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Executive summary 

This white paper describes the application of advanced grid-scale inverters in the National Electricity Market 

(NEM), with a focus on grid-forming inverters. This paper provides recommendations toward enabling the 

application of this technology to support the NEM as the amount of inverter-based resources (IBR) increases 

and synchronous generation online reduces. 

AEMO published a Power System Requirements1 reference paper in July 2020 which provides clarity on the 

operability and technical attributes that are critical for secure operation of the power system. While the 

generation mix in the NEM is changing, the physics that determine its operation remain the same, meaning 

these attributes will continue to be required during periods of high IBR penetration. 

With sufficient attention, focus, and investment, advanced inverter technology may be able to address many 

of the challenges facing the NEM today for the integration of renewable (inverter-based) resources. However, 

at present this potential is not demonstrated at the necessary scale, and focused engineering development is 

urgently needed to address the remaining issues and realise the promise of this technology.  

This report takes a capability- and application-led approach to describe the functionality required from 

advanced inverters. The capabilities required from this technology to support the power system are expected 

to increase over time as the proportion of synchronous generation online reduces.  

Figure 1 describes four applications identified as relevant to advanced grid-scale inverters, in order of 

increasing capability from lowest to highest. These applications are expected to grow in relevance as 

technology maturity and system needs evolve.  

Figure 1 Increasing relevance of applications detailed in this paper 

 
 

The development and deployment of advanced inverter capabilities at scale in the NEM to meet the 

applications above will require that market bodies, government, and industry prioritise collaboration in four 

key areas, as detailed further in this report: 

 
1 See https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Power-system-requirements.pdf. 

https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Power-system-requirements.pdf
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• Capability specification – grid connection specifications are needed to provide clear requirements to 

original equipment manufacturers (OEMs) and developers. 

• Capability demonstration – maturity of advanced inverter capability varies across the range of necessary 

power system requirements, with limited deployment and untested performance in large power systems. 

• Costs – deployment of advanced inverters currently carries a cost premium. 

• Revenue – many potentially valuable capabilities to support the power system do not have established 

revenue streams. 

The terminology surrounding advanced grid-scale inverters is not yet clearly defined. Broadly, for the 

purposes of this paper:  

• Grid-following inverters synchronise to the grid voltage waveform, adjusting their output to track an 

external voltage reference. 

• Grid-forming inverters set their own internal voltage waveform reference and can synchronise with the 

grid or operate independently of other generation. 

Grid-forming inverters with a firm energy source behind them may be able to replace many of the capabilities 

historically provided by synchronous generators. Initially, AEMO recommends prioritising deployment of grid-

forming capabilities on grid-scale battery energy storage systems (BESS) as this technology provides 

capability to deliver firm, flexible energy behind the inverter. While large, standalone BESS provide one way to 

deliver grid-forming capability, smaller batteries (with storage capability of several minutes) coupled to 

variable renewable energy (VRE) plant might also provide a flexible resource mix to cater for the applications 

described in this paper. 

With a growing number of grid-scale batteries committed or proposed on the NEM, there is a rare window of 

opportunity to build grid-forming capabilities into this battery fleet today. This would enable testing and 

demonstration of these capabilities at scale and begin to build a fleet that can support the power system as it 

transitions to high IBR penetrations. 

Given the speed of transition in the NEM, a balanced approach is needed – one that maximises low-regret 

opportunities to incorporate grid-forming capabilities on new grid-scale batteries, while proving up the 

NEM’s ability to rely on varying levels of grid-forming technology for system stabilisation purposes. Further, a 

cautious approach is needed in the NEM as the technology capability is demonstrated and proven. 

Across the sector, time and resources will be needed to prove this technology at scale to support the fastest 

possible transition and capitalise on grid-forming inverter technology potential. Together, AEMO and industry 

urgently need to focus in the three areas shown in Figure 2 below to capture the opportunities presented by 

advanced grid-scale inverters. The top priority should be demonstrating and proving advanced inverter 

technology capabilities at scale, and maximising the inherent capabilities of all new grid-scale batteries. 

In parallel with efforts to accelerate the deployment of advanced inverters, AEMO is working with 

stakeholders via the Engineering Framework2 to identify additional priority actions needed to prepare the 

NEM for operation with fewer synchronous generators online.  

 
2 See https://aemo.com.au/en/initiatives/major-programs/engineering-framework. 

https://aemo.com.au/en/initiatives/major-programs/engineering-framework
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Figure 2 Recommendations for immediate action 
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1. Introduction 

This white paper describes the application of advanced grid-scale inverters in the National 

Electricity Market (NEM), with a focus on grid-forming inverters.  

The paper provides recommendations toward enabling this technology to support the 

future NEM as the amount of inverter-based resources (IBR) increases and synchronous 

generation online reduces.  

The power system is undergoing major transformation, with new sources of energy, emerging technologies, 

and changing consumer behaviour. As the generation mix in the NEM shifts away from synchronous 

machines toward IBR, the technologies and processes that maintain its stable operation also need to evolve.  

AEMO’s Renewable Integration Study (RIS) 3 highlighted the challenges of maintaining power system security 

at very high instantaneous penetrations of IBR, and defined requirements that need to be met to enable 

operation under these conditions. Building on the RIS, AEMO’s Engineering Framework4 seeks to go beyond 

renewable integration alone, taking a broader perspective and acknowledging the various activities already 

happening across industry.  

AEMO is now progressing many of the actions identified by the RIS as part of the Engineering Framework, 

including the optimisation of emerging technologies such as advanced inverters. Recommendations to 

capture the opportunities presented by advanced grid-scale inverters are identified in this paper in Section 5 

and will be progressed under the Engineering Framework. 

With sufficient urgent attention, focus, and investment, advanced inverter technology should be able to 

address many of the challenges facing the NEM today for the integration of renewable (inverter-based) 

resources. At present this potential is not proven at the necessary scale to allow advanced inverters to be 

relied on as a provider of system stabilisation, and focused engineering development is urgently needed to 

address the remaining issues and realise the promise of this technology.  

Appropriately sized grid-forming inverters at strategic sites in the NEM have the potential to reduce the 

system’s reliance on synchronous plant, enabling further decarbonisation and delivering benefits to 

consumers. The inverters that interface IBR generation with the grid can include advanced functionality to 

support power system operation, and have the potential to provide some of the stability capability that has 

previously been delivered by synchronous generators.  

AEMO sees advanced inverter technology as a key enabler of the future power system and it is imperative 

that its potential capability be realised to support the system as it transitions to lower levels of synchronous 

generation online. 

1.1 Purpose and scope 

This white paper identifies the capabilities that advanced inverters could deliver to support management of 

the power system with fewer synchronous generating units online.  

By highlighting the value and potential of advanced inverters, AEMO seeks to: 

• Provide information on the opportunity these new technologies create for the NEM, and the barriers that 

need to be overcome to realise their potential, to assist policy-makers, market bodies, and funding bodies. 

 
3 See https://aemo.com.au/-/media/files/major-publications/ris/. 

4 See https://aemo.com.au/en/initiatives/major-programs/engineering-framework. 

https://aemo.com.au/-/media/files/major-publications/ris/
https://aemo.com.au/en/initiatives/major-programs/engineering-framework
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• Provide increased clarity on the capabilities that are needed from advanced inverters in the NEM, to assist 

developers, manufacturers, and investors when considering new generation and storage developments. 

• Summarise the current technology status of advanced inverters and their application in Australia to guide 

further research, development, and trials, and to highlight where urgent action is needed to realise the 

potential for the NEM. 

• Make recommendations for actionable steps to begin capturing the opportunities presented by advanced 

grid-scale inverters (see Section 5). 

This white paper is focused on the application of advanced capability from grid-scale inverters in the NEM: 

• Grid-scale inverters are notionally considered as those installed as part of a generation connection point 

with a rated capacity of 5 megawatts (MW) or above. This does not exclude the potential of smaller 

distributed energy resources (DER) to provide capabilities in line with the applications discussed in this 

paper, however the readiness of grid-scale inverters is more closely aligned with the urgency of the need 

to manage the power system with fewer synchronous generating units online. 

• This paper focuses on the inherent characteristics and control system performance of inverters rather than 

their remote management over dispatch timeframes. 

• Primarily, this paper covers capabilities provided by grid-forming inverters (as defined in Section 2.3). 

Other inverter technologies may have the potential to provide similar or a subset of these capabilities; this 

report does not seek to restrict this potential, but stakeholder feedback reflects the alignment of industry 

on grid-forming technology and its suitability for supporting the power system. 

1.2 Approach  

This paper describes the current status and development pathways for grid-forming inverter technology. 

This information has been gathered by AEMO through a broad range of stakeholder interviews, international 

perspectives, and collaborations, and a review of available literature.  

To inform this paper, AEMO conducted stakeholder interviews with a cross-section of industry between 

September and December 2020. This consisted of original equipment manufacturers (OEMs), developers, 

international research organisations, international system operators, and regulated bodies. In these interviews, 

AEMO sought to understand some of the key questions surrounding grid-forming inverter technology, 

including: 

• What is grid forming?  

• What can grid-forming inverters be used for? 

• What are the key enablers or barriers to grid forming in the NEM? 

• How can grid-forming inverters be used to enable the transition to a renewable low-emissions future, with 

high penetration of IBR and low levels of synchronous (rotating) machines? 

AEMO also reviewed the latest research, publications, and trials, and collaborated internationally with other 

power system operators and organisations to share knowledge and insights that informed this paper. The aim 

was to identify key focus areas for advanced inverter technology and its potential application in the NEM, 

rather than providing a comprehensive review of all available literature. 

This paper represents an initial step in exploring advanced inverter technology. Further industry collaboration 

will be required to develop effective pathways toward the use of this technology in the applications covered 

in Section 3. This collaboration will take place as part of the broader Engineering Framework stakeholder 

engagement. 
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2. Background 

The NEM is transforming fast, with increasing reliance on IBR and reduction in synchronous 

generation. This trend is presenting new challenges and opportunities for secure system 

operation.  

