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We acknowledge the Traditional Owners of 

country throughout Australia and recognise their 

continuing connection to land, waters and culture. 

We pay respect to their Elders 

past, present and emerging.
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Introduction

• Jack Fox – Operational Forecasting lead

• Andrew Akman – Senior Data Scientist

• Steve Disano – Modelling SME

• Providing feedback:
• STPASAReplacement@aemo.com.au

• Jack.Fox@aemo.com.au

3

mailto:STPASAReplacement@aemo.com.au
mailto:Jack.Fox@aemo.com.au


Agenda

• Defining Uncertainty

• Uncertainty Margins

• Modelling Uncertainty Margins

• Demand Forecasting for STPASA

• Validating the system and Consultation

• Data to be published

• Project Next Steps
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Uncertainty



Defining Uncertainty

• Uncertainty: 
• “not able to be relied upon, not known or definite, not completely 

confident or sure.”

• “refers to situations involving imperfect or unknown information and is 
applied to predictions of future events”

• Metric used:
• Uncertainty = Forecast minus Actual
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Uncertainty in STPASA

• The High Level Design (HLD) recognises the need to account for 
uncertainty in STPASA and identifies the following inputs as 
predominant sources of uncertainty:

• Demand uncertainty
• Includes the impact of behind-the-meter Distributed Energy Resources such as rooftop PV and batteries

• Includes price-responsive demand such as demand side response and Virtual Power Plants, but excludes 
WDR which is separately dispatched

• Variable Renewable Energy (VRE) Generation uncertainty
• Semi-Scheduled wind & solar generation forecasts 

• Large Non-Scheduled wind & solar generation forecasts 

• Scheduled Generation uncertainty
• Utilising Generator Maximum Availability (Max Avail) from bids

• Segmented by main fuel type: (Black & Brown Coal, Natural Gas, Hydro, Grid Storage – batteries, other) 
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https://aemo.com.au/-/media/files/initiatives/st-pasa-replacement-project/st-pasa-detailed-requirements.pdf?la=en


Demand uncertainty

Key Takeaways

• Uncertainty reduces as 
the forecast horizon 
reduces

• At longer horizons, slight 
under-forecast bias. At 
shorter horizons this 
bias is not present
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Demand Uncertainty = Forecast Demand minus Actual Demand
NEM Total  
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Key Takeaways

• Uncertainty reduces as 
the forecast horizon 
reduces

• Most notably, as the 
forecast horizon reduces 
from 2 days.

• At longer horizons, slight 
under-forecast bias. At 
shorter horizons this 
bias reduces

Wind Uncertainty = Forecasted Generation minus Actual Generation
NEM Total  

(VRE) Generation uncertainty Wind

Other fuel types available in appendix
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Key Takeaways

• Significant reduction in 
uncertainty as forecast 
horizon reduces

• Particularly prominent 
when forecast horizon 
less than 12 Hours

• Over-forecast bias at 
longer horizons 
evidence of general 
reductions of MaxAvail
as forecast horizon 
reduces. The bias is not 
present only at very-
short horizons.

Black Coal Uncertainty = MaxAvail minus MaxAvail (at T-30 Minutes)
NEM Total  

Scheduled Generation uncertainty Black Coal 

Other fuel types available in appendix
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A note about confidence levels and percentiles

The following slides include illustrative examples which take the 95th percentile of the distribution of uncertainty, 
or use the 95% confidence level.

The selection of 95 is illustrative for the purposes of providing examples to discuss.

