF Robustness	2024	2024-25 202		-30	2034-35		
MEI KOBOSINESS	E E			E			
Climate hazard	Climate hazard						

 Temperature score
 E
 Bushfire score
 C

		Solar PV	/ (MW)		Wind (MW)						
	Existing/	Projected			Existing/	Projected					
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50			
Progressive Change		-	100	650							
Step Change		-	650	700	There is no existing, committed or anticipated wind generat for this REZ. The modelling outcomes, for all scenarios, did project any additional wind for this REZ.						
Slow Change	-	-	-	450							
Hydrogen Superpower		550	750	3,400							

Scenario	2029	9-30	2039	-40	2049-50		
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	-	-	12%	-	42%	
Step Change	-	-	1%	30%	-	47%	
Slow Change	-	-	-	-	-	23%	
Hydrogen Superpower	1%	17%	-	47%	-	48%	

† Additional augmentation is required in Mid-North when the combination of generation in S3, S4, S5, S6, S7, S8, S9 >2,400 MW.

S8 – Eastern Eyre Peninsula

Summary

The Eastern Eyre Peninsula REZ has moderate to good quality wind resources.

The Eyre Peninsula Link is a committed project that will replace the existing Cultana–Yadnarie–Port Lincoln 132 kV single-circuit line with a new double-circuit 132 kV line. The section between Cultana to Yadnarie will be built to operate at 275 kV, however it will be energised at 132 kV upon commissioning. This project is due to be completed by December 2022.

Existing network capability

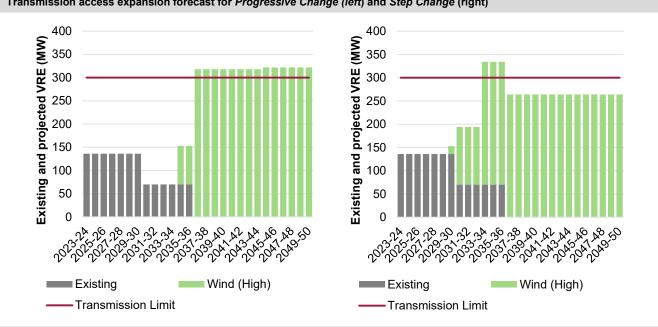
The existing network capacity of this REZ is 300 MW (subject to the capacity of the 275/132 kV transformers)[†].

The capability of this zone to accommodate new generation is subject to the MN1-SA mid-north and NSA1 northern group constraint^{\ddagger}.

REZ grouping

Infrastructure coordination can start later

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.


Metrics

Resource	Solar			Wind			
Resource Quality	D			С			
Renewable Potential (MW)		5,000		2,300			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
Demand Correlation	F	F	E	В	В	С	
MLF Robustness	2024-25		2029-30		2034-35		
MLI KODOSINESS	F	=	F		F		

Climate hazard

	Temperature score	D	Bushfire score	D
--	-------------------	---	----------------	---

	Solar PV (MW)				Wind (MW)				
	Existing/		Projected		Existing/		Projected	l	
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change		-	-	-	136/0/0	-	300	300	
Step Change		-	-	-		-	250	250	
Slow Change	-	-	-	-		-	-	-	
Hydrogen Superpower		-	-	5,000		850	850	2,300	

Scenario	2029	9-30	2039	-40	2049-50		
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	8%	-	7%	-	29%	
Step Change	-	12%	-	17%	-	34%	
Slow Change	-	15%	-	-	-	-	
Hydrogen Superpower	-	7%	-	22%	-	38%	

S9 – Western Eyre Peninsula

Summary

The Western Eyre Peninsula REZ shares the same electrical network as the Eastern Eyre Peninsula. It has good solar and moderate wind resources. There are no generators currently connected or committed within this REZ.

Existing network capability

There is no additional network capacity within this REZ.

The capability of this zone to accommodate new generation is subject to the MN1-SA mid-north and NSA1 northern group constraint[†].

REZ grouping

Infrastructure coordination can start later

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

Metrics

Resource		Solar			Wind			
Resource Quality		С			С			
Renewable Potential (MW)		4,000			1,500			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
	F	F	E	С	С	C		
MIE Pobustnoss	202	2024-25		2029-30		34-35		
MLF Robustness	N	/A	N	/A N/A		N/A		

*There is currently no network connecting this REZ to the transmission network.

Climate hazard

Temperature score	D	Bushfire score	С

	Solar PV (MW)				Wind (MW)			
	Existing/		Projected		Existing/		Projected	I
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change		-	-	-		-	-	-
Step Change		-	-	-		-	-	-
Slow Change	-	-	-	-	_	-	-	-
Hydrogen Superpower		-	4,000	4,000		-	400	1,750

Transmission access expansion forecast for Progressive Change (left) and Step Change (right)

The modelling outcomes for this REZ do not forecast any VRE under Progressive Change and Step Change scenario.

	2029	-30	2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	-	-	-	-	-	
Step Change	-	-	-	-	-	-	
Slow Change	-	-	-	-	-	-	
Hydrogen Superpower	-	-	-	32%	-	44%	

A3.6.5 Tasmania

T1 – North East Tasmania

Summary

This REZ has excellent quality wind resources. North East Tasmania is distanced from the proposed Marinus Link augmentations and therefore upgrades are not influenced by the proposed new interconnector.