Advanced grid-scale inverters might be able to support power system security during this 

transition, potentially even delivering the majority of support capabilities in a future system 

with low levels of synchronous generation online – but only if Australia puts the right focus 

on developing and proving them at scale.  

2.1 Change is ongoing and undeniable  

Historically, supply of electricity in the NEM and worldwide was dominated by large, centralised synchronous 

generators (including coal, gas, and hydro). The design decisions that led to today’s power system in the 

regional power systems that comprise the NEM were based on the capabilities provided by synchronous 

generation, and the design of the NEM reflected this fundamental engineering design. 

The NEM has seen transformational change in its generation mix for many years. IBR such as wind and solar 

generation are being deployed at a scale and pace not seen anywhere else in the world and are influencing 

the operation of the synchronous generation fleet. Some regions of the NEM are leading the world in 

demonstrating operation of a gigawatt-scale power system with low levels of synchronous generation. South 

Australia and Tasmania have operated for periods with 93% and 82% IBR generation (wind and solar as a 

proportion of local generation)5. 

Increasing IBR generation is resulting in lower levels of commitment of synchronous generation – the very 

equipment that the power system has been designed around. When offline or decommissioned, these 

synchronous units can no longer provide the critical system stability capabilities on which the grid relies, 

requiring that these capabilities be provided by alternative sources.  

Further, over time, aging synchronous generation units will retire and AEMO’s Integrated System Plan (ISP)6 

projects that these will be replaced with generation predominantly provided by IBR. 

The RIS highlighted the potential for the maximum penetration of IBR to increase to over 75% in the Central 

scenario and 100% in the Step Change scenario in 2025.  

Figure 3 shows the penetration of wind and solar generation in the NEM for all dispatch intervals from March 

2018 to April 2021. Notably, AEMO’s Inputs, Assumptions and Scenarios Report (IASR)7 has demonstrated that 

variable renewable energy (VRE) and distributed photovoltaics (DPV) are currently tracking to levels more 

aligned with the 2020 ISP’s Step Change scenario, showing that the pace of transformation is not slowing 

and, if anything, is increasing. 

Synchronous condensers are currently being deployed to provide system strength and inertia in weak grid 

areas as IBR penetration levels rise. This includes installation by transmission network service providers 

(TNSPs) to address identified system strength shortfalls, and by developers of new IBR generation plants to 

support the requirements of their network connection. This reflects the immediacy of the design challenge to 

maintain system stability during periods when few synchronous generating units are online, and raises the 

 
5 Wind and solar generation made up 93% of South Australia’s local generation on 4 July 2018. In Tasmania, 82% was reached on 16 January 2021. 

6 See https://aemo.com.au/en/energy-systems/major-publications/integrated-system-plan-isp/2020-integrated-system-plan-isp. 

7 See https://aemo.com.au/consultations/current-and-closed-consultations/2021-planning-and-forecasting-consultation-on-inputs-assumptions-and-

scenarios. 

https://aemo.com.au/en/energy-systems/major-publications/integrated-system-plan-isp/2020-integrated-system-plan-isp
https://aemo.com.au/consultations/current-and-closed-consultations/2021-planning-and-forecasting-consultation-on-inputs-assumptions-and-scenarios
https://aemo.com.au/consultations/current-and-closed-consultations/2021-planning-and-forecasting-consultation-on-inputs-assumptions-and-scenarios
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question of whether advanced inverters might be able to support system stability themselves without the 

need for additional synchronous equipment. 

Figure 3 Penetration of wind and solar generation in the NEM 

 
Source: AEMO data8.  

2.2 Requirements of a large AC power system 

AEMO published a Power System Requirements9 reference paper in July 2020 which provides clarity on the 

operability and technical attributes that are critical for secure operation of the power system. While the 

generation mix in the NEM is changing, the physics that determine its operation remain the same, meaning 

these attributes will continue to be required during periods of high IBR penetration.  

Specifically, the technical attributes identified by the Power System Requirements paper needed from IBR 

generation include: 

• Resource adequacy and capability. 

• Frequency management. 

• Voltage management. 

• System restoration. 

These technical attributes can be further broken down into the capabilities that advanced inverters could 

potentially provide to support the power system under high penetration of IBR, as described in Table 1. 

 
8 Figure 3 shows the contribution of wind and solar (including both grid-scale and distributed PV) as a proportion of total NEM generation. This does not 

include the contribution of other renewable technologies such as hydro and biomass. 

9 See https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Power-system-requirements.pdf. 

https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Power-system-requirements.pdf
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Table 1 Power system capabilities relevant to advanced inverters  

Capability Description Purpose 

System strengthA The ability to generate, maintain, and control 

the voltage waveform. 

Support maintaining network synchronism during steady 

state operation, disturbances, and recovery after 

disturbances and supply enough fault current to ensure 

correct operation of network protection systems. 

Disturbance 

withstand 
Defined responses and ability to maintain stable 

operation during voltage, frequency, phase 

disturbances (fault ride-through), and to damp 

active power oscillations after a disturbance. 

Maintain supply resources operating during and 

following a disturbance, to support power system 

recovery and stabilisation. 

InertiaC Instantaneous and inherent active power 

response, not dependant on measurement, to 

rapid changes in frequency. 

Impede the system’s rate of change of frequency (RoCoF) 

as a response to frequency disturbances. 

Primary frequency 

responseC 
Locally controlled active power response to 

frequency change. Can include Fast Frequency 

Response (FFR)B. 

Maintain the network within a tight frequency band, 

manage intra-dispatch supply and demand variations, 

and arrest changes in power system frequency. In some 

cases, FFR can reduce system inertia requirements. 

Support power 

system island 
Manage active power output to support island 

operation over dispatch timescale. 

Provide sufficient energy resources (dispatchability, ramp 

rate, and secondary frequency response) to maintain 

supply-demand balance within island boundaries. 

Initiate or support 

system restoration 
Bring plant online during system restoration 

process, including provision of necessary surge 

current and capability to remain online under 

adverse conditions. 

Provision of SRAS during black start. 

A. See https://aemo.com.au/-/media/files/electricity/nem/system-strength-explained.pdf. 

B. See https://www.aemc.gov.au/rule-changes/fast-frequency-response-market-ancillary-service. 

C. See box below for detail on provision of inertia and FFR from inverters. 

Inertia and Fast Frequency Response (FFR) 

• Inertia is an inherent quality of a grid-connected device to reduce rapid changes in power system 

frequency. Specifically: 

– Physical inertia is provided by the rotating masses of synchronous machines, and is the source for 

nearly all inertia in the NEM today. 

– Synthetic inertia can be provided by grid-forming inverters to mimic the physical inertial response 

provided by synchronous machines. During a frequency disturbance, a voltage angle difference 

occurs between the voltage reference within the grid-forming inverter and the network voltage 

waveform. This leads to an instantaneous injection or absorption of current by the inverter, without 

the need for any measurement or controlled response10. 

• FFR is a deliberate, controlled capability of some grid-connected devices to inject or absorb power in 

response to measured changes in power system frequency. This measurement and response can 

occur very rapidly (although not instantaneously), and in some cases can reduce the amount of inertia 

required to maintain a secure power system11. 

• FFR and inertia are different capabilities and play roles that are not directly interchangeable. The 

measurement delay in FFR means it does not inherently slow RoCoF in the same manner as inertia, 

 
10 See https://www.electranet.com.au/wp-content/uploads/2021/02/CIGRE48-Grid-Forming-BESS-Case-Study-August-2020.pdf. 

11 See https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/System-Security-Market-Frameworks-Review/2018/

Inertia_Requirements_Methodology_PUBLISHED.pdf. 

https://aemo.com.au/-/media/files/electricity/nem/system-strength-explained.pdf
https://www.aemc.gov.au/rule-changes/fast-frequency-response-market-ancillary-service
https://www.electranet.com.au/wp-content/uploads/2021/02/CIGRE48-Grid-Forming-BESS-Case-Study-August-2020.pdf
https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/System-Security-Market-Frameworks-Review/2018/Inertia_Requirements_Methodology_PUBLISHED.pdf
https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/System-Security-Market-Frameworks-Review/2018/Inertia_Requirements_Methodology_PUBLISHED.pdf
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however it is able to act toward correcting a supply imbalance and restoring system frequency12. Both 

these power system capabilities are relevant to advanced inverters and their role in supporting the 

power system as it transitions to operating with fewer synchronous generators online. 

2.3 Defining advanced inverters  

The terminology surrounding advanced grid-scale inverters is not yet clearly defined. Broadly, grid-following 

inverters synchronise to the grid voltage waveform, while grid-forming inverters set their own internal voltage 

waveform reference. This report takes a capability- and application-led approach to describe functionality 

within these two categories. 

Due to the complexity of inverters and the rapid pace of their development, it is challenging to identify simple 

definitions to describe their operation. The term ‘advanced grid-scale inverters’ is used in this paper to cover 

inverters with the capability to directly support power system operations by delivering the capabilities listed in 

Table 1. This contrasts with today’s NEM IBR fleet, where grid-following inverters – without the majority of 

these capabilities – are dominant. 

The term ‘grid-forming inverter’ is widely used to describe any advanced grid-scale inverter, however the 

precise set of capabilities and functionality of these devices can vary significantly by design and application. 

As such there is not a firm international consensus as to the specific definition of ‘grid-forming inverters’. 

This paper uses the terms defined in Figure 4 to broadly distinguish between categories of inverters. These 

descriptions are not intended to be a complete definition of these categories, but rather to broadly group the 

consistent descriptions gathered through stakeholder interviews and the existing literature. AEMO has elected 

to take a service- and application-led approach to defining the ways advanced inverters could support power 

system operation to provide specific guidance within these broad categories. 