This selection is in no way indicative of future confidence levels as these will be determined through a 
consultation with stakeholders.
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Key Takeaways

• Increasing uncertainty in 
VRE and batteries driven by 
increasing installed capacity

• Increasing uncertainty in 
demand driven by 
increasing rooftop PV, 
extreme weather and 
increasing industrial 
demand side response

• Declining uncertainty in 
Blackcoal and Gas due to 
declining levels of 
generation from these fuel 
types

Changes in Uncertainty Over Time
This shows the 95th percentile of the rolling 1-week uncertainty for each type and plots this over time

Batteries

Hydro



Availability by fuel type trend over time

13

Hydro



95th Percentile Average Uncertainty per MW of 
installed capacity by fuel type
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Key Takeaways

• Wind and solar is 2 to 3 
times less certain than other 
fuel types

• Note: The results presented are a 
function of the market design of 
the NEM, and care should be 
taken interpreting these results if 
coming from another market 
design perspective.

Hydro



Accounting for uncertainty in STPASA
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The previous slides showed uncertainty of the individual forecasting components. There 
is a need to combine the uncertainty to arrive at a mutually consistent total uncertainty 
that will affect STPASA. i.e. to allow coincident over and under forecasts to cancel each 
other.

Key Takeaways
• When calculating the 

generation by fuel type 
uncertainty, the total
uncertainty is less than simply 
summing individual fuel type 
uncertainty, due to some over-
forecasts cancelling out under-
forecasts. i.e. 95th percentile of 
total generation uncertainty is 
less than sum of 95th

percentile of fuel type 
uncertainty.

This breakdown on a regional basis is available in the appendix



Accounting for uncertainty in STPASA
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• The HLD suggests two possible approaches to account for 
uncertainties:

• Monte Carlo simulations with random sampling from distributions of 
inputs (similar to ISP modelling approach) – not feasible due to the 
massive number of simulations required that would be computationally 
impossible in an operational timeframe

• Probabilistic approach using Uncertainty Margins, selected in a mutually 
consistent way that reflects expected conditions – viable option to use in 
an operational timeframe



Uncertainty Margins



Uncertainty Margins and Confidence 
Levels
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• What is an Uncertainty Margin?
• An amount of MWs that represents expected conditional forecast error for a 

specified confidence level
• Conditional because the size of it changes depending on various factors (discussed 

later)

• Confidence level - a 95% confidence level means 19 out of 20 times the forecast error 
will not exceed this value. Equivalent to “there is a 5% probability that the forecast error 
will exceed this value”

• How are Uncertainty Margins used?
• Demand forecast is adjusted by adding the demand Uncertainty Margin

• VRE forecast is adjusted by subtracting the VRE Uncertainty Margin

• Scheduled generation MaxAvail is adjusted by subtracting the MaxAvail 
Uncertainty Margin



A note about signs and Confidence Levels

The convention used to define uncertainty 
(forecast error) is Forecast minus Actual

This convention means that the 95th

percentile of uncertainty is an Over-
forecast, i.e. the actual is below the 
forecast value.

This is appropriate for Supply because we 
are interested in cases Supply does not 
meet the expected level.

However, this is not appropriate for 
Demand because we are interested in 
cases where Demand exceeds the 
expected level.

To correct this, while ensuring consistency 
when referring to Confidence Levels for 
Demand we actually take the “1 minus 
Confidence Level” percentile in order to 
convert to the Under-forecast uncertainty. 
E.g. if we are taking the 95th percentile 
Confidence Level, we actually take the 
95th percentile of Supply uncertainty but 
take the 5th percentile of Demand 
uncertainty.
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95th percentile approx. here. 
~+330MW Over-forecast.
Actual is below forecast value

5th percentile approx. here. 
~-330MW Under-forecast.
Actual is above forecast value



Uncertainty Margin example

20



Uncertainty Margin example
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Step 1: determine total (regional) Uncertainty Margin



Uncertainty Margin example
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Step 1: determine total (regional) Uncertainty Margin

Step 2: determine individual VRE Uncertainty Margins



Uncertainty Margin example
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Step 1: determine total (regional) Uncertainty Margin

Step 2: determine individual VRE Uncertainty Margins

Step 3: determine individual Generator Uncertainty Margins



Uncertainty Margin example
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Step 1: determine total (regional) Uncertainty Margin