Existing network capability

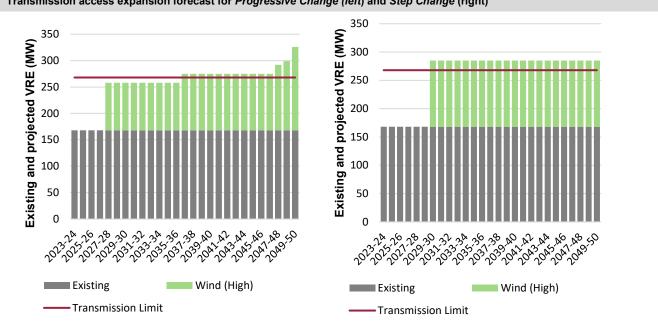
Currently there is no capacity on the 110 kV network from Hadspen to Derby. There is approximately 268 MW of total REZ network capacity for existing and new VRE available at George Town.

REZ grouping

Infrastructure coordination can start later

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

Metrics


Resource		Solar			Wind			
Resource Quality		F			A			
Renewable Potential (MW)		300		1,400				
Demond Original data	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Correlation	F	F F E			C C			
MLF Robustness	202	2024-25		9-30	2	034-35		
MLI KODOSIIIESS	A	۸*	A	A Contraction of the second se	A			

*MLF robustness has been calculated at the 220 kV connection near George Town as there is currently no capacity left on the 110 kV network.

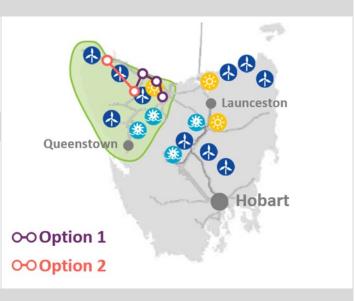
Climate hazard

Temperature score A Bushfire score B
--

	Solar PV (MW)					Wind (MW)			
	Existing/		Projected		Existing/		Projected		
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change		-	-	-		100	100	150	
Step Change		-	-	-	168/0/0	100	100	100	
Slow Change	-	-	-	-	168/0/0	150	200	200	
Hydrogen Superpower		550	1,250	24,050		1,100	3,700	15,500	

Transmission access expansion forecast for Progressive Change (left) and Step Change (right)

Scenario	2029	-30	2039	-40	2049-50		
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	7%	-	6%	1%	13%	
Step Change	-	7%	-	9%	-	18%	
Slow Change	-	16%	4%	14%	2%	11%	
Hydrogen Superpower	1%	4%	-	5%	-	13%	


T2 – North West Tasmania

Summary

This REZ has excellent quality wind resources and good pumped hydro resources. The North West Tasmania augmentation options are highly dependent on Marinus Link, with some REZ network capacity increase already included in the proposed Marinus Link AC augmentations.

Existing network capability

The current total REZ transmission limit for existing and new VRE before any network upgrade in North West Tasmania is approximately 592 MW. Future REZ generators are assumed to have a runback scheme in place to reduce generation output post contingency to within network capacity for lines currently covered by the Network Control System Protection Scheme (NCSPS), but not for new transmission lines.

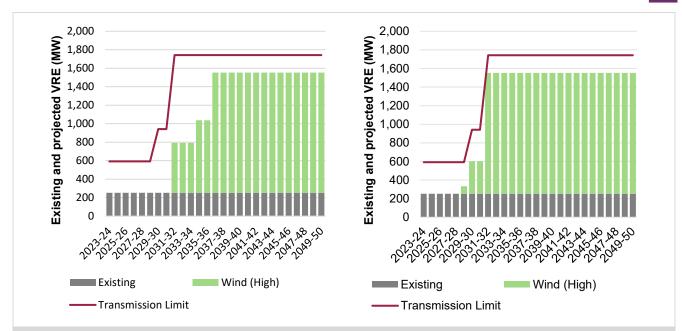
REZ grouping

Design and community engagements are progressing

The modelling outcomes identify this zone for development of wind generation in the late 2020s across the *Step Change* and *Hydrogen Superpower* scenarios and in the 2030s for the *Progressive Change* and *Slow Change* scenarios.

Ongoing community engagements is underway in order to ensure coordination of generation with network upgrade requirements.

Metrics


Resource		Solar			Wind			
Resource Quality		F			A			
Renewable Potential (MW)		150		5,000				
	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Correlation	F	F	E	С	С	С		
MLF Robustness	202	2024-25		9-30	20	34-35		
	[D		*	В			

*Marinus Link upgrades improve MLF robustness for VRE within this REZ.

Climate hazard

Temperature score	А	Bushfire score	А
VRE outlook			

		Solar P	/ (MW)			Wind (MW)			
	Existing/		Projected		Existing/		Projected		
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change		-	-	-		-	1,300	1,300	
Step Change		-	-	-	252/0/0	350	1,300	1,300	
Slow Change	-	-	-	-	252/0/0	-	850	850	
Hydrogen Superpower		150	150	150		1,300	2,950	6,550	
Transmission	access expans	ion forecast	for Progress	ive Change (left) and Step C	hange (right)			

	2029	9-30	2039-40 20			19-50	
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	5%	-	1%	-	4%	
Step Change	-	4%	-	2%	-	6%	
Slow Change	-	13%	-	8%	-	5%	
Hydrogen Superpower	-	2%	-	6%	-	16%	

T3 – Central Highlands

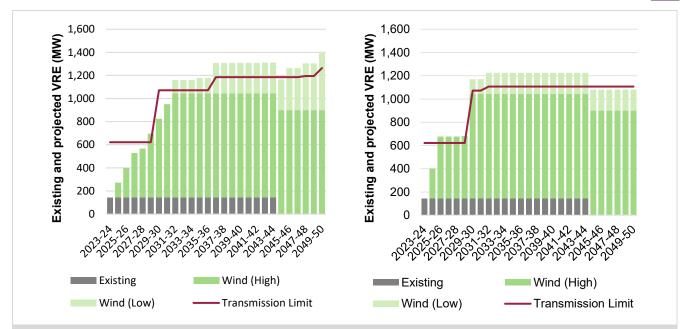
Summary

This REZ has excellent quality wind resources and has good pumped hydro resources. It is located close to major load centres at Hobart. The Tasmania Central Highlands augmentation options are influenced by the Marinus Link augmentations, with REZ network capacity increase already included in the proposed Marinus Link Palmerston to Sheffield 220 kV AC augmentations.