Figure 4 Broad categories of inverters 

 

2.4 The grid-forming inverter system 

Grid-forming inverters deliver many of the grid stability functions discussed in Section 2.2 using rapid 

changes in their power level. This requires a readily available and flexible energy source on the direct current 

 
12 See https://aemo.com.au/-/media/files/electricity/nem/security_and_reliability/reports/2017/ffr-working-paper.pdf. 

https://aemo.com.au/-/media/files/electricity/nem/security_and_reliability/reports/2017/ffr-working-paper.pdf
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(DC) side of the inverter that can be quickly accessed to satisfy any need to increase (or decrease) power 

output on the alternating current (AC) side.  

This energy can come from several sources, including: 

• Chemical energy stored in batteries. 

• Kinetic energy stored in the spinning blades of a wind turbine. 

• Electrical energy supplied across a high voltage DC (HVDC) link. 

It may be possible to deliver some capabilities by retaining headroom in the operation of a VRE generator 

such as solar photovoltaic (PV), however this carries an opportunity cost and might impact the financial 

viability of the plant. Most pilot grid-forming inverter projects use batteries as a stored source of energy. 

The quantity of energy availability required for a grid-forming inverter system will depend on the applications 

served (see Section 3). Additionally, the energy requirements may be influenced by the level of dependability 

and predictability needed by each application. For example, a grid-forming wind farm can use the energy 

stored in the spinning turbine blades to increase its energy output to provide an inertial response, but this 

action will slow the turbine down. While the turbine accelerates back up to normal operating speed it is 

unable to respond to further events, leaving a period of time where it cannot deliver the desired service (see 

Appendix A1.4). Determining the level of required energy storage for a grid-forming inverter system is 

complex and will have cost impacts on the plant design. These impacts are discussed further in Section 4.3. 

2.5 Performance comparison of advanced inverters 
Based on the definitions in Figure 4, an assessment of the performance potential of each category of inverters 

can be made against the power system requirements specified in Table 1. Table 2 shows a performance 

comparison of each category of inverters alongside synchronous machines by adapting findings from a 

research report13 by the European Network of Transmission System Operators for electricity (ENTSO-E), which 

represents 43 electricity transmission system operators (TSOs) from 36 countries across Europe.  

Table 2 Performance comparison of grid-connected generation 

Service/capability Grid-following 

inverter system 

Grid-forming 

inverter system 

Synchronous 

machines 

Can contribute to system strength  ✓ ✓
A 

Can have positive disturbance withstand (active power 

oscillation damping) 
 ✓ ✓ 

Can have positive disturbance withstand (fault ride-

through capability) 

✓ ✓ ✓ 

Can contribute to system inertia  ✓
 B
 ✓ 

Can contribute to FFR ✓ ✓  

Can contribute to primary frequency response ✓ ✓ ✓ 

Can support a power system island with supply 

balancing and secondary frequency response 

✓ ✓ ✓ 

Can initiate or support system restoration ✓
C ✓ ✓ 

A. Synchronous machines can usually contribute to system strength much more than IBR due to their higher overload capacity. 

B. A grid-forming inverter system requires energy storage to deliver inertia. See Section 2.4. 

C. Grid-following inverters can support but not initiate system restoration. 

 
13 See https://eepublicdownloads.entsoe.eu/clean-documents/Publications/SOC/High_Penetration_of_Power_Electronic_Interfaced_Power_Sources_and_the_

Potential_Contribution_of_Grid_Forming_Converters.pdf. 

https://eepublicdownloads.entsoe.eu/clean-documents/Publications/SOC/High_Penetration_of_Power_Electronic_Interfaced_Power_Sources_and_the_Potential_Contribution_of_Grid_Forming_Converters.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/Publications/SOC/High_Penetration_of_Power_Electronic_Interfaced_Power_Sources_and_the_Potential_Contribution_of_Grid_Forming_Converters.pdf
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An advantage all inverter-based control systems have over synchronous machines is that their performance 

capability can be tuned to the specific network conditions where they are connected, as many aspects of their 

performance are determined by software. Synchronous machines are not able to easily re-tune many of their 

performance capabilities, and some (such as inertia) are fixed completely, as they are determined by the 

physical aspects of the machine itself.  

A synchronous machine may have an advantage over an inverter-based system through its large overcurrent 

(or fault current) capability. Overload capacity of present inverter-based systems is generally limited thermally 

by their electrical components to about 1-2 times their rated capacity, whereas synchronous machines can 

provide up to 5-6 times overload capacity. 

3. Applications of 
advanced inverters 

AEMO has identified and prioritised four power system applications for advanced 

grid-scale inverters in this white paper.  

These applications provide increasing capability to support the transition of the power 

system, encompassing the range of capabilities described in Section 2.2. 

As the NEM transitions to a higher penetration of IBR, the essential system capabilities currently provided by 

synchronous generators must be either substituted or maintained by IBR or other equipment such as 

synchronous condensers.  

The research for this white paper identified four applications relevant to advanced grid-scale inverters from 

the perspective of operating a gigawatt-scale interconnected power system with few or no synchronous units 

online. These applications are summarised in Table 3. 

Table 3 Applications identified as relevant to advanced grid-scale inverters 

Application Description 

Connecting IBR in weak grid areas Capability to maintain stable operation in weak grid areas to meet IBR performance 

obligations, and potentially to provide system strength to support the connection of other 

nearby IBR plant. This application provides localised capability to stabilise nearby IBR 

generation, but does not necessarily support the broader power system. 

Supporting system security Capabilities to maintain system security that are predominantly provided by synchronous 

generators today, such as inertia and system strength, to support the broader power 

system as it transitions to operating with fewer synchronous generators online. 

Island operation Capabilities to maintain stability and supply balancing at a high enough level to support 

areas of the grid that become separated from the main synchronous system when 

operating under high penetrations of IBR. 

System restart Capability to energise the local network during the challenging conditions of a black 

system, or to assist with the restoration process. 

 

Each of the four applications require specific combinations of the power system capabilities described in 

Section 2.2, at varying levels.  
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For example, the system restart process requires generators to provide current above that necessary in 

normal grid operation on an already energised network.  

Figure 5 shows the combinations of technology capabilities required for each of the four advanced inverter 

applications alongside that of the existing grid-following IBR fleet. 

As the NEM transitions toward operation with fewer synchronous machines, increasing capability will be 

needed from IBR generation in line with these applications. Initially, grid-forming inverters will be used to 

support the connection of IBR in weak grid areas, while this technology is tested and developed to support 

the broader operation of the synchronous power system. Over time, if sufficient focus and development 

occurs, and as confidence is built around these capabilities, grid-forming IBR is expected to provide the 

potential to manage islanded regions and ultimately to support system restart. 

Figure 5 Capabilities required for advanced grid-scale inverter applications 

 

3.1 Connecting IBR in ‘weak’ grid areas  

Power system requirements 

• System strength to support IBR generation connection. 

• Disturbance withstand (fault ride-through and oscillation damping). 

Key findings 

• Advanced inverters could help IBR generators meet their performance obligations in areas of low 

system strength, and might provide system strength to support nearby IBR generators, potentially as 

an alternative to synchronous condensers. 

Technology maturity 

• Stable operation of grid-forming battery energy storage systems (BESS) in weak grid areas 

demonstrated at small scale. Simulation indicates potential for grid-forming BESS to stabilise selected 

areas of the NEM but no demonstrated examples to date. Tuning of grid-following IBR to mitigate 

voltage oscillations has been demonstrated in the NEM (see Appendix A1.1). 

Relevant case studies in Appendix A1 

• Case studies 1, 2 and 3. 
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The NEM is at the international forefront of managing issues associated with low system strength. Wind and 

solar IBR tend to be located where there is abundant wind and sunlight. In the NEM, these areas are typically 

located far from load centres and are also remote from synchronous machines. As a result, these IBR are 

often located in areas of low system strength (‘weak’ grid areas)14. 

AEMO has previously declared system strength shortfalls in South Australia, Tasmania, Victoria, and 

Queensland, and is currently working with local TNSPs to address those15. Additionally, new connecting 

generators must currently ensure that they do not degrade local system strength because of their connection 

and must provide remediation if they do so16. In weak grid areas, this can potentially necessitate the 

installation of costly equipment such as synchronous condensers.  

The Australian Energy Market Commission (AEMC) is currently working through a National Electricity Rules 

(NER) change request to promote efficient management of system strength on the power system17, which 

would influence the framework that governs the system strength requirements for new generation 

connections if implemented. 

Grid-forming inverters have shown (albeit in limited examples) that they can remain stable in weak grid areas, 

with the capability to operate at low short circuit ratios significantly beyond where existing grid-following 

inverter-based generation can perform (see Appendix A1.1). This capability may assist new grid-forming 

connections to meet their performance standards in these areas. 

Grid-forming inverter systems can provide fault current (a proxy for system strength) and can theoretically 

provide a system voltage waveform reference to stabilise the output of nearby grid-following 

inverter-connected generation and damp out voltage oscillations propagating through the network. This is 

particularly useful in parts of the network with low system strength, where a grid-forming inverter system 

might allow other grid-following IBR in the area to meet their necessary connection requirements.  

The installation of grid-forming inverters with a voltage waveform output that is calibrated to the network 

conditions is theoretically a substitute to the installation of synchronous condensers for the purpose of 

supporting VRE connections in low system strength areas. Grid-forming battery systems can be highly flexible 

and are able to be re-tuned more effectively than synchronous condensers when there are changes to the 

network in the area they are operating.  

Grid-forming inverters also have the advantage of being able to utilise the existing renewable connection’s 

infrastructure without connecting the additional switchgear for a synchronous condenser, and can provide 

capabilities beyond system strength and inertia. 

Desktop studies have shown the potential of grid-forming BESS to stabilise nearby IBR generation in a weak 

area of a bulk power system without the need for additional synchronous condensers (see Appendix A1.1 and 

Appendix A1.2), however AEMO has not identified any examples of this capability being demonstrated in 

practice. 