Step 2: determine individual VRE Uncertainty Margins

Step 3: determine individual Generator Uncertainty Margins

Step 4: determine individual demand Uncertainty Margins



Uncertainty Margin example
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Step 1: determine total (regional) Uncertainty Margin

Step 2: determine individual VRE Uncertainty Margins

Step 3: determine individual Generator Uncertainty Margins

Step 4: determine individual demand Uncertainty Margins

Step 5: scale individual Uncertainty Margins so
that sum does not exceed
total (regional) 
Uncertainty Margin



Uncertainty Margin example
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• Step 6: adjust unit VRE forecast by subtracting corresponding 
Uncertainty Margin. Repeat for each VRE unit.
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The Uncertainty Margins in this example are indicative only and do not reflect the size of expected Uncertainty Margins



Uncertainty Margin example
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• Step 7: adjust scheduled generator MaxAvail by subtracting
corresponding Uncertainty Margin. Repeat for each scheduled 
generator.

The Uncertainty Margins in this example are indicative only and do not reflect the size of expected Uncertainty Margins
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Uncertainty Margin example
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• Step 8: adjust demand forecast by adding corresponding 
Uncertainty Margin. Repeat for each load on each bus.

• Step 9: supply the adjusted values as inputs to the SCED. 
Repeat this for every timestep in the STPASA forecast horizon.

The Uncertainty Margins in this example are indicative only and do not reflect the size of expected Uncertainty Margins
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Uncertainty Margin 
modelling



Uncertainty Margin Modelling 
Overview
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1. Developed an end-to-end Uncertainty Margin (UM) model training and 
validation pipeline:
i. UM for wind and solar generators based on AWEFS & ASEFS forecasts
ii. UM for scheduled generators based on Max Avail from bids
iii. UM for demand based on AEMO load forecasts
iv. UM at the Regional Level calculated from regional generation and demand 

uncertainty (used to scale individual UMs so that sum does not exceed regional UM 
for mutual consistency)

2. Validation of UMs
1. Breaches match expected breach rate given confidence level
2. Reasonability of UMs

1. By time-of-day
2. By forecast horizon



UM Model Framework
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• H20 machine learning models to predict UM

• Standardised set of inputs used as explanatory variables/features:
• Temporal features and cyclical features e.g. time trend, time of day, time of 

year etc
• Weather forecast features e.g. temperature forecast, humidity forecast, wind 

speed forecast etc
• Fuel type availability features based on Max Avail from bids and AWEFS/ASEFS 

forecasts
• Selected based on feature importance, principal component and correlation 

analysis, and considering feature forecast accuracy 

• Probability of Exceedance (PoE) of 95% has been the initial model 
development threshold (subject to change)

• Models predict UM for every 30 minute interval for STPASA horizon



Region Level Uncertainty Margin - Demand
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Key Takeaways
• These show the predicted 

demand Uncertainty Margin vs 
the actual error day ahead. 
Given a confidence level of 
95% we would expect over a 
large enough sample that 5% 
of the intervals have an actual 
error above the predicted UM.

• UM has a reasonable daily 
profile which increases during 
the day and decreases at 
night.

• The magnitude of the UM 
across the states also appears 
reasonable.

Day ahead predicted demand Uncertainty Margin (95% confidence level) vs Actual Error by Region

Similar chart for supply is available in the appendix



Region Level Uncertainty Margin - Demand

33

Key Takeaways
• The magnitude of the UM 

across Forecast Horizons 
appears reasonable as it 
increases the further ahead in 
time we are forecasting.

Predicted demand Uncertainty Margin (95% confidence level) for NSW vs Actual Error by forecast horizon

Similar chart for supply is available in the appendix



Example of Regional scaling of Uncertainty 
Margin – Wind forecast
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Key Takeaways

• Proportion of 
adjustment to UM (i.e. 
regional scaling) is 
dynamic and 
dependent on fuel mix

Day ahead wind forecast and predicted Uncertainty Margin vs Actual Error



Uncertainty Margin comparison
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• The Forecast Uncertainty Measure (FUM) is how forecast uncertainty is accounted for in the current 
STPASA.

