\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{titlesec} \usepackage[margin=1.5cm]{geometry} \newcommand{\sectionbreak}{\clearpage} \usepackage{amsmath} \usepackage{mathtools} \usepackage{amssymb} \newcommand*{\field}[1]{\mathbb{#1}} \usepackage[normalem]{ulem} \setlength{\parindent}{0pt} \usepackage{natbib} \usepackage{graphicx} \usepackage{multicol} \usepackage{longtable} \usepackage{tabu} \usepackage[dvipsnames,table]{xcolor} \usepackage{breqn} \usepackage{physics} \usepackage{hyperref} \hypersetup{colorlinks = true, linkcolor = {violet}} \usepackage{textcomp} \usepackage{gensymb} \usepackage{soul} \setcounter{secnumdepth}{4} \setcounter{tocdepth}{4} \titleformat{\paragraph} {\normalfont\normalsize\bfseries}{\theparagraph}{1em}{} \titlespacing*{\paragraph} {0pt}{3.25ex plus 1ex minus .2ex}{1.5ex plus .2ex} \definecolor{violet}{RGB}{112, 48, 160} \usepackage[printwatermark]{xwatermark} \usepackage{lipsum} \usepackage{verbatim} %\newwatermark[allpages,color=red!30,angle=45,scale=3,xpos=-10,ypos=0]{DRAFT} \setlength{\tabulinesep}{3pt} \title{WEM Metering, Settlement \& Prudential Calculations} \author{Australian Energy Market Operator} \date{Applicable Trading Days: 1 October 2021\\ Version 4.1\\ Version published: 15 September 2021} \begin{document} \maketitle \clearpage \section*{Version Control} A major version change occurs when the WEM Rules or Market Procedures require changes to the equations from a particular Trading Day onward.\\ A minor version change may occur for editorial changes, manifest errors or implementation changes that will apply to the same Trading Day period as dictated by the major version. \begin{longtabu}{|m{0.08\linewidth}|m{0.87\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Version & Changes\\ \hline \endhead 1.0 & Original publication consistent with WEM Rules effective 1 September 2019\\ \hline 1.1 & New functionality added to distinguish between prudentials and settlements. \newline Update of Interest formulae for settlements. \newline Inclusion of Additional Repaid Amounts to be compliant with WEM Rule 9.24.2(b). \newline Correction of SOMS\_F\_I(f, i) formulae for the Notional Wholesale Meter. \newline Minor changes in formulae or invocation to improve performance.\\ \hline 2.0 & Consequential changes due to new WEM Rules effective 22 February 2020\\ \hline \hline 3.0 & Consequential changes due to Coordinator fees in new WEM Rules effective 1 July 2021.\\ \hline 4.0 & Consequential changes due to new WEM Rules effective 1 October 2021\\ \hline 4.1 & Inclusion of Default Levy Adjustment to be compliant with WEM Rule 9.24.9(e).\\ \hline \end{longtabu} \clearpage {\hypersetup{linkcolor=black} \tableofcontents } \newpage \section{Introduction} The purpose of this document is to: \begin{itemize} \item outline WEM Metering, Settlement and Prudential calculations as equations \item provide additional context or structure equations in such a way that assists in understanding \item outline the formulation of a system that could be used to perform both settlement and prudential functions \end{itemize} The document is structured in such a way that a system could be designed. The diagram below shows the different sections of the document and how they would work together to facilitate either a settlement (blue) or prudential (orange) process. \begin{center} \includegraphics[width=18.75cm]{DocumentStructure} \end{center} This document defines many variables that are used in equations. Each variable will have the following attributes stated to assist in understanding:\\ \begin{longtabu}{|m{0.15\linewidth}|m{0.6\linewidth}|m{0.18\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Attribute & Explanation & Example\\ \hline \endhead Variable & The name of the variable & $STEMP\_G\_I$\\ \hline Units & \$, \{\}, MW, MWh, \$/MW, \$/MWh, Flag, \degree C, MW/min, min & \$/MWh\\ \hline Scope (SC) & Tranche (T), Channel (CH), NMI (N), Contract(C), Capacity Credit Allocation (A), Participant-Facility (PF), Facility (F), Participant (P), Global (G) & G\\ \hline Granularity (GR) & Trading Interval (I), Trading Day (D), Trading Week (W), Trading Month (M), Capacity Year (CY), Financial Year (FY) & I\\ \hline Rule & WEM Rule reference & 6.9.7\\ \hline Description & A description of the variable & STEM Clearing Price for Trading Interval i\\ \hline Ref & Either the equation number where it is defined in this document, or 'I' to denote an input & I\\ \hline \end{longtabu} Granularity has a strict hierarchy - A Capacity Year is comprised of Trading Months, which are