Existing network capability

The current total REZ transmission limit for existing and new VRE before any network upgrade in the Central Highlands is approximately 622 MW. VRE development opportunities are anticipated around the Liapootah, Waddamana and Palmerston substations.

Note that a runback scheme is not considered for any new transmission lines.



REZ aroupina

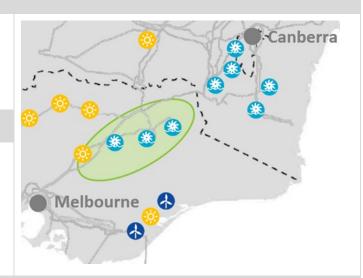
REZ grouping								
Design and community engager		modellin oss all sce		dentify this zone	for developme	ent of wind gener	ation in the 202	
progressing		Ongoing community engagements is underway in order to ensure coordination of generation with network upgrade requirements.						
Metrics								
Resource			Solar			Wind		
Resource Quality			F			А		
Renewable Potential (MW)			150		3,400			
Demand Correlation		29-30	2039-40	2049-50	2029-30	2039-40	2049-50	
		F	F	Е	С	С	С	
MLF Robustness		2024-25		2029	-30	2034-35		
MLI KODOSIIIESS		D		C*		В		
Marinus Link upgrades improve	MLF robustness for	or VRE w	ithin this REZ					
Climate hazard								
Temperature score		А		Bushfire scor	е	D		
VRE outlook								
	Solar PV (MW	/)			Wi	ind (MW)		
Existing/	Pro	Projected Existing/				Projected		
committed/	2029-30 20	30_40	2049-50	committed/	2029-30	2039-40	2049-50	

2029-30 2039-40 2049-50 2029-30 2039-40 2049-50 anticipated anticipated Progressive 1,400 700 1,150 _ Change Step 1,050 1,100 1,100 _ _ _ Change 144/0/0 Slow 650 1,100 1,100 _ _ Change Hydrogen 11,450 11,450 3,700 1,100 1,100 1,100 Superpower

Transmission access expansion forecast for Progressive Change (left) and Step Change (right)

Scenario	2029)-30	2039	-40	2049	-50
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill
Progressive Change	-	3%	-	2%	-	5%
Step Change	-	3%	-	4%	-	7%
Slow Change	-	11%	2%	10%	-	6%
Hydrogen Superpower	1%	2%	-	2%	-	8%

A3.6.6 Victoria


V1 – Ovens Murray

Summary

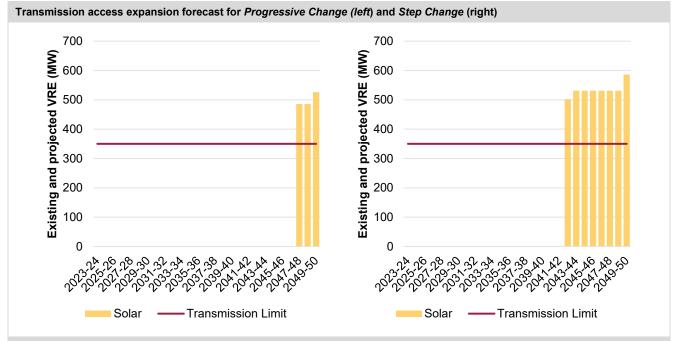
The Ovens Murray REZ has been identified as a candidate REZ due to this REZ having good pumped hydro resources. There is currently 770 MW of installed hydro generation within this zone.

Existing network capability

The current network capacity for VRE in Ovens Murray is approximately 350 MW.

REZ grouping

Infrastructure coordination can start later


Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

Metrics

_		• •						
Resource		Solar			Wind			
Resource Quality		E A						
Renewable Potential (MW)		1,000		-				
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Correlation	F	F	F	С	С	С		
MLF Robustness	2024	2024-25		9-30	203	34-35		
MEI KODOSINGSS	A	А		۱.	A			
Climate hazard								

Temperature score	В	Bushfire score	E
VRE outlook			

		Solar PV (MW)				Wind (MW)					
	Existing/		Projected		Existing/	Projected					
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50			
Progressive Change		-	-	550							
Step Change	_	-	-	600			sting, committed or anticipated wind generation				
Slow Change	-	-	-	-		r this REZ. The modelling outcomes, for all scenarios, did of project any additional wind for this REZ.					
Hydrogen Superpower		400	450	650							

	2029	9-30	2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	-	-	-	1%	33%	
Step Change	-	-	-	-	14%	16%	
Slow Change	-	-	-	-	-	-	
Hydrogen Superpower	1%	16%	7%	15%	18%	17%	

V2 – Murray River


Summary

The Murray River REZ has good solar resources. Despite being remote and electrically weak, this REZ has attracted significant investment in solar generation. Voltage stability and thermal limits currently restrict the output of generators within this REZ.

The proposed VNI West project could upgrade transfer capability between Victoria and New South Wales via Kerang, and significantly increase the ability for renewable generation to connect in this zone.