The potential for new IBR connections to use grid-forming inverters to meet their performance standards – 

and perhaps enable other nearby IBR connections to operate in weak grid areas with their assistance – is 

expected to be demonstrated in practice over coming years as confidence grows in this technology. 

 
14 See https://www.aemo.com.au/-/media/files/electricity/nem/planning_and_forecasting/Operability/2020/2020-System-Strength-and-Inertia-Report. 

15 All current system strength shortfalls are listed at https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/nem-forecasting-and-

planning/planning-for-operability.  

16 Detailed information on the system strength assessment for new connecting generators is available in AEMO’s system strength impact assessment 

guidelines. See https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/system-security-market-frameworks-review/2018/

system_strength_impact_assessment_guidelines_published.pdf?la=en&hash=771B8F6BC8B3D1787713C741F3A76F8B. 

17 See https://www.aemc.gov.au/rule-changes/efficient-management-system-strength-power-system. 

https://www.aemo.com.au/-/media/files/electricity/nem/planning_and_forecasting/Operability/2020/2020-System-Strength-and-Inertia-Report
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/nem-forecasting-and-planning/planning-for-operability
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/nem-forecasting-and-planning/planning-for-operability
https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/system-security-market-frameworks-review/2018/system_strength_impact_assessment_guidelines_published.pdf?la=en&hash=771B8F6BC8B3D1787713C741F3A76F8B
https://www.aemo.com.au/-/media/files/electricity/nem/security_and_reliability/system-security-market-frameworks-review/2018/system_strength_impact_assessment_guidelines_published.pdf?la=en&hash=771B8F6BC8B3D1787713C741F3A76F8B
https://www.aemc.gov.au/rule-changes/efficient-management-system-strength-power-system
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3.2 Supporting system security 

Power system requirements 

• Inertia. 

• Primary frequency response. 

• System strength to support wider grid. 

• Disturbance withstand. 

Key findings 

• Advanced inverters could provide capabilities to support the secure operation of a synchronous power 

system like the NEM. Demonstration of these at scale is critical if this technology is to replace the 

capabilities of synchronous machines.  

Technology maturity 

• Grid-forming inverters have been shown in pilot trials and desktop studies to provide capabilities to 

support system security. It is yet to be shown in practice whether they will be able to replace the 

capabilities delivered by synchronous machines entirely. 

Relevant case studies in Appendix A1 

• Case studies 3 and 4. 

 

Today, the NEM always operates with combinations of synchronous generators online, in all regions. These 

synchronous generators provide the capabilities listed in Section 2.2 at high enough levels to ensure secure 

operation of the power system, factoring in the requirements of both load and IBR that may not have these 

capabilities. As the NEM moves toward periods of operation with fewer synchronous generators online, these 

capabilities will need to be delivered by alternative methods. 

Grid-forming inverters have the potential to provide system strength at higher levels than required to simply 

facilitate their own connection (see Section 3.1), and can also provide capabilities to support the operation of 

the bulk power system, such as inertia, and primary and secondary frequency control (see Section 2.2). These 

capabilities are all required by gigawatt-scale power systems to maintain frequency and voltage stability 

under normal operation and during contingency events, noting that additional capability might be required 

to cater for more extreme operating conditions such as islanding or system restart (see sections 3.3 and 3.4). 

Grid-forming inverters are used to operate AC microgrids (tens of MW scale) today without any synchronous 

generating units online, demonstrating the potential for this technology to support system security (see 

Appendix A1.3). To AEMO’s knowledge, operating gigawatt-scale power systems without synchronous 

machines has not been demonstrated anywhere in the world. To achieve this, further work is needed to 

demonstrate the delivery of these capabilities at scale while interacting with other power system assets, 

including synchronous machines, grid-following IBR, DER, and network protection systems. These interactions 

may in turn influence the design of grid-forming inverter systems. For example, if a certain level of fault 

current needs to be provided to maintain the performance of network protection systems then that could 

mean inverters need to be built to a suitable overcurrent rating. 

It is likely that grid-forming inverters could be used to stabilise other nearby grid-following IBR (see 

Section 3.2), raising the question of what proportion of generating units will need to have grid-forming 

capability. Some OEMs have indicated their equipment can be configured to operate in grid-forming or 

grid-following mode, meaning there may be some future flexibility to this proportion, as well as the potential 

for dynamic configuration of operating modes during testing or commissioning. Some developers may 

choose to install equipment capable of grid-forming but initially operate them in grid-following mode as a 



   

 

© 2021 AEMO | Application of Advanced Grid-scale Inverters in the NEM 20 

 

means of future-proofing their design. However, tuning of inverter settings after the plant has been 

commissioned may trigger re-assessment of performance requirements, potentially acting as a barrier to 

flexibility (discussed further in Section 4.3). 

Internationally, the push to replace the capabilities of synchronous machines with grid-forming inverter 

technology is occurring under varying approaches, depending on local conditions and urgency. In the United 

Kingdom, emerging grid stability issues relating to the decline in transmission-connected synchronous 

generation have led to National Grid establishing a ‘stability pathfinder’18 program, to identify cost-effective 

solutions to challenges such as declining inertia. To enable grid-forming inverters to play a role in this 

program, National Grid has begun the process of drafting grid specifications for these devices19. In contrast to 

this targeted approach, the United States Department of Energy’s Research Roadmap on Grid-Forming 

Inverters20 describes a broad strategic perspective where they “envision a future where grid-forming inverters 

are integrated into electric grids of steadily increasing size and complexity over the next 10–30 years”21, once 

a research base and robust standards environment have been established. 

In Australia, the need to develop grid-forming inverter support for system security is rapidly building, as 

shown in Section 2.1. International learnings and development will be valuable in informing domestic 

decision-making, however the pace of change in the NEM necessitates early action that may come in advance 

of other jurisdictions. To support this need for early action, trials funded by the Australian Renewable Energy 

Agency (ARENA)22 are now underway to demonstrate grid-forming inverter capabilities such as synchronous 

inertia. Collaboration between grid operators, NSPs, OEMs, developers, researchers, and policy-makers will be 

needed to ensure a harmonised approach as the capability of this technology is proven up. 

3.3 Island operation  

Power system requirements 

• Support power system island with supply balancing and secondary frequency response. 

• Inertia and primary frequency response sufficient to support island. 

• System strength to support island. 

• Disturbance withstand sufficient to survive islanding event. 

Key findings 

• Grid-forming inverters have demonstrated the capability to sustain island operation of microgrids 

without any synchronous machines. Maintaining a secure regional-scale island after a system split 

event is more challenging and further work is required to demonstrate advanced inverter technology 

under these conditions.  

Technology maturity 

• There have been many successful real-world examples of grid-forming inverters supporting a 

sub-transmission system island in a separation event, however support of larger regional-scale islands 

without synchronous generators has not yet been demonstrated. 

Relevant case studies in Appendix A1 

• Case study 3. 

 
18 See https://www.nationalgrideso.com/future-of-energy/projects/pathfinders/stability. 

19 See https://www.nationalgrideso.com/document/159296/download.  

20 Research Roadmap on Grid-Forming Inverters, at https://www.nrel.gov/docs/fy21osti/73476.pdf. 

21 Powering On with Grid-Forming Inverters, at https://www.energy.gov/eere/solar/articles/powering-grid-forming-inverters. 

22 See https://arena.gov.au/projects/hornsdale-power-reserve-upgrade/ and https://arena.gov.au/projects/transgrid-wallgrove-battery/. 

 

https://www.nationalgrideso.com/future-of-energy/projects/pathfinders/stability
https://www.nationalgrideso.com/document/159296/download
https://www.nrel.gov/docs/fy21osti/73476.pdf
https://www.energy.gov/eere/solar/articles/powering-grid-forming-inverters
https://arena.gov.au/projects/transgrid-wallgrove-battery/
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A system split event is an abnormal grid event leading to separation of the system into parallel asynchronous 

zones. Such events are infrequent in the NEM.  

System split events that leave just one or a small cluster of nearby generating units separated from the power 

system are distinct from those that separate the system into larger regions of dispersed units. The former 

might be described as a microgrid, and has the challenge of providing all required energy and system 

services from a single location but does not have to manage interaction with other generating units located 

at a distance. The operation of microgrids is important from a long-term power system resilience perspective, 

however AEMO’s current focus is to determine how advanced inverters can support the operation of complex 

regional-scale islands.  

In large power system islands, a proportion of the remaining synchronous machines are required to maintain 

the voltage waveform, phase angle and frequency of the system. To date, this has only been possible with a 

minimum number of synchronous machines (generation or possibly synchronous condensers). 

Typically, system split events will occur in an edge of grid location (such as South Australia, Queensland, or 

Tasmania in the NEM) or across ‘weak’ transmission corridors. Exports or imports before the system split 

event become power imbalances for the separate islands after the split, which can lead to significant Rate of 

Change of Frequency (RoCoF) events. To ensure power systems can avoid collapse under these large-scale 

system splits, distributed fast acting dynamic support for a range of stability challenges (maintaining healthy 

frequency, voltage, and phase angle) is needed. 

Past events (such as the South Australia split in 2016 and European Union split in 2006) have demonstrated 

that the capabilities provided by online synchronous units have been critical to maintaining system stability 

and avoiding system collapse in the islanded region23. As the NEM moves toward operation with fewer 

synchronous units online, alternative means are required to undertake these tasks.  

Studies by ENSTO-E24 indicate that grid-forming inverters could help avoid system collapse during an 

islanding event, provided they are available in adequate volume and with adequate geographical diversity. 

The current fleet of grid-following IBR in the NEM may not be able to provide the capabilities required to 

survive and maintain an island in the absence of synchronous generation. Internationally, research is 

underway to investigate combinations of grid-forming and grid-following IBR, and synchronous condensers, 

that could potentially support an island in the absence of synchronous generation25. 