comprised of Trading Days which are comprised of Trading Intervals. These hierarchies are represented below: \begin{itemize} \item $I \in D \in M \in CY$; or \item $I \in D \in M \in FY$. \end{itemize} When defining a variable, it will always be defined for its granularity. For example, The variable $CS\_P\_M(p, m)$ is defined for a particular Trading Month m. It will only be defined by variables with a granularity of Trading Month or coarser. However, when the variable is used to define other equations it may be expressed using a granularity argument more fine than its defined granularity, for example $CS\_P\_M(p, i)$. When the variable is expressed like this, it is implicit that it refers to the Trading Month m, in which Trading Interval i falls. \section{Defined Terms, Sets and Associations} Defined terms are used throughout the rules. These defined terms often convey specific information, for example the term Scheduled Generator requires the facility to be registered with AEMO as outlined in the definition. Similarly, some specific calculations only apply, or are interpreted based on these defined terms. In the implementation, these defined terms are often represented as a set of Facilities (or Participants) that meet the definition of the defined term. Furthermore, there are often associations between defined terms within the rules, for example Facilities are associated to participants through registration. This document defines all sets with the following conventions: \begin{itemize} \item The definition of each set variable is always Global and for a Trading Day and therefore the variable name omits information about scope and granularity. For example the set of Scheduled Generators in Trading Day d is represented as $SG(d)$, rather than being named $SG\_G\_D(d)$. \item Subsets are defined by adding a scope argument. For example $SG(p, d)$ represents the subset of $SG(d)$ associated with participant p. \end{itemize} \subsection{Participant Sets} \subsubsection{Axiomatic Participant Sets in AEMO systems} Calculations defined in the rules depend on different sets of participants. The participant sets outlined below are considered to be axiomatic, or the base sets, upon which all other sets will be created. These base sets are defined in terms of how AEMO's systems have been created. Sets which are calculated later are often sets of participants which are defined in the rules, and in these instances the rule reference is provided. \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead WEMS\_MG(d) & \{\} & G & D & & Set of participants with MG participant class in WEMS in Trading Day d & I\\ \hline WEMS\_MC(d) & \{\} & G & D & & Set of participants with MC participant class in WEMS in Trading Day d & I\\ \hline WEMS\_ASP(d) & \{\} & G & D & & Set of participants with ASP participant class in WEMS in Trading Day d & I\\ \hline WEMS\_NO(d) & \{\} & G & D & & Set of participants with NO participant class in WEMS in Trading Day d & I\\ \hline WEMS\_SO(d) & \{\} & G & D & & Set of participants with SO participant class (excluding System Management) in WEMS in Trading Day d & I\\ \hline WEMS\_PREG(d) & \{\} & G & D & & Set of participants registered in WEMS in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Sets of Rule Participant classes} The following are classes of Rule Participants [MR 2.28.1]: \begin{itemize} \item Network Operator (NO) \item Market Generator (MG) \item Market Customer (MC) \item Ancillary Service Provider (ASP) \item System Management (SM) \item System Operator (SO) \item AEMO (AEMO) \end{itemize} The diagram below shows the relationship between Rule Participant classes (purple) and other sets of participants (green). \begin{center} \includegraphics[width=15cm]{ParticipantSets} \end{center} These sets are defined as follows. \begin{dmath} \label{P_M} P\_M(m) = \displaystyle \bigcup_{d \in D(m)} P(d) \end{dmath} \begin{dmath} \label{P_CY} P\_CY(cy) = \displaystyle \bigcup_{d \in D\_CY(cy)} P(d) \end{dmath} \begin{dmath} \label{P} P(d) = COORDINATOR(d) \cup ERA(d) \cup RP(d) \end{dmath} \begin{dmath} \label{COORDINATOR} COORDINATOR(d) = \{COE\} \end{dmath} \begin{dmath} \label{ERA} ERA(d) = \{ERA\} \end{dmath} \begin{dmath} \label{RP} RP(d) = MG(d) \cup MC(d) \cup ASP(d) \cup NO(d) \cup AEMO(d) \cup SM(d) \cup SO(d) \end{dmath} \begin{dmath} \label{MP} MP(d) = MG(d) \cup MC(d) \end{dmath} \begin{dmath} \label{MG} MG(d) = WEMS\_PREG(d) \cap WEMS\_MG(d) \end{dmath} \begin{dmath} \label{MC} MC(d) = WEMS\_PREG(d) \cap