Uncertainty Margin (future) Forecast Uncertainty Measure (current)

What uncertainty factors are accounted 
for?

• Demand forecast uncertainty
• Individual VRE forecast uncertainty
• Individual scheduled generator 

MaxAvail uncertainty

• Demand forecast uncertainty
• Regional VRE forecast uncertainty
• Regional scheduled generator MaxAvail 

uncertainty split into Energy Limited 
and non-Energy Limited components

• Regional interconnector support 
uncertainty

Inputs to the model • Temporal features
• Weather forecast features
• Fuel type availability features

• Temperature forecasts
• Solar irradiance forecasts
• Regional VRE forecasts
• Current demand forecast error
• Current regional fuel supply mix

How it is used? Used to adjust demand/supply inputs into 
the SCED

Used as a post-process after the solver to 
set the reserve requirement level

Refer to the Reserve Level Declaration Guidelines for more information.

https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Power_System_Ops/Reserve-Level-Declaration-Guidelines.pdf


Load forecasting for 
STPASA



Nodal Loads across the NEM
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In the context of the full network model, a 
nodal load represents a load on a bus bar 
and is equivalent to a grid exit point where 
load is withdrawn from AEMOs operational 
zone.

As the SCED is solving for a full network 
model, a requirement is to produce a nodal 
load forecast.

There are over 1,700 nodal points across 
the NEM – more than half of these in NSW 
& QLD



Challenges & Characteristics of 
Nodal Data
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When modelling nodal points across the entire NEM, 
we must strive to find a balance between a ‘one size 
fits all’ method with more bespoke approaches.

Each node can have it’s own characteristics and 
behaviour, making it difficult to find the right data and 
relevant underlying drivers to model with.

Fortunately, we have identified many common 
challenges and characteristics shared across these 
nodes

Challenge & Characteristic #1
Two nodes at the same substation can be highly 
correlated, but understanding why & when 
deviations in Active Power occurs can be time-
consuming and costly if we were to model each 
single node individually



Challenges & Characteristics of 
Nodal Data
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When modelling nodal points across the entire NEM, 
we must strive to find a balance between a ‘one size 
fits all’ method with more bespoke approaches.

Each node can have it’s own characteristics and 
behaviour, making it difficult to find the right data and 
relevant underlying drivers to model with.

Fortunately, we have identified many common 
challenges and characteristics shared across these 
nodes

Challenge & Characteristic #2
Some nodes are so highly variable that many 
appear as random noise. A forecast model would 
simply be limited in its ability



Challenges & Characteristics of 
Nodal Data
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When modelling nodal points across the entire NEM, 
we must strive to find a balance between a ‘one size 
fits all’ method with more bespoke approaches.

Each node can have it’s own characteristics and 
behaviour, making it difficult to find the right data and 
relevant underlying drivers to model with.

Fortunately, we have identified many common 
challenges and characteristics shared across these 
nodes

Challenge & Characteristic #3
Some stations experience such high ramps and 
rapid switching that a forecast model would not 
be able to anticipate this behaviour without 
additional information from TNSPs or 
participants



Nodal Modelling

Rather than predict the Power Demand at each node, we could instead target the Regional 
Nodal Rate.

This is the nodes proportion of the total Regional Power Demand.

Regional Nodal Rate

= NodePowerDemand / RegionPowerDemand

This presents a more stable and consistent target and enables us to model Nodes 
concurrently as all nodes are now standardised between 0 & 1.

A Proof of Concept was trialled with Machine Learning models & other conventional 
techniques to assess how well the Regional Nodal Rate could be forecasted under different 
circumstances
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Machine Learning Proof of Concept
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Machine Learning takeaways:

• Nodes with high variation and random-like 
behaviour will be challenging to predict with 
any forecasting method.