Maintaining a stable regional-scale island requires multiple generating units to work together to survive the 

sudden shift in operating conditions that occur during a system split event, and continue to collectively 

provide the capabilities required to maintain stability on the islanded region. Frequency control is of particular 

importance, with sufficient inertia and not just Primary Frequency Response (PFR) capability alone required 

across the islanded fleet.  

The ability for grid-forming IBR to form a secure regional-scale island in the absence of synchronous 

machines has not yet been demonstrated. At a distribution scale, the Energy Storage for Commercial 

Renewable Integration (ESCRI) project in South Australia has demonstrated the capability to operate as an 

island, supported by a 30 MW grid-forming battery. Further details on this project are in Appendix A1.1. 

System stabilising capabilities provided by advanced IBR may provide a new means of managing islanded 

operation in the NEM. Advanced inverter-based BESS will play an important role in island operation as they 

can help maintain the supply-demand balance in an islanded system alongside VRE generators. 

 
23 See https://www.aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2017/Integrated-Final-Report-

SA-Black-System-28-September-2016.pdf. 

24 See https://eepublicdownloads.entsoe.eu/clean-documents/Publications/SOC/High_Penetration_of_Power_Electronic_Interfaced_Power_Sources_and_the

_Potential_Contribution_of_Grid_Forming_Converters.pdf.  

25 ‘Enabling the energy transition by providing solutions for the technological challenges’, MIGRATE 2019, at https://www.h2020-migrate.eu/_Resources/

Persistent/b955edde3162c8c5bf6696a9a936ad06e3b485db/19109_MIGRATE-Broschuere_DIN-A4_Doppelseiten_V8_online.pdf. 

https://www.aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2017/Integrated-Final-Report-SA-Black-System-28-September-2016.pdf
https://www.aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2017/Integrated-Final-Report-SA-Black-System-28-September-2016.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/Publications/SOC/High_Penetration_of_Power_Electronic_Interfaced_Power_Sources_and_the_Potential_Contribution_of_Grid_Forming_Converters.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/Publications/SOC/High_Penetration_of_Power_Electronic_Interfaced_Power_Sources_and_the_Potential_Contribution_of_Grid_Forming_Converters.pdf
https://www.h2020-migrate.eu/_Resources/Persistent/b955edde3162c8c5bf6696a9a936ad06e3b485db/19109_MIGRATE-Broschuere_DIN-A4_Doppelseiten_V8_online.pdf
https://www.h2020-migrate.eu/_Resources/Persistent/b955edde3162c8c5bf6696a9a936ad06e3b485db/19109_MIGRATE-Broschuere_DIN-A4_Doppelseiten_V8_online.pdf


   

 

© 2021 AEMO | Application of Advanced Grid-scale Inverters in the NEM 22 

 

3.4 System restart 

Power system requirements 

• Initiate or support system restoration. 

• Supply balancing. 

• Inertia, primary and secondary frequency response sufficient to support restoration process. 

• System strength to support energisation. 

• Disturbance withstand for adverse conditions during system restoration. 

Key findings 

• Energising a section of the power system can require generators to operate under challenging 

conditions, including the need to provide current above that necessary in normal grid operation on an 

already energised network. Grid-forming inverters have the potential to support or even initiate 

system restart, however this has yet to be demonstrated at scale. 

Technology maturity 

• Proven ability to provide system restoration capability at distribution to sub-transmission levels. 

Energisation at a bulk power system level has not yet been demonstrated. 

Relevant case studies in Appendix A1 

• Case studies 3, 4 and 5. 

 

Black system events occur rarely in the NEM (South Australia in 2016, northern Queensland in 2009, and New 

South Wales in 1964). While these events are rare, system operators must have resources available to restart 

and restore the system to a secure and reliable operating state, as safely and quickly as possible, in the event 

of a major supply disruption.  

In the NEM, system restoration capability is supported by System Restart Ancillary Service (SRAS)26. 

To date, SRAS has been serviced in a top-down manner, where large synchronous generating systems start 

the transmission system first and then sequentially energise other energy sources and load. Energising a 

network generally requires a long duration, dispatchable power source with sufficient short circuit power. 

Only a small portion of synchronous generators in the NEM can provide SRAS, because they must be 

designed specifically to do so. 

Energising a section of the power system can require system restart units to operate in adverse conditions27, 

including the need to provide current above that necessary in normal grid operation on an already energised 

network. For any generating unit to provide this capability, it needs to prove that it can: 

• Start by itself and not need an external supply to operate auxiliary load. 

• Control voltage and frequency. 

• Supply the necessary short duration energisation and fault currents. 

• Deliver power for hours at a time while other sources of supply come online. 

• Preferably, provide additional inertia to make frequency control easier on a restored network. 

 
26 See https://aemo.com.au/en/energy-systems/electricity/national-electricity-market-nem/system-operations/ancillary-services/system-restart-ancillary-

services-guideline. 

27 See https://www.hvdccentre.com/wp-content/uploads/2020/02/EPRI-HVDC-Restoration-Project-Final-Webinar_20200213.pdf. 

https://aemo.com.au/en/energy-systems/electricity/national-electricity-market-nem/system-operations/ancillary-services/system-restart-ancillary-services-guideline
https://aemo.com.au/en/energy-systems/electricity/national-electricity-market-nem/system-operations/ancillary-services/system-restart-ancillary-services-guideline
https://www.hvdccentre.com/wp-content/uploads/2020/02/EPRI-HVDC-Restoration-Project-Final-Webinar_20200213.pdf
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A difficulty in restarting a network can be energising large power transformers, which requires these units to 

deliver large amounts of current for a short duration, meaning they must be designed for a high overload 

rating. For grid-forming inverters to provide significant system restart capability, they would need to be rated 

appropriately and be fed from a suitably sized energy source, such as a very large battery or HVDC link.  

Appendix A1.5 details a desktop study investigating how a grid-forming inverter could initiate restarting a 

portion of the Scottish grid using a ‘soft-start’ method to limit surge current requirements. Examples such as 

this demonstrate the potential for grid-forming inverters to provide system restart services in innovative ways, 

however it is important to consider the restoration process from end-to-end as it may not always be possible 

to avoid the need for high overload current requirements. 

Due to their typical location on the network, grid-forming inverters might be used for either a top-down or 

bottom-up (distribution system-initiated) system restart approach: 

• Often utility-scale IBR are in remote areas away from load centres. Grid-forming inverters on these plants 

could assist in a top-down system restart approach in a similar manner to the current process.  

• For IBR that is connected via the distribution network, a bottom-up approach could be used. This would 

involve energising distribution load first, before energising up the transmission network to larger 

generators. 

Over time, the number of large synchronous generating units with SRAS capability is likely to reduce as these 

generators are retired. The current fleet of IBR cannot provide SRAS capability, so new resources will be 

required to ensure restoration standards can continue to be met into the future. 

In November 2020, AEMO updated its SRAS Guideline to contain a description of new restoration support 

services that may be procured to assist with restoration, along with a system restart service28. Restoration 

support services can include services provided by IBR to assist with dynamic reactive power support, and 

utilise their fast ramp rates for frequency control, via load balancing, in the system restart process. The system 

restart process requirements will need to evolve over time to reflect the capability of advanced inverters and 

their potential to replace traditional means of delivering SRAS. 

4. Barriers and enablers  

This section explores four key barriers to, and enablers for, the adoption of advanced 

grid-scale inverters in the NEM. 

Stakeholders interviewed by AEMO during the development of this paper indicated that inverter 

manufacturers are confident in the capability of their grid-forming devices and associated control systems to 

support the power system. However, barriers do exist between the development of this technology and its 

deployment at scale in the NEM to meet the applications identified in Section 3.  

Action is required by market bodies, government, and industry to overcome these barriers and enable rapid 

deployment of advanced inverters to meet the growing demands of the transitioning power system.  

Table 4 summarises four key barriers and possible enablers for the adoption of advanced grid-scale inverters. 

 
28 See https://aemo.com.au/consultations/current-and-closed-consultations/sras-guideline-2020. 

https://aemo.com.au/consultations/current-and-closed-consultations/sras-guideline-2020
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Table 4 Key barriers and possible enablers for uptake of advanced grid-scale inverters 

Barrier or enabler Description 

Capability 

specification 
• Grid connection specifications are needed to provide clear requirements to OEMs and developers. 

• Initial targeted approach could inform future design of standards and grid codes. 

Capability 

demonstration 
• Maturity of advanced inverter capability varies across the range of required power system capabilities. 

• Limited deployment and untested performance in large power systems. 

Costs • Grid-forming infrastructure currently carries a cost premium. 

• Demonstrating compliance is complex, requiring time and engineering expertise. 

• Timeline and performance uncertainty can influence financing costs. 

Revenue • Many potentially valuable capabilities to support the power system do not have established revenue 

streams. 

• Targeted revenue streams could drive initial uptake. 

4.1 Capability specification 

According to Matevosyan, Badrzadeh in their Energy Systems Integration Group (ESIG) report29, grid 

operators, manufactures, researchers, and policy-makers need to continually discuss conditions under which 

grid-forming technology is needed, and the performance requirements should be clearly defined in grid 

codes or standards. OEMs then can develop equipment with new capabilities that balance performance and 

costs. This dialogue is crucial to ensure specifications efficiently meet the needs of the power system and 

accommodate perspectives from across industry. 

Well-defined grid connection specifications for advanced inverters could accelerate their uptake by providing 

clear requirements to OEMs and streamlining the connection approval process for developers. Building these 

specifications in line with the applications raised in Section 3 would ensure new connections are designed in 

line with power system requirements. Clearly defining the desired capabilities from advanced inverters from a 

power system operations perspective would provide an initial step toward iterative development of more 

detailed specifications. Reworking some of the existing NER performance requirements, which at the time 

were written to cater for synchronous generation and grid-following IBR, would provide a clearer pathway for 

assessing grid-forming inverters during new connection applications. 