Existing network capability

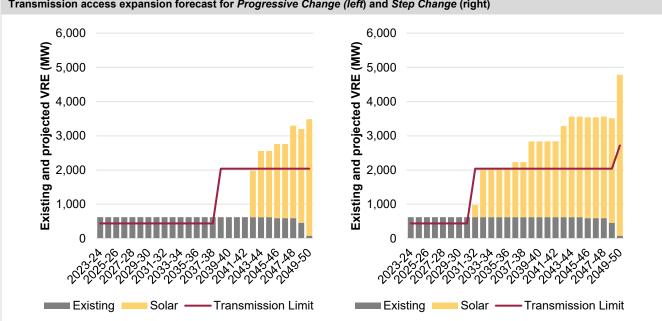
No additional capacity to connect new generation.

REZ grouping

Coordination of generation infrastructure may be required

The modelling outcomes identify this zone for development of solar generation in the 2030s across the *Step Change* and *Hydrogen Superpower* scenarios. This REZ could benefit from early community engagements and from coordination of generation. This will be assessed in future ISPs.

Metrics


Resource		Solar			Wind		
Resource Quality		С			D		
Renewable Potential (MW)		4,700			-		
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
	F	F F F			В	В	
MLF Robustness	202	4-25	2029	-30	20	2034-35	
	(c	С		В*		

* VNI West improves MLF robustness for VRE within this REZ.

Climate hazard

Temperature score	E	Bushfire score	С

		Solar PV	′ (MW)		Wind (MW)						
	Existing/		Projected		Existing/ Projected						
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50			
Progressive Change		-		3,400							
Step Change	607/27/0	-	2,200	4,700		existing, committed or anticipated wind generation					
Slow Change	007/27/0	-	-	-	for this REZ. The modelling outcomes, for all scenarios, did n project any additional wind for this REZ.						
Hydrogen Superpower		-	4,550	4,700							

Transmission access expansion forecast for Progressive Change (left) and Step Change (right)

Scenario	2029	-30	2039	-40	2049-50		
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	3%	26%	-	5%	3%	24%	
Step Change	3%	18%	3%	12%	2%	25%	
Slow Change	1%	50%	1%	36%	-	19%	
Hydrogen Superpower	3%	17%	1%	22%	-	26%	

V3 – Western Victoria

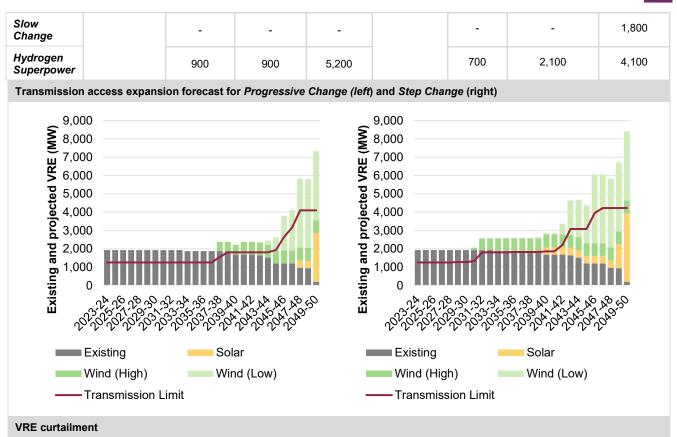

Summary

The Western Victoria REZ has good to excellent quality wind resources. The existing and committed renewable generation within this REZ exceeds 1 GW, all of which is from wind generation. The current network is constrained west of Ballarat and cannot support any further connection of renewable generation without transmission augmentation.

The Western Renewables Link is an anticipated project, with the preferred option to expand generation within this zone.

Existing network capability

Network capacity is anticipated to be sufficient for existing and committed generation following completion of Western Renewables Link.



REZ grouping

Coordination of be required	generation infras	structure may	The modelling outcomes identify this zone for development of wind generation in the 2030s across the <i>Step Change</i> and <i>Progressive Change</i> scenarios. This build is brought forward under the <i>Hydrogen Superpower</i> scenario. This REZ could benefit from community engagements and from coordination of generation. This will be assessed in future ISPs.						
Metrics									
Resource			Solar			Wind			
Resource Qua	llity			E			В		
Renewable Po	tential (MW)			400			2,600		
Demond Opminderform		2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Corre	Demand Correlation		F	F	E	В	В	С	
MLF Robustne			2024-25		2029-	-30	2034	-35	
	22		A*		А		А		
*Assumes Wes	tern Renewables	Link in service	e and assumes	new VRE con	necting around E	Ballarat.			
Climate hazar	d								
Temperature s	score		D		Bushfire scor	re	D	D	
VRE outlook									
		Solar PV	′ (MW)			Wir	nd (MW)		
	Existing/ Projected				Existing/ committed/ Projected anticipated				

	Existing/ committed/		Projected		committed/ anticipated	Projected		
	anticipated	2029-30	2039-40	2049-50		2029-30	2039-40	2049-50
Progressive Change		-	-	2,650	4 700/000/0	-	550	4,450
Step Change	-	-	400	3,750	1,726/209/0	-	750	4,450

REZ scorecards - Victoria

	20	29-30	2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	3%	6%	-	2%	-	7%	
Step Change	2%	5%	1%	5%	-	9%	
Slow Change	2%	15%	1%	9%	-	6%	
Hydrogen Superpower	2%	6%	-	9%	-	24%	

V4 – South West Victoria

Summary

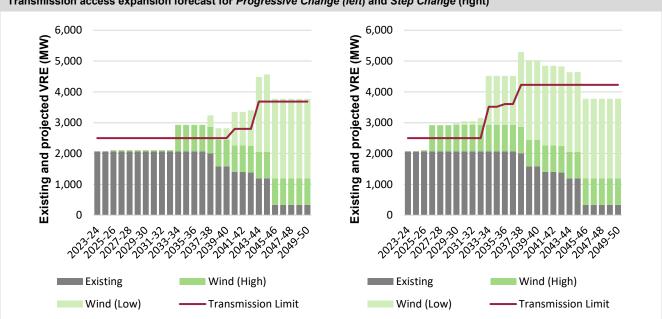
The South West Victoria REZ has moderate to good quality wind resources in close proximity to the 500 kV and 220 kV networks in the area.