• By grouping nodes together in the same 
training pool, ML models are able to learn what 
drives variation across different nodes with 
shared variables (such as temperature, regional 
demand, and time of day).

• Can be proactive in predicting changing 
behaviour under the right conditions (rather 
than reactive to recently observed movements 
like ramps).

• Large Ramps & Nodes switching at the station 
will always be difficult to predict without 
additional information to inform this behaviour.

• Post-processing rules (such as flooring & 
capping of forecasts) will need to be considered 
so large errors can be limited



Validating the 
system



Validating the system
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Ongoing validation will occur from now through to 2024.
• The results of validation will be shared with stakeholders during future 

industry workshops in 2023-24.

1. Model validation
• To ensure Uncertainty Margin models are fit for purpose
• To ensure Nodal Load Forecasting models are fit for purpose

2. System testing and backcast
• To integrate forecasting components with the SCED
• To determine performance over extended historic periods to confirm 

operational readiness
• To consult with stakeholders on appropriate Confidence Levels



Model validation
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• Uncertainty Margin models
• For all Confidence Levels and forecast horizons: breach rate matches expected 

• By time of day, season, forecast horizon, weather conditions etc

• Reasonability check against current reserve requirements (LCR/LCR2/FUM)
• To give an indication of confidence levels

• Analysis of distribution of Uncertainty Margins for given confidence levels
• Does the distribution match the distribution of observed uncertainty at that confidence 

level

• Time series analysis
• To confirm Uncertainty Margins for a fixed interval from successive runs are stable and 

suitable for operational decision making

• Nodal Load Forecasting models
• Accuracy assessment of nodal load forecasts



System testing and backcast
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• A backcast is the process of running the system end-to-end over an extended 
historic period using all inputs as they would have been at each runtime in history.

• It is a way to understand what results the system would have produced had it been running 
at that time in the past.

• High-level backcast methodology
1. Create base case with Uncertainty Margins of 0MW – fix any issues and compare load 

deficits to existing system. This will potentially identify issues caused by the nodal load 
forecasting model.

2. Repeat with different confidence level Uncertainty Margins 
3. Analyse results to determine if UMs or nodal load forecasts are causing any erroneous 

load deficits → may indicate need for post-processing prior to input into SCED
4. Analyse suitability of results for operational decision making, for example, are results 

repeatable and stable from run-to-run
5. Consult with stakeholders on appropriate Confidence Levels in recognition of Reliability 

Standard annual Unserved Energy metric



Confidence levels and uncertainty
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• The Confidence Levels used are critical:
• Determine size of Uncertainty Margins

• Impact how often forecast/actual reserve conditions are declared

• Ultimately influence AEMO intervention (e.g. RERT or directions)

• The Reliability Standard defines the annual unserved energy
• However there is no theoretical framework for how to turn an annual 

unserved energy metric into an operational probabilistic uncertainty 
margin



Confidence levels and uncertainty
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• Appropriate confidence levels can be determined empirically
• AEMO intends to use the backcast results to empirically calculate 

Confidence Levels that would approximate annual unserved energy 
requirements of the Reliability Standard 

• There are challenges with empirical analysis such as:
• Ensuring backcast period is sufficiently long and represents all expected 

future conditions

• Cases of intervention in the past may have prevented the forecast event 
from occurring i.e. self destroying prophecy

• AEMO anticipates that the Confidence Level will not necessarily 
be the same for every interval of the STPASA forecast horizon



Consultation
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• AEMO is committed to a formal rules consultation with 
stakeholders to determine the methodology to develop 
Confidence Levels used in STPASA

• This will be part of the formal rules consultation process to commence 
late 2022 / early 2023

• This will include updating the Reserve Level Declaration Guidelines 
(RLDG) to include the methodology with provision for the confidence 
level values to be separately published (not in the RLDG)