Specifications do not necessarily have to be mandatory requirements on grid connections. For example, in 

the United Kingdom, National Grid has begun drafting a grid code for grid-forming inverters alongside its 

‘stability pathfinder’ program (see Section 3.2). This demonstrates a targeted approach, leveraging a funded 

program of work to start developing specifications addressing the need for new inertia services. Over time, 

such specifications could inform the development of more formal technical standards to drive an 

internationally harmonised approach to grid-forming capability specification. Jurisdictions could then 

determine whether there would be net benefit from making these standards mandatory to cater for local 

conditions. 

It may not be necessary for all, or even most, inverters to carry grid-forming capability to support a grid 

operating with high IBR penetration. Future grid codes will need to consider how diverse combinations of 

grid-forming and grid-following inverters, synchronous condensers, and synchronous generators will interact 

to support a secure and resilient power system. Technical specification may play a role in guiding this 

generation mix, as may market and non-market revenue mechanisms (discussed further in Section 4.4). 

Interviews conducted during the development of this paper indicated stakeholder perception (internationally 

and within Australia) of a standstill between the three major interested parties: grid operators, OEMs, and 

developers. Grid operators are cautiously asking for clear definitions of what this technology is capable of and 

 
29 At https://www.esig.energy/wp-content/uploads/2020/01/MPE2933072_7Matevosayn_preprint.pdf. 

https://www.esig.energy/wp-content/uploads/2020/01/MPE2933072_7Matevosayn_preprint.pdf
https://www.esig.energy/wp-content/uploads/2020/01/MPE2933072_7Matevosayn_preprint.pdf
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what it cannot (currently) do. The OEMs are asking for clear, functional grid specifications detailing how 

grid-forming inverter connections will be assessed to provide sufficient incentive for them to develop 

commercial grid-forming inverter systems for bulk power system applications. Developers are asking how 

they can utilise this emerging technology in clearly defined markets to unlock plant capability. 

Clearly defined requirements for power system support are required to break this standstill, or advanced 

inverter uptake will likely remain slow and untargeted. Without these, developers are unlikely to consider 

implementing functionality above the requirements for connecting IBR in weak grid areas (see Section 3.1), as 

there will be no guidance as to the necessary capability. This barrier toward the uptake of advanced inverters 

should be addressed as soon as possible, and Australia is at the forefront of this challenge due to the pace at 

which IBR generation is displacing synchronous generation (see Section 2.1). 

4.2 Capability demonstration  

Despite the potential of advanced grid-scale inverters to support a system with high penetration of IBR, 

stakeholders have noted that this technology is not necessarily a “silver bullet” for solving all challenges of the 

energy transition. Advanced inverters have shown their capability to provide a range of valuable capabilities 

in a bulk power system (see Section 3), however the maturity and demonstrated scale of these capabilities 

varies.  

In a survey of grid-forming inverter applications carried out by ESIG30, Australia is highlighted as one of the 

world leaders for analysis and large-scale trials of this technology; the Dalrymple Battery and the Hornsdale 

Power Reserve31 are given as relevant examples.  

Table 5 summarises the maturity of advanced inverters for the four identified applications from Section 3. 

Table 5 Maturity of advanced inverter applications in large-scale power system  

Application Technology maturity Real-world examples 

(see Appendix A1) 

Connecting IBR in 

weak grid areas 
Stable operation of grid-forming BESS in weak grid areas demonstrated at 

small scale. Simulation indicates potential for grid-forming BESS to stabilise 

selected areas of the NEM but no demonstrated examples to date. Tuning of 

grid-following IBR to mitigate voltage oscillations has been demonstrated in 

the NEM, see Appendix A1.1. 

Limited examples 

Supporting system 

security 
Isolated examples on large power grids. Standards and market mechanisms 

being drafted in the UK. 

Limited examples 

Island operation Successful applications at sub-transmission level, including in the NEM. 

Needs proving up for regional-scale islands. 

Small-scale 

System restart Demonstrated at distribution level and simulated examples of initiating 

transmission restoration. 

Small-scale 

 

Stakeholders noted a major barrier to the uptake of advanced inverters at scale is their limited deployment 

and untested performance in large power systems. Views as to the readiness of advanced inverter capabilities 

vary widely, indicating that more needs to be done to demonstrate the capability of this technology to meet 

the applications described in Section 3, and to build confidence in the potential of advanced inverters to meet 

the needs of a power system with fewer synchronous generating units online. This includes testing and 

development of early-stage functionality at small scale, and demonstrating the performance of mature 

functionality at a large enough scale to provide meaningful results on a gigawatt-scale power system.  

 
30 See https://www.esig.energy/event/g-pst-esig-webinar-series-survey-of-grid-forming-inverter-applications/. 

31 See https://arena.gov.au/projects/hornsdale-power-reserve-upgrade/. 

https://www.esig.energy/event/g-pst-esig-webinar-series-survey-of-grid-forming-inverter-applications/
https://arena.gov.au/projects/hornsdale-power-reserve-upgrade/
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Testing of early-stage functionality requires a funding model that recognises the engineering and regulatory 

challenges that inevitably arise at this stage of the development curve. These challenges can lead to delays 

and expenditure that need to be accounted for in the project plan, and likely necessitate the involvement of a 

funding partner such as ARENA to support a viable project structure. 

Demonstration of mature functionality at scale requires a support structure that enables safe and timely 

connection of projects under a framework that maximises learnings and outcomes.  

Grid-scale batteries are connecting to the NEM at an unprecedented rate, and AEMO, OEMs, and developers 

need to work together to enable these installations to test advanced inverter capabilities on these projects 

under an appropriate framework. Unless this framework is established soon, developers of new grid-scale 

batteries may avoid deployment of advanced capabilities due to concern over complex connection 

requirements and potential delays to the commissioning process. This outcome would represent a missed 

opportunity for AEMO and the broader electricity sector to learn and gain confidence in this technology. 

4.3 Cost of this capability  

This section addresses the costs of deploying advanced grid-scale inverter functionality from the perspective 

of the additional costs associated with using a grid-forming inverter as opposed to a grid-following inverter. 

These include upfront infrastructure, compliance, and operational costs, and may reflect the cost risk of 

adopting a design that is not yet well understood by industry.  

The additional cost of deploying grid-forming inverter technology might currently present a barrier to its 

uptake for some developers, who may elect to meet system strength and other grid requirements for their 

connection through traditional means rather than incurring any additional costs or risks associated with this 

technology. Overcoming this barrier could enable rapid deployment of grid-forming capability on projects 

that might otherwise select grid-following technology.  

Consideration of costs associated with incorporating grid-forming technology to VRE projects is also 

important, particularly where this would require adding energy storage to a project (see Section 2.4). For 

example, to provide fault current during a network disturbance, a grid-forming inverter would need to be 

coupled with sufficient energy storage (such as a battery) to generate this higher current. Assessment of such 

projects requires complex trade-offs and is outside the scope of this paper. 

Table 6 describes some of the cost influences of grid-forming inverter projects. The impact of these influences 

will vary depending on the application targeted by a given project, due to the service capabilities required for 

that application (see Section 3). 

The immediate challenge is to minimise costs and risks associated with developing grid-forming projects early 

in the uptake curve. Later projects can then benefit from experience and efficiencies developed during earlier 

projects, as well as economy of scale as grid-forming technology becomes established internationally. 
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Table 6 Cost influences on grid-forming inverter projects 

Cost influence Description Category 

Uprated components Components with higher rating may be required to manage overload currents 

associated with system strength provision. 

Infrastructure 

Cost premium for grid-

forming inverter hardware 
OEMs may price new products to reflect development overhead and sales 

volumes. This premium is expected to reduce over time as sales increase and 

competition increases. 

Infrastructure 

Operating at reduced 

capacity to provide 

headroom 

Opportunity cost reflecting that some system requirements (such as inertia) may 

require the plant to operate at a setpoint that reserves headroom for service 

delivery. 

Operational 

Grid specification 

compliance 
More time may be required to achieve grid compliance when connecting new, 

complex technology, potentially leading to lost revenue and additional 

engineering expense. This cost influence will be particularly relevant for early 

adopters but is expected to reduce as industry experience is developed. 

Compliance 

Re-tuning compliance costs Tuning of plant after initial commissioning can trigger re-assessment of plant 

performance under NER 5.3.9, potentially leading to changes to performance 

standards. This cost barrier can lead to reluctance to enable new functionality or 

optimise operation to suit changing conditions. 

Compliance 

Capability demonstration in 

varying conditions 
Demonstrating capability to deliver complex power system support capabilities 

under varying conditions may require additional time and engineering expense. 

Compliance 

Timeline and performance 

uncertainty 
The risk from adopting a novel technology may influence the cost of financing a 

project. 

Finance 

4.4 Revenue streams for this capability 

In the absence of mandatory technical specifications to guide the deployment of advanced grid-scale 

inverters, encouraging their uptake in the NEM will require suitable incentives for developers to incorporate 

this technology into their projects. These could include sources of revenue such as: 

• Delivery of market and non-market services. 

• Provision of regulated services such as non-network augmentation. 

• Direct funding from governments to support renewable energy programs. 

As shown in Section 2.5, advanced inverters have the potential to provide most (and potentially all) system 

requirements required by a future power system with a high penetration of IBR generation. However, many of 

these capabilities are not yet fully valued, or are not easily accessible as revenue streams. Developing 

enduring frameworks to value and deliver these services will take time, and is a focus of the Energy Security 

Board’s (ESB’s) Post 2025 Market Design work32.  

The delivery of a clear pathway for advanced inverters to unlock revenue will influence the speed of their 

adoption by industry in the medium term. Market bodies and industry need to work together to develop 

technical specifications and market and non-market mechanisms that can utilise grid-forming inverter 

capability effectively. In the United Kingdom, an initial step has been taken to provide grid-forming inverters 

access to revenue for provision of inertia and system strength services through National Grid’s ‘stability 

pathfinder’ program (see Section 3.2). This work offers a view of how revenue opportunities can drive the 

deployment of specific technology.  