The total in-service, committed and anticipated wind generation in the area exceeds 2 GW.

Existing network capability

Currently the 220 kV network is already congested. The current total network limit is approximately 2,500 MW for this REZ.

REZ grouping


Transmission and generation infrastructure coordination is required

Preparatory activities relating to 500 kV upgrade options are required to assess the potential need for actionable status in the next ISP.

Resource		Solar			Wind			
Resource Quality		F			В			
Renewable Potential (MW)		-			3,442			
	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50		
Demand Correlation	F	F F E			С	С		
MLF Robustness	202	2024-25 2029-30			20	34-35		
		٩	Α	\	А			
Climate hazard								

 Temperature score
 C
 Bushfire score
 D

	Solar PV (MW)			Wind (MW)				
	Existing/	Projected		Existing/		Projected		
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change						50	1,250	3,450
Step Change	There is no exis generation for t					900	3,450	3,450 2,700
Slow Change	all scenarios, di this REZ.				1,855/0/158	50	50	
Hydrogen Superpower						2,250	6,850	14,950

Transmission access expansion forecast for Progressive Change (left) and Step Change (right)

	2029	-30	2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	5%	-	2%	-	5%	
Step Change	1%	4%	1%	3%	-	5%	
Slow Change	-	13%	-	9%	1%	6%	
Hydrogen Superpower	2%	3%	-	4%	-	7%	

V5 - Gippsland

Summary

The Gippsland REZ has moderate quality wind resources, bordering on the 500 kV networks. There is currently significant wind generation interest in this area.

Existing network capability

Due to the strong network at the border of this REZ (with multiple 500 kV and 220 kV lines from Latrobe Valley to Melbourne designed to transport energy from major Victorian brown coal power stations), significant generation can be accommodated.

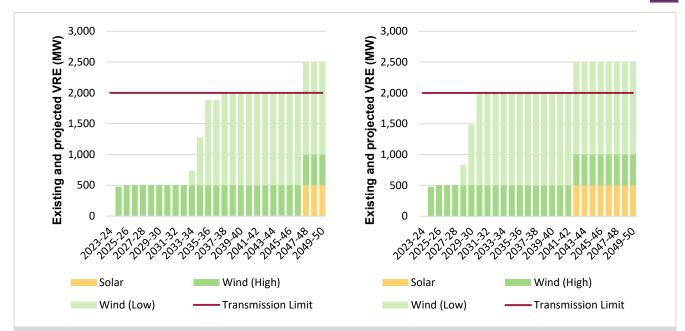
Approximately 2,000 MW of VRE can be accommodated prior to network augmentations. Options shown extend the network further to allow for cost-efficient connection of generation back to the main network.

REZ grouping

Metrics

The modelling outcomes identify this zone for development of wind generation in the 2030s across the *Step Change* and *Progressive Change* scenarios. This build is brought forward under the *Hydrogen Superpower* scenario.

Coordination of generation infrastructure may be required


This REZ could benefit from community engagements and from coordination of generation. This will be assessed in future ISPs.

method							
Resource		Solar			Wind		
Resource Quality		F			С		
Renewable Potential (MW)		500			2,000		
Demond Operation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
Demand Correlation	F	F	E	С	С	С	
MLF Robustness	2024	2024-25		9-30	2034-35		
MLI KODOSINESS	1	A		۱.	А		
Climate hazard							
Temperature score	С		Bushfire score		D		

VRE outlook

	Solar PV (MW)			Wind (MW)				
	Existing/	Projected		Existing/	Projected			
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change		-	-	500		500	2,000	2,000
Step Change		-	-	500		1,500	2,000	2,000
Slow Change	-	-	-	-	-	500	500	2,000
Hydrogen Superpower		500	500	500		2,100	2,150	5,100

Transmission access expansion forecast for *Progressive Change (left)* and *Step Change* (right)

	2029-30		2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	6%	-	2%	-	9%	
Step Change	-	4%	-	3%	-	5%	
Slow Change	-	14%	-	8%	-	4%	
Hydrogen Superpower	-	4%	-	11%	-	14%	

V6 – Central North Victoria

Summary

The Central North Victoria REZ has moderate quality wind and solar resources. In addition to the currently in service and committed solar farms, there are enquires for approximately 2.5 GW of additional solar.

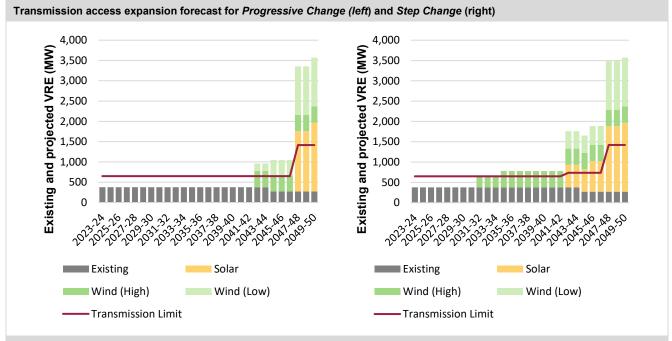
Existing network capability

The current total network capacity in Central North Victoria is approximately 800 MW.