Consultation
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• AEMO will then run another round of consultations to determine 
the confidence levels to be used to determine the reserve 
conditions in STPASA

• This consultation will occur in 2024-25, prior to go-live of the new 
STPASA

• During the consultation, AEMO will present detailed results from the 
backcast showing which Confidence Levels would have achieved the 
Reliability Standard unserved energy metrics over the historic period of 
the backcast and will seek feedback from stakeholders

• This will not be part of a formal rules consultation process

• AEMO is keen to hear thoughts from stakeholders on this 
approach to consultation



Data to be published



Data to be published
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• After every scheduled run of STPASA, AEMO intends to publish 
the following Uncertainty Margin and Load Forecasting data from 
the STPASA run:

• Region level Uncertainty Margins

• Uncertainty Margins for each entity (load on bus, generator) before and 
after regional scaling

• Load forecasts for each load on bus

• Next-day public: Actuals for each load on bus

• Anything else stakeholders would like?



Project Next Steps



Workshop timetable

Workshop Topic Proposed Date

1 Generator Recall Process – current and future Thursday 7 April 2022

2 Overview of the new process Thursday 19 May 2022

4 Demand Forecast, Uncertainty Margin 
and Confidence Levels

Thursday 21 July 2022

3 Rescheduled PASA Run types Thursday 4 August 2022

5 Information to be made publicly available Thursday 11 August 2022
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Feedback and questions
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Frequently asked questions
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Why Max Avail? Why not PASA Avail?
• We analysed PASA Avail and Max Avail and found PASA Avail did not reflect reductions in availability 

and was thus not suitable for modelling

What is the impact of demand side response (or Demand Side Participation (DSP)) on the 
UM?

• If the demand side response is regular and predictable, then it has no impact on the UM and the 
behaviour is trained into the load forecast models. For example, Energy Queensland ripple control 
(Tariff 31 and 33) of air conditioners and hot water load

• If the demand side response is un-forecastable (or a change in behaviour for regular demand side 
response), then this would affect the UM. Instances of industrial demand side response are increasing 
– where identifiable industrial demand side response has occurred these instances will be corrected in 
the UM training data. Instances of residential/commercial demand side response are rare and small in 
magnitude and AEMO considers these to have minimal impact on the UM at present.

• AEMO considers that as VPPs continue to grow in size, their behaviour may materially impact the UM. 
AEMO is intending to use the mechanisms proposed in the Scheduled Lite project to provide visibility 
of this behaviour and where identifiable to correct instances in the UM training data.

• AEMO will further investigate cases of demand side response as part of the backcast and provide 
further information to stakeholders on how the system will behave



Frequently asked questions
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When it is a hot day with a forecast afternoon cool change, the timing of the change can be 
critical to reserve outcomes on that day. How will the system behave under these conditions?

• This is a challenging scenario where the forecasts are highly dependent on the accuracy of the 
weather forecast. In general the load forecast will reflect the best estimate of the load reduction due to 
the arrival of the cool change. The UM will likely similarly reflect the highly uncertain nature of this 
scenario.

• AEMO will further investigate these types of scenarios as part of the backcast and provide further 
information to stakeholders on how the system will behave

How will opportunistic outages (maintenance outage taken due to expected period of low 
prices) versus forced outages be handled in UMs? How do economic 
commitment/decommitment decisions affect the UM?

• Correlation analysis of which factors are correlated with MaxAvail changes indicates pre-dispatch 
prices are not significantly correlated with MaxAvail changes. This implies that it is not necessary to 
include price as an input to Uncertainty Margins; it would be better to focus on stronger drivers with
more significant correlations (such as Temperature and Wind) that are not self-referential. The UM 
models currently do not distinguish between opportunistic vs forced outages, or economic 
commitment/decommitment decisions. 