 
32 See https://esb-post2025-market-design.aemc.gov.au/. 

https://esb-post2025-market-design.aemc.gov.au/
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Section 4.3 discusses the costs faced by developers of grid-forming inverter systems, particularly those 

influencing near-term projects that are early in the adoption curve of this technology. To overcome this initial 

hurdle, direct funding may be needed to stimulate learning opportunities and to begin building fleet capacity. 

5. Recommendations and 
next steps 

Advanced inverters are an exciting new technology with tremendous potential being shown in theory and in 

trials across large power systems around the world, and particularly in Australia. However, while the potential 

is high, stakeholders have noted that this technology is not necessarily a ’silver bullet‘ for solving all 

challenges of the energy transition. 

Figure 6 shows how the four potential applications for advanced inverters identified in Section 3 are expected 

to grow in relevance as technology maturity and system needs evolve. 

Figure 6 Increasing relevance of applications detailed in this paper 

 
 

As noted in Section 2.4, advanced inverters need a firm energy source behind them to replace many of the 

capabilities historically provided by synchronous generators. Given the need to progressively reduce the 

NEM’s reliance on synchronous machines, AEMO recommends prioritising deployment of grid-forming 

capabilities on grid-scale BESS, as this technology provides capability to deliver firm energy behind the 

inverter. While large, standalone BESS provide a simple way to deliver grid-forming capability, smaller 

batteries (with storage capability of several minutes) coupled to VRE plants might also provide a flexible 

resource mix to cater for the applications described in this paper. 

With a growing number of grid-scale batteries committed or proposed on the NEM, there is a rare window of 

opportunity to build grid-forming capabilities into this battery fleet today. This would enable testing and 

demonstration of these capabilities at scale, and begin to build a fleet that can support the power system as it 

transitions to high IBR penetration. 

Given the speed of transition in the NEM, AEMO recommends a balanced approach that seeks to maximise 

low-regret opportunities to incorporate grid-forming capabilities on new grid-scale batteries, while prudently 

proving up the NEM’s ability to rely on grid-forming technology. To facilitate the fastest possible transition 
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and seriously develop and capitalise on grid-forming inverter technology potential, more time and resources 

need to be spent across industry proving this technology at scale and overcoming barriers to its adoption.  

Until the technology is sufficiently proven at scale, caution must be taken in how quickly the NEM can rely on 

these capabilities as primary providers of system stabilisation. 

5.1 Recommendations 
To begin capturing the opportunities presented by advanced grid-scale inverters, AEMO recommends 

immediate actions be taken across the three focus areas shown in Figure 7. 

Figure 7 Recommendations for immediate action 

 

5.2 Next steps 

This report has been developed as part of AEMO’s Engineering Framework as an accelerated effort to identify 

priority actions to help enable a promising emerging technology. The recommended actions outlined in 

Section 5.1 will be captured and tracked within the Engineering Framework process of prioritising gaps and 

opportunities needed to support system operation at times of high IBR and low synchronous generation. An 

overview of this timeframe is provided in Figure 8. 
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Figure 8 Engineering Framework (EF) timeline 

 
  

To get in touch with AEMO regarding the contents of this white paper, to seek more information about how 

to engage in upcoming engagements for the Engineering Framework, or to sign up to AEMO’s Engineering 

Framework mailing list, please contact AEMO at FutureEnergy@aemo.com.au.    

mailto:FutureEnergy@aemo.com.au
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Acronyms 

Acronym Term in full Acronym Term in full 

AC Alternating Current IBR Inverter-based resource/s 

AEMO Australian Energy Market Operator ISP Integrated System Plan 

ARENA Australian Renewable Energy Agency kV Kilovolt 

BESS Battery Energy Storage System MVA Megavolt-amperes 

DC Direct Current MW Megawatts 

EMT Electromagnetic transient MWh Megawatt hours 

EPRI Electric Power Research Institute NEM National Electricity Market 

ESB Energy Security Board NER National Electricity Rules 

ESCRI Energy Storage for Commercial Renewable Integration OEM Original Equipment Manufacturer 

ESIG Energy Systems Integration Group PFR Primary Frequency Response 

EV Electric Vehicle RIS Renewable Integration Study 

FCAS Frequency Control Ancillary Services RoCoF Rate of Change of Frequency 

FFR Fast Frequency Response SCR Short Circuit Ratio 

GW Gigawatt SRAS System Restart Ancillary Service 

HVDC High Voltage Direct Current SVC Static VAR Compensator 

Hz Hertz TNSP Transmission Network Service Provider 

Hz/s Hertz per second VRE Variable Renewable Energy 
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A1. Case studies 

The five case studies in this section were selected to highlight recent investigations and demonstrations of the 

advanced inverter applications detailed in this paper.  

The first two cases represent separate studies into the use of a grid-forming BESS to stabilise IBR operating in 

weak grid areas, with both finding that this technology has the potential to stabilise the grid with results 

comparable to those achieved with a synchronous condenser. 

The remaining studies illustrate a range of applications of grid-forming technology within Australia and 

internationally. Several of these are covered in more detail in the recent G-PST/ESIG webinar ‘Survey of 

Grid-Forming Inverter Applications’33, along with other relevant international demonstration projects. 

A1.1 Case Study 1: grid-forming BESS in West Murray region 

The West Murray region in the NEM has low system strength and a high concentration of IBR. In 2019, 

AEMO’s detailed electromagnetic transient (EMT) modelling of the region identified that poorly damped 

sub-synchronous voltage oscillations can occur after a fault in the area followed by a disconnection of a key 

transmission element. The cause of the oscillations was found to be associated with grid-following IBR in the 

area. The oscillations were adequately mitigated in 2020 through tuning of the control system parameters of 

several of these IBR.  

In 2020, AEMO and Hitachi ABB collaborated on a desktop study to assess whether a grid-forming BESS 

might have provided an alternative way to mitigate oscillations in the West Murray region, with the goal of 

better understanding the capabilities of this technology. 

Advanced inverter applications investigated  

To assess the potential of grid-forming inverters to facilitate the connection of IBR in weak grid areas, the 

most onerous contingency was applied to test the effectiveness of a synchronous condenser and an 

equivalent grid-forming inverter (operating in virtual synchronous machine (VSM) mode) at providing 

adequate damping to the voltage oscillations. 

The example power system shown in Figure 9 was used, with 12 IBR generators, 3 static VAR compensators 

(SVCs) and one DC interconnector. All IBR generators were simulated using their original configuration 

settings as they were prior to the 2020 tuning process.  

Three cases were investigated: 

1. Base case: All IBR generators in service. 

2. Base case plus a 60 megavolt-amperes (MVA) synchronous condenser connected at Bus 14. 

3. Base case plus A 60 MVA VSM connected at Bus 14. 

The post disturbance voltages at a given IBR terminal are shown in Figure 10. The base case showed poorly 

damped voltage oscillations following a disturbance. The peak-to-peak magnitude of oscillation was 

approximately 0.9% with the frequency of oscillation around 7-8 hertz (Hz) (blue trace). The same disturbance 

was applied after connecting a 60 MVA synchronous condenser and a 60 MVA VSM at bus 12. For both these 

cases, the magnitude of oscillations significantly reduced to around 0.3%, showing the similar effectiveness of 

a synchronous condenser and VSM in providing system strength to the power system and damp voltage 

oscillations under these conditions. 

 

 
33 See https://www.esig.energy/event/g-pst-esig-webinar-series-survey-of-grid-forming-inverter-applications/ 

https://www.esig.energy/event/g-pst-esig-webinar-series-survey-of-grid-forming-inverter-applications/
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Figure 9 West Murray region network layout 

 
SCO: Synchronous condenser 

Figure 10 Post disturbance voltage oscillations for the evaluated three cases 

 

A1.2 Case Study 2: grid-forming BESS in Queensland network 

In a technical study completed by Powerlink in 2020, EMT modelling was conducted to investigate how a 

grid-forming inverter BESS, connected in place of a synchronous condenser, could adequately damp 

sub-synchronous voltage oscillations and improve transient stability in a weak grid area with a high 

penetration of IBR. 

This section provides a brief summary of the findings of this work, as presented at a recent ARENA webinar34. 

The full results of this study are published on the ARENA website35. 

The area of the NEM studied is shown in Figure 11. This network consists of high voltage transmission with 

two IBR generators connected on single lines at Bus 3 and 4. The buses have been de-identified; however, the 

study used a section of the real network with some modification. The studied scenarios consisted of: 

1. Base Case – only IBR plant 1 and 2 with no synchronous condenser or grid-forming BESS in service. 

2. IBR plant 1 and 2 and synchronous condenser only at Bus 5. 

3. IBR plant 1 and 2 and grid forming BESS only at Bus 5. 

 
34 See https://arena.gov.au/knowledge-bank/presentation-arena-insights-webinar-advanced-inverters/. 

35 See https://arena.gov.au/assets/2021/07/pscad-assessment-of-the-effectiveness-of-grid-forming-batteries.pdf. 

https://arena.gov.au/knowledge-bank/presentation-arena-insights-webinar-advanced-inverters/
https://arena.gov.au/assets/2021/07/pscad-assessment-of-the-effectiveness-of-grid-forming-batteries.pdf
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Figure 11 Single line diagram of Powerlink case study network 

 
 

As shown in the ARENA report, after a nearby network fault the base case scenario showed sub-synchronous 

voltage oscillations from the connected IBR plant reflected at the high voltage buses in the network. The 

unstable post-fault voltage oscillations are shown in Figure 12. The results show that post-fault (at 15 seconds) 

the voltage waveform oscillations that occurred were not adequately damped. According to NER S5.2.5.13, 

S5.1.8(b), and S5.1a.3, the presence of post-fault voltage oscillations that cannot be adequately damped 

means the network is considered unstable and is a key indicator of a ‘weak grid’. 