REZ grouping

Infrastructure coordination can start later

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.


	Solar			Wind		
	D			D		
	1,700			1,600		
2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
F	F	F	В	В	В	
2024	4-25	2029	9-30	203	034-35	
Ε	D)	B*		
	F 2024	D 1,700 2029-30 2039-40 F F F 2024-25	D 2029-30 2039-40 2049-50 F F F 2024-25 2029 2029	D D 1,700 2029-30 2029-30 2039-40 2029 2039-40 F F B 202+25 2029-30	D D 1,700 1,600 2029-30 2039-40 2049-50 2029-30 2039-40 F F F B B 2029-30 2029-30 2039-40 2039-40 2039-40	

* VNI West improves MLF robustness for VRE within this REZ.

Climate hazard

Temperature score	D	Bushfire score	D					

		Solar PV	/ (MW)		Wind (MW)			
	Existing/	Projected		Existing/	Projected			
	committed/ anticipated	2029-30	2039-40 2049-50 committed/ anticipated	2029-30	2039-40	2049-50		
Progressive Change		-	-	1,700		-	-	1,600
Step Change	311/0/75	-	-	1,700		-	400	1,600
Slow Change	311/0/75	-	-	-	_	-	-	-
Hydrogen Superpower		400	1,150	10,900		400	400	1,150

	2029	9-30	2039	-40	2049-50		
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	21%	-	7%	1%	18%	
Step Change	-	13%	-	8%	1%	20%	
Slow Change	-	56%	-	31%	-	24%	
Hydrogen Superpower	1%	11%	-	23%	-	25%	

A3.6.7 Offshore wind zones

The *Offshore Electricity Infrastructure Act 2021*²¹ outlines how and where offshore electricity infrastructure for renewable generation can be constructed. The declaration of areas suitable for offshore energy infrastructure is a Ministerial decision, and companies wishing to undertake these activities within a declared area need to first obtain a licence.

The OWZs, which are REZs, shown are still at the conceptual stage, and are currently based on proponent interest as opposed to formally declared offshore renewable infrastructure areas.

Under the ISP core scenarios, OWZs are not developed except for O2 – Illawarra which has offshore wind development under the *Progressive Change* scenario at the end of the horizon in 2050. The 2022 ISP has explored an *Offshore Wind* sensitivity which tests the impact of the Victorian Government's offshore wind policy, and includes an updated cost for offshore wind development. The OWZ scorecards show the projected VRE development under the core ISP scenarios as well as under the offshore wind sensitivity.

²¹ Australian Government, *Regulating offshore renewable energy infrastructure*, at https://www.industry.gov.au/regulations-and-standards/regulating-offshore-renewable-energy-infrastructure

01 – Hunter Coast

Summary

The Hunter Coast OWZ has been identified for the offshore wind resource potential in relatively shallow waters close to shore, with a connection point near to the Sydney load centre.

Existing network capability

Newcastle has multiple 330 kV lines already connected, and is situated near to the Sydney load centre. Network capacity is shared with local gas generation and hydro generation output. The current network transmission limit is approximately 5,500 MW.

REZ grouping

Motrice

Infrastructure coordination can start later

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

weincs							
Resource		Offshore wind					
Resource Quality		В					
Renewable Potential (MW)		10,000					
Demand Correlation	2029-30	2039-40	2049-50				
Demand Correlation	В	В	С				
Climate hazard							
Temperature score	А	Bushfire score	E				

VRE outlook

	Offshore Wind (MW) - Core ISP scenarios				Offshor	e Wind (MW)	- Offshore wind	sensitivity
	Existing/ Projected Existing/ committed/ committed/		Projected					
	anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change								
Step Change	There is no e generation for		nitted or anticip e modelling ou		There is no existing, committed or anticipated wind generation for this REZ. The modelling outcomes, for all core scenarios and the offshore wind sensitivities, did not project any wind for this REZ.			
Slow Change	all core scena	rios and the o		sensitivities,				
Hydrogen Superpower								
Transmission a		n faraaat f		- Ohanaa (la	Mand Clan Oha	www. (wiwhat) for	when Offensen 14	

There are no existing, committed, anticipated VRE projects for this REZ and the modelling outcomes, for all scenarios and the offshore wind sensitivities, did not project any additional VRE for this REZ. Therefore, no VRE curtailment or transmission expansion occurs in this REZ.

02 – Illawarra Coast

Summary

The Illawarra Coast OWZ has been identified for the offshore wind resource potential in relatively shallow waters close to shore, with a connection point near to the Sydney load centre.

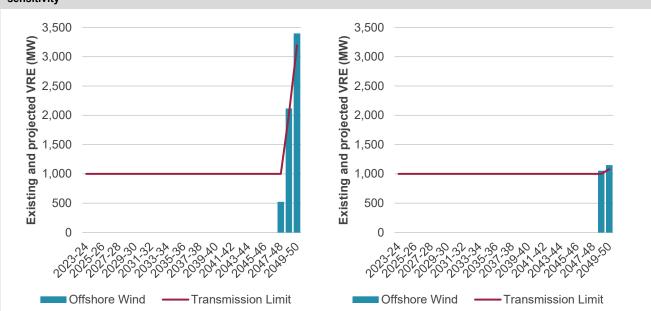
To be able to facilitate large amounts of offshore wind connecting in this part of the 330 kV network, it is anticipated that expansion will be required to connect to the 500 kV backbone.

Existing network capability

Dapto has multiple 330 kV lines already connected and is situated near to the Sydney load centre. Network capacity is shared with local gas generation and hydro generation output. The current network capacity is approximately 1,000 MW.