• AEMO is investigating if filtering of UM MaxAvail training data using simple heuristics is necessary, and 
will provide further information to stakeholders in a future workshop.



Frequently asked questions
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Is uncertainty due to Generator Forced outages overly 
conservative due to UMs and n-1 contingencies in certain runtypes
of the SCED?

• AEMO is committed to selecting Confidence Levels (and UMs) that 
achieve the reliability standard via empirical backcasting and 
consultation.

• The n-1 contingency runs solve for the loss of a generator and all the 
other generators that are used to make up for that loss are limited to 
their Max Avail reduced by their UM. 

• AEMO will present more information on runtypes in the next workshop



Glossary
Term Definition

BDU Bi-directional unit

FUM Forecast Uncertainty Measure 

LCR Largest Credible Risk

LOR Lack of reserve 

MRC Maximum Responsive Component 

NMI National Metering Identifier

NOS Network Outage Scheduler

NSP Network Service Provider

PASA Projected assessment of system adequacy 

PD Pre-dispatch time frame

POE Probability of exceedance. A 50% PoE load forecast is one which will be exceeded 50% of the 
time

SCED Security Constrained Economic Dispatch optimiser

ST Short term time frame

UM Uncertainty Margin

WDR Wholesale Demand Response
59



Additional slides
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Key Takeaways

• Uncertainty reduces as 
the forecast horizon 
reduces but it is not as 
significant a reduction as 
others

Solar Uncertainty = Forecast Generation minus Actual Generation
NEM Total  (day time only)

(VRE) Generation uncertainty Solar
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Key Takeaways

• Reduction in uncertainty 
as forecast horizon 
reduces

• Over-forecast bias at 
longer horizons 
evidence of general 
reductions of MaxAvail
as forecast horizon 
reduces. At shorter 
horizons there is no 
bias.

Scheduled Generation uncertainty Brown Coal 

Brown Coal Uncertainty = MaxAvail minus MaxAvail (T-30 Minutes)
NEM Total  
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Key Takeaways

• Most significant 
reduction in uncertainty 
occurs less than 12 
Hours ahead, as intra-
day commitment 
decisions are finalised

• MaxAvail increases as 
forecast horizon reduces

• Perhaps due to 
commitment decisions 
based on market or 
portfolio conditions

Scheduled Generation uncertainty Natural Gas

Natural Gas Uncertainty = MaxAvail minus MaxAvail (T-30 Minutes)
NEM Total  
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Key Takeaways

• Most significant 
reduction in uncertainty 
occurs less than 12 
Hours ahead, as intra-
day commitment 
decisions are finalised

• There is no bias at 
shorter horizons.

Scheduled Generation uncertainty Hydro

Hydro Uncertainty = MaxAvail minus MaxAvail (T-30 Minutes)
NEM Total  



Accounting for uncertainty in STPASA
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Key Takeaways
• The distribution of regional 

uncertainty is large and 
must be accounted for.

These visualisations drill down into the NEM total Generation and Demand 
Uncertainty from the previous slide, on a region basis.



Region Level Uncertainty Margin - Generation
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Key Takeaways
• These show the predicted 

generation Uncertainty Margin 
vs the actual error day ahead. 
Given a confidence level of 
95% we would expect over a 
large enough sample that 5% 
of the intervals have an actual 
error above the predicted UM.

• UM has a daily profile which is 
dependent on the type of 
generation mix in each state.

• The magnitude of the UM 
across the states also appears 
reasonable.

Day ahead predicted generation Uncertainty Margin (95% confidence level) vs Actual Error by Region



Region Level Uncertainty Margin - Generation
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Key Takeaways
• The magnitude of the UM 

across Forecast Horizons 
appears reasonable as it 
increases the further ahead in 
time we are forecasting.

Predicted generation Uncertainty Margin (95% confidence level) for NSW vs Actual Error by forecast horizon



Correlation plots showing Forecasts changes to 
various factors
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