WEMS\_MC(d) \end{dmath} \begin{dmath} \label{AEMO} AEMO(d) = \{IMOWA\} \end{dmath} \begin{dmath} \label{SM} SM(d) = \{SM\} \end{dmath} \begin{dmath} \label{ASP} ASP(d) = WEMS\_PREG(d) \cap WEMS\_ASP(d) \end{dmath} \begin{dmath} \label{NO} NO(d) = WEMS\_PREG(d) \cap WEMS\_NO(d) \end{dmath} \begin{dmath} \label{SO} SO(d) = WEMS\_PREG(d) \cap WEMS\_SO(d) \end{dmath} \begin{dmath} \label{Synergy} Synergy(d) = \{WPGENER\} \end{dmath} \begin{dmath} \label{Synergy_M} Synergy\_M(m) = \{WPGENER\} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline P\_CY(cy) & \{\} & G & CY & & Set of participants (Rule Participants, ERA and the Coordinator) in Capacity Year cy & (\ref{P_CY})\\ \hline P(d) & \{\} & G & D & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Day d & (\ref{P})\\ \hline COORDINATOR(d) & \{\} & G & D & 11 & Set containing the Coordinator & (\ref{COORDINATOR})\\ \hline ERA(d) & \{\} & G & D & 11 & Set containing the ERA & (\ref{ERA})\\ \hline RP(d) & \{\} & G & D & 11 & Set of Rule Participants in Trading Day d & (\ref{RP})\\ \hline MP(d) & \{\} & G & D & 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline MG(d) & \{\} & G & D & 11 & Set of Market Generators in Trading Day d & (\ref{MG})\\ \hline MC(d) & \{\} & G & D & 11 & Set of Market Customers in Trading Day d & (\ref{MC})\\ \hline AEMO(d) & \{\} & G & D & 11 & Set containing the AEMO & (\ref{AEMO})\\ \hline SM(d) & \{\} & G & D & 11 & Set containing System Management & (\ref{SM})\\ \hline ASP(d) & \{\} & G & D & 11 & Set of Ancillary Service Providers in Trading Day d & (\ref{ASP})\\ \hline NO(d) & \{\} & G & D & 11 & Set containing Network Operators in Trading Day d & (\ref{NO})\\ \hline SO(d) & \{\} & G & D & 11 & Set System Operators in Trading Day d & (\ref{SO})\\ \hline Synergy(d) & \{\} & G & D & 11 & Set containing Synergy & (\ref{Synergy})\\ \hline Synergy\_M(m) & \{\} & G & M & 11 & Set containing Synergy & (\ref{Synergy_M})\\ \hline WEMS\_MG(d) & \{\} & G & D & & Set of participants with MG participant class in WEMS in Trading Day d & I\\ \hline WEMS\_MC(d) & \{\} & G & D & & Set of participants with MC participant class in WEMS in Trading Day d & I\\ \hline WEMS\_ASP(d) & \{\} & G & D & & Set of participants with ASP participant class in WEMS in Trading Day d & I\\ \hline WEMS\_NO(d) & \{\} & G & D & & Set of participants with NO participant class in WEMS in Trading Day d & I\\ \hline WEMS\_SO(d) & \{\} & G & D & & Set of participants with SO participant class (excluding System Management) in WEMS in Trading Day d & I\\ \hline WEMS\_PREG(d) & \{\} & G & D & & Set of participants registered in WEMS in Trading Day d & I\\ \hline D(m) & \{\} & G & M & & Set of Trading Days in Trading Month m & I\\ \hline D\_CY(cy) & \{\} & G & CY & & Set of Trading Days in Capacity Year cy & I\\ \hline \end{longtabu} \subsubsection{Other Participant Sets} Additional sets of Participants are required and are defined below. \begin{equation} \label{SR} SR(d) = \Bigg\{ p : \Bigg( \displaystyle \sum_{j = 0}^{CASoffset\_G\_M(d) \times 30} \displaystyle \sum_{i \in I(d-j)} CASSRQmwh\_P\_I(p, i) \Bigg) > 0 \Bigg\} \end{equation} \begin{dmath} \label{SR_M} SR\_M(m) = \displaystyle \bigcup_{d \in D(m)} SR(d) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SR(d) & \{\} & G & D & & Set of participants to estimate Spinning Reserve Service quantities in Trading Day d & (\ref{SR})\\ \hline SR\_M(m) & \{\} & G & M & & Set of participants to estimate Spinning Reserve Service quantities in Trading Month m & (\ref{SR_M})\\ \hline CASSRQmwh\_P\_I(p, i) & MWh & P & I & & MWh quantity of Contracted Spinning Reserve Service for Rule Participant p in Trading Interval i & I\\ \hline CASoffset\_G\_M(m) & & G & M & & Parameter set by AEMO, required to implement the estimation of contracted Ancillary Services, applicable in Trading Month m & I\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline D(m) & \{\} & G & M & & Set of Trading Days in Trading Month m & I\\ \hline \end{longtabu} \subsection{Facility Sets} \subsubsection{Axiomatic Facility Sets in AEMO systems} \label{FacilitySets} Calculations defined in the rules depend on different sets of Facilities. The Facility sets outlined below are considered to be axiomatic, or the base sets, upon which all other sets will be created. These base sets are defined in terms of how AEMO's systems have been created. Sets which are calculated later are often sets of Facilities which are defined in the rules, and in these instances the rule reference is provided. \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead WEMS\_DSP(d) & \{\} & G & D