REZ grouping

Infrastructure coordination can start later


Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

Metrics								
Resource		Offshore Wind						
Resource Quality		В						
Renewable Potential (MW)	10,000							
Demand Correlation	2029-30	2039-40	2049-50					
	С	С	С					
Climate hazard								
Temperature score	С	Bushfire score	С					

	Offshore Wind (MW) – Core ISP scenarios	Offshore Wind (MW) – Offshore wind sensitivity
--	---	--

	Chishere	(1110)	0010101 000	marios				
	Existing/ committed/ anticipated	Projected		Existing/	Projected			
		2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50
Progressive Change		-	-	350		-	-	3,400
Step Change		-	-	-		-	-	1,150
Slow Change	-	-	-	-	-	-	-	-
Hydrogen Superpower		-	-	-		-	-	-

Offshore wind zones

Transmission access expansion forecast for *Progressive Change (left)* and *Step Change* (right) for the *Offshore Wind* sensitivity

VRE curtailment - offshore wind sensitivity

	2029	2029-30		-40	2049-50		
	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	
Progressive Change	-	-	-	-	-	9%	
Step Change	-	-	-	-	-	0%	
Slow Change	-	-	-	-	-	-	
Hydrogen Superpower	-	-	-	-	-	-	

O3 – Gippsland Coast

Summary

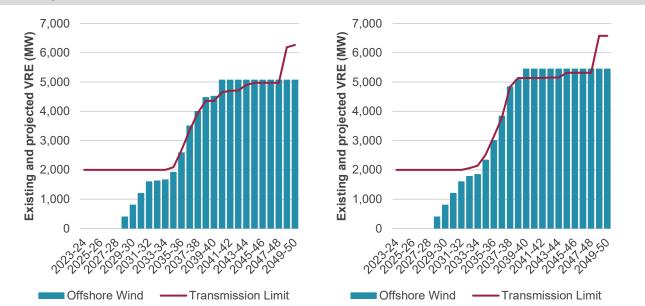
The Gippsland Coast OWZ has been identified for the offshore wind resource potential in relatively shallow waters close to shore, with opportunity to connect back to the existing 500 kV network. There is currently significant interest in this area, including a large offshore wind farm of 2,000 MW, but projects have not developed sufficiently at this stage to be considered anticipated.

In the offshore wind sensitivity, 4 GW of offshore wind is projected in the Gippsland Coast and Portland Coast OWZs combined by 2035 and 9 GW by 2040.

Existing network capability

Gippsland OWZ connects to the 500 kV network in the Gippsland REZ, which has a 2,000 MW transmission network limit.

REZ grouping


Coordination of generation may be required	The potential legislation of Victoria's offshore wind policy may require coordination of generation for this REZ. The modelling outcomes in the offshore wind sensitivity identify this zone for development of offshore wind generation in all scenarios.
•	this zone for development of offshore wind generation in all scenarios.

Metrics	

Resource		Wind					
Resource Quality		А					
Renewable Potential (MW) 10,000							
Demond Completion	2029-30	2039-40	2049-50				
Demand Correlation	С	С	С				
Climate hazard							
Temperature score	С	Bushfire score	D				

	Offshore Wind (MW) – Core ISP scenarios					Offshore Wind (MW) – Offshore wind sensitivity				
	Existing/ Projected			Existing/	Projected					
	committed/ anticipated	2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50		
Progressive Change						800	4,500	5,050		
Step Change	There is no ex generation for	0,				800	5,450	5,450		
Slow Change	all core scenar	ios and the c		sensitivities,	-	800	4,250	4,600		
Hydrogen Superpower						800	4,050	4,050		

Offshore wind zones

Transmission access expansion forecast for *Progressive Change (left)* and *Step Change* (right) for the *Offshore Wind* sensitivity

The transmission limit represents the transmission requirements for the connection of VRE in O3 – Gippsland Coast and V5 – Gippsland. Gippsland Coast OWZ connects into the network in Gippsland REZ.

VRE curtailment – offshore wind sensitivity								
	2029-30		2039	-40	2049-50			
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill		
Progressive Change	-	7%	-	3%	-	3%		
Step Change	-	4%	-	3%	-	4%		
Slow Change	-	16%	4%	43%	1%	6%		
Hydrogen Superpower	1%	6%	-	7%	-	12%		

O4 – North West Tasmania Coast

Summary

The North West Tasmania Coast OWZ has been identified for the offshore wind resource potential in relatively shallow waters close to shore, with a connection point close to existing 220 kV networks.

Due to recent enquiries by offshore wind proponents around the North East Coast of Tasmania, subsequent ISPs will explore the potential for and impacts of an additional offshore wind zone in North East Tasmania.

Existing network capability

North West Tasmania coast REZ connects to the 220 kV network within the North West REZ. The total REZ transmission network limit for existing and new VRE is included as part of the North West REZ limit of 592 MW.

REZ grouping

Infrastructure coordination can start later

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

Metrics							
Resource		Wind					
Resource Quality		А					
Renewable Potential (MW) 10,000							
Demand Correlation	2029-30	2039-40	2049-50				
	С	С	С				
Climate hazard							
Temperature score	А	Bushfire score	А				

VRE outlook

	Offshore Wind (MW) – Core ISP scenarios				Offshore Wind (MW) – Offshore wind sensitivity				
	Existing/ Projected			Existing/		Projected			
	committed/ anticipated			committed/ anticipated	2029-30	2039-40	2049-50		
Progressive Change									
Step Change	There is no exis wind gene	0,			There is no existing, committed or anticipated wind generation for this REZ. The modelling outcomes, for all core scenarios				
Slow Change	wind generation for this REZ. The modelling outcomes, for all scenarios, did not project any offshore wind for this REZ.				and the step change offshore wind sensitivity, did not project any additional wind for this REZ.				
Hydrogen Superpower									
Transmission	access expansi	on forecast	for Progress	ive Change a	nd Step Change	e for the Offs/	nore Wind sensit	tivity	

There are no existing, committed, anticipated VRE projects for this REZ and the modelling outcomes, for all scenarios and the offshore wind sensitivities, did not project any additional VRE for this REZ. Therefore, no VRE curtailment or transmission expansion occurs in this REZ.