Figure 12 Base Case voltage oscillations at each bus post-fault 

 
 

Case 2 employed a standard remediation method of increasing system strength by increasing network fault 

level using an OEM-supplied model of a synchronous condenser at a nearby bus (Bus 5). Figure 13 shows this 

adequately damped post-fault voltage oscillations. 
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Figure 13 Case 2 (with synchronous condenser) voltage oscillations at each bus post-fault 

 
 

Advanced inverter applications investigated 

Case 3 used an OEM model of a grid-forming inverter (instead of the synchronous condenser used in Case 2) 

to show the potential of this technology to provide system strength and support connecting IBR in weak 

grid areas. The grid-forming inverter with a firm battery energy source behind it provided a strong voltage 

waveform reference for the surrounding grid and provided a damping ability which stabilises the system 

similarly to the synchronous condenser, as seen in Figure 14. 

Figure 14 Case 3 (with properly tuned grid forming inverter) voltage oscillations at each bus post-fault 

 
 

This desktop study indicated that the grid-forming inverter, when placed in an effective position on the 

network, adequately damped the post-fault voltage oscillations. This damping ability was similar to that 

exhibited by a synchronous condenser and could enable the stable operation of renewable IBR in the area. 
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A1.3 Case study 3: ESCRI battery in grid-forming mode 

This case study is adapted from a CIGRE paper by ABB36 and outlines the capabilities provided by the 

Dalrymple Energy Storage for Commercial Renewable Integration (ESCRI) BESS in SA. It is currently the largest 

grid-forming BESS in the world, at 30 MVA and 8 megawatt hours (MWh). It is the first large-scale, 

grid-forming BESS connected to the NEM. It was installed on the lower Yorke Peninsula in South Australia in 

2018, near the end of a long 132 kilovolt (kV) single-circuit radial feeder, as shown in Figure 15. 

Figure 15 ESCRI battery network location – a simple network diagram 

 
 

Advanced inverter applications investigated 

The Dalrymple BESS project has shown that grid-forming BESS can provide a range of advanced technical 

capabilities to support the operation of power systems with high penetration of IBR (as outlined in Section 3).  

In the first six months of operation, the Dalrymple BESS reduced the loss of supply in the area from 

approximately 8 hours to 30 minutes.  

The capabilities provided by the project include: 

• Island operation – the system can operate in islanded configuration and transition to and from an 

islanded state. When the upstream connection to the transmission system is lost and the system is 

islanded, it regulates frequency in the microgrid using synthetic inertia, a frequency governor operating in 

droop mode on the primary control level, and a frequency controller with a small dead-band on the 

secondary level. Additionally, under islanded conditions, Dalrymple can adjust the system frequency to 

invoke curtailment of behind-the-meter DER to avoid over-generation conditions. 

• System restart – the grid-forming BESS can black start the local 33 kV distribution network. This is 

achieved through a soft energisation of the system (where voltage is ramped up slowly to prevent inrush 

current and harmonics). However, system restart capability was unproven beyond the small section of 

local distribution network. 

• Connecting IBR in weak grid areas – the system can operate at very low Short Circuit Ratios (<1.5), 

significantly beyond what traditional IBR generation can perform. It is also able to provide system strength 

support capability via short-term fault current overload. 

• Supporting system security (provision of inertia) – the BESS can provide adjustable synthetic inertia, 

rapidly arresting frequency deviations on the grid. 

 
36 See https://www.electranet.com.au/wp-content/uploads/2021/02/CIGRE48-Grid-Forming-BESS-Case-Study-August-2020.pdf. 

https://www.electranet.com.au/wp-content/uploads/2021/02/CIGRE48-Grid-Forming-BESS-Case-Study-August-2020.pdf
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A1.4 Case study 4: Wind farm in grid-forming mode  

The 69 MW Dersalloch wind farm in Scotland was trialled in grid-forming mode for six weeks during 2019, 

exploring different tuneable inertia coefficients in its control systems. During the six-week trial, it responded 

to actual and artificial grid disturbances, including a black start event.  

According to Roscoe et al37, the wind farm demonstrated responses similar to those expected of a similar 

sized synchronous generator for all but the largest disturbances. Siemens Gamesa has documented the 

results of this grid-scale trial, which show a promising future for grid-forming inverters38. 

Advanced inverter applications investigated 

• System restart – the grid-forming wind farm was proven to be able to provide system restart capability, 

including the ability to black start the local distribution network and a small part of the transmission 

system. According to the paper, the successful energisation of a 132 kV system and subsequent 

synchronisation with the grid at 132 kV indicates that renewable generators could play a role in the 

re-energisation process, potentially bringing distribution customers online faster than a top-down 

process. 

• Supporting system security (system stability) – bus decoupling events can cause impedance changes, 

resulting in a phase step at the generator. When this happens to synchronous machines, the power flow 

of the machine instantly changes to re-align the phase angle of the generator with that of the grid. This 

change in power flow helps stabilise the power system. In this case study, a synchronous machine would 

be expected to provide a burst of power, slowing down its rotor to assist with grid stabilisation. The 

grid-forming wind farm provided a similar service to that expected of a synchronous machine. By using 

kinetic energy from the wind turbine blades, the grid-forming inverter was able to provide additional 

power to the grid and help stabilise the phase step. 

• Supporting system security (provision of inertia) – on 31 May 2019, the England-France 

interconnector tripped. The British RoCoF peaked at ~-0.11 hertz per second (Hz/s) and a frequency drop 

of ~0.5 Hz. The grid-forming wind farm was shown to provide synthetic inertia into the grid, helping 

arrest frequency. After the interconnector tripped, the turbine output power of the grid-forming wind 

farm was higher than the inverter reference power, so kinetic energy from the turbine blades was 

extracted to provide synthetic inertia to the grid. 

The limitations of grid-forming wind turbine generators 

The power system events that occurred over the six-week trial were not large enough to have a significant 

effect on the wind turbine bus voltages, rotor speeds, or pitch angles. This is because the RoCoF and 

frequency deviations, although significant events, were not large compared to the worst possible deviations 

which might occur in an islanded power system. To explore the turbines’ behaviour under more significant 

events, artificial disturbances were injected into the control system of the inverter. 

The most extreme test involved setting all wind turbines to a high inertia response setting and subjecting 

them to a 3 Hz frequency drop for a maximum RoCoF of -1 Hz/s at 12:05pm. In this test, the kinetic energy 

extracted from the turbines to provide synthetic inertia (Figure 16a) the grid significantly reduced the rotor 

speed.  

As the event progressed, this reduction in rotor speed led to a reduction in the power generated by the 

turbines and also left the turbines with a post-event recovery period (Figure 16b) where power output was 

reduced until the rotor speeds recovered. 

 
37 “Response of a grid forming wind farm to system events, and the impact of external and internal damping”, Roscoe A., Knueppel T., Da Silva R., Brogan P., 

Gutierrez I., Elliott D., Perez Campion J., IET Journals, published 2021, at https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-rpg.2020.0638. 

38 “Operator Considerations for the Implementation of Testing Enhanced Grid Forming Services on an Onshore Wind Park”, Gutierrez et al, Virtual 19th Wind 

Integration Workshop, 11-12 November 2020. 

https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-rpg.2020.0638
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Figure 16 Active power and rotor speed diagrams in response to a major RoCoF event 

Panel a: Active power output of wind generator (blue trace) in response to system disturbance (orange trace) 

 

Panel b: Maximum, mean, and minimum wind turbine rotor angle speeds before and after its response to the system 

disturbance 

 

Source: “Response of a grid forming wind farm to system events, and the impact of external and internal damping”, Roscoe et al, at 

https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-rpg.2020.0638. 

This event demonstrated that there are limits to the grid support that can be provided by wind turbines 

without additional energy storage. Energy storage would firm the wind farm’s response over a wider range of 

operating conditions, however this would add additional capital costs. 

A1.5 Case study 5: HVDC station in grid-forming mode  

An EPRI presentation from February 202039 summarises a black start simulation, using a 1,400 MW 

voltage-source converter HVDC between Norway and Scotland to successfully restore sections of the Scottish 

Grid.  

The study case, simulated in EMT software, began with energisation of the HVDC station on the Scottish side, 

which then energised surrounding distribution networks, eventually picking up a synchronous pumped hydro 

station to complete the rest of the system restart services.  

Figure 17 shows the network layout used in the simulation. 

 
39 At https://www.hvdccentre.com/wp-content/uploads/2020/02/EPRI-HVDC-Restoration-Project-Final-Webinar_20200213.pdf. 

https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-rpg.2020.0638
https://www.hvdccentre.com/wp-content/uploads/2020/02/EPRI-HVDC-Restoration-Project-Final-Webinar_20200213.pdf
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Figure 17 Simplified network diagram of black starting a hydro generator with HVDC 

 
 

Advanced inverter applications investigated 

The system restart capability was simulated using a soft energisation of the system, where voltage is ramped 

up slowly to prevent inrush current and harmonics. Soft starting increases the prospect of successful 

restoration by reducing the probability of protection tripping due to overcurrent, and additionally can aid in 

preventing switching and harmonic overvoltage. The phasor diagrams in Figure 18 show how the HVDC 

station ramps up the voltage from 0 to 1 pu alongside the resulting energisation of the network transformers. 

The HVDC station was configured in grid-forming mode during the initial restoration process, and once the 

synchronous grid was established with the operation of the hydro generator, the HVDC returned to 

grid-following mode. 

Figure 18 Phasor diagram of the HVDC soft energisation current over 0.5 seconds 
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The limitations of grid forming for system restart 

This case study showed that grid-forming inverters on an HVDC station have the potential to energise into 

the transmission network during a system restart. However, this capability relies on the high power and 

energy sources on the other end of the HVDC connection. Other applications of grid-forming inverters (such 

as batteries) may not have such a large capacity available, so may be limited in their capability to restart large 

networks. 

Soft starting shows potential as a means of managing current flows during energisation of a section of the 

system. However, as the system restart process progresses to sequentially include other generators and 

network infrastructure, it may become challenging to manage voltages within the limits of these assets during 

a soft start. 

 

 