O5 – Portland Coast

Summary

The Portland Coast OWZ has been identified for the offshore wind resource potential in relatively shallow waters close to shore, with a connection point near to the Portland. There is currently interest in this area, including a large offshore wind farm of 1,000 MW, but projects have not developed sufficiently at this stage to be considered anticipated.

In the offshore wind sensitivity, 4 GW of offshore wind is projected in the Gippsland Coast and Portland Coast OWZs combined by 2035 and 9 GW by 2040.

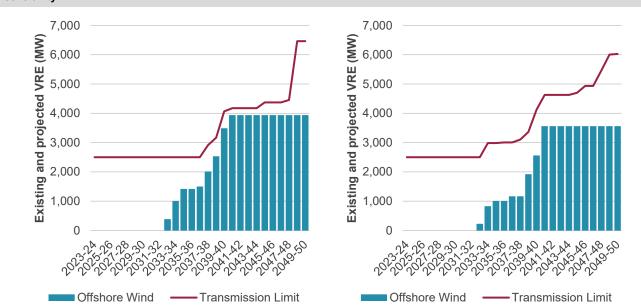
Existing network capability

Portland coast OWZ connects to the 500 kV network in the South West Victoria REZ, which has a 2,500 MW transmission network limit.

REZ grouping

Coordination of generation may be required

The potential legislation of Victoria's offshore wind policy may require coordination of generation for this REZ. The modelling outcomes in the offshore wind sensitivity identify this zone for development of offshore wind generation in all scenarios.


М	etr	ics

Resource		Wind					
Resource Quality		A					
Renewable Potential (MW)		10,000					
Demond Completion	2029-30	2039-40	2049-50				
Demand Correlation	С	С	С				
Climate hazard							
Temperature score	С	Bushfire score	D				

Temperature score C VRE outlook

	Offshore Wind (MW) – Core ISP scenarios				Offshore Wind (MW) – Offshore wind sensitivity				
	Existing/ committed/ anticipated	Projected			Existing/	Projected			
		2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change	There is no existing, committed or anticipated offshore wind generation for this REZ. The modelling outcomes, for all scenarios, did not project any offshore wind for this REZ.					-	3,500	3,950	
Step Change						-	2,550	3,550	
Slow Change					-	-	3,750	4,400	
Hydrogen Superpower						-	3,950	4,950	

Offshore wind zones

Transmission access expansion forecast for *Progressive Change (left)* and *Step Change* (right) for the *Offshore Wind* sensitivity

The transmission limit represents the transmission requirements for connection of VRE in O5 – Portland Coast and V4 – South West Victoria. Portland Coast OWZ connects into the network at South West Victoria.

VRE curtailment - offshore wind sensitivity								
	2029	9-30	2039	-40	2049-50			
Scenario	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill	Transmission curtailment	Economic spill		
Progressive Change	-	-	1%	4%	-	4%		
Step Change	-	-	-	4%	-	5%		
Slow Change	-	-	4%	39%	1%	6%		
Hydrogen Superpower	-	-	-	6%	-	11%		

O6 – South East SA Coast

Summary

The South East Coast OWZ has been identified for the offshore wind resource potential in relatively shallow waters close to shore, with a connection point near to the South East SA. There is currently interest in this area of approximately 600 MW, but projects have not developed sufficiently at this stage to be considered anticipated.

Existing network capability

South East SA coast OWZ connects to the 275 kV network in the South East SA REZ, which has a 400 MW transmission network limit.

REZ grouping

....

Infrastructure coordination can start later

Modelling outcomes indicate a low likelihood that significant investment in VRE and transmission infrastructure will be optimally required in the next 12 years.

Metrics							
Resource		Wind					
Resource Quality		10,000					
Renewable Potential (MW)		A					
Demand Correlation	2029-30	2039-40	2049-50				
Demand Correlation	С	10,000 A	С				
Climate hazard							
Temperature score	D	Bushfire score	D				

VRE outlook

Offshore Wind (MW) – Core ISP scenarios Offshore Wind (MW) – Offshore wind sensitivity

	. ,								
	Existing/ committed/ anticipated	Projected			Existing/	Projected			
		2029-30	2039-40	2049-50	committed/ anticipated	2029-30	2039-40	2049-50	
Progressive Change									
Step Change	There is no existing, committed or anticipated offshore wind generation for this REZ. The modelling outcomes, for all scenarios, did not project any offshore wind for this REZ.				There is no existing, committed or anticipated wind generation for this REZ. The modelling outcomes, for all core scenarios and the step change offshore wind sensitivity, did not project any additional wind for this REZ.				
Slow Change									
Hydrogen Superpower									
Transmission	access expansi	ion forecast	for Progress	ive Change a	nd Step Change	e for the Offsl	hore Wind sensi	tivity	

There is no existing, committed, anticipated VRE projects for this REZ and the modelling outcomes, for all scenarios and the offshore wind sensitivities, did not project any additional VRE for this REZ. Therefore, no VRE curtailment or transmission expansion occurs in this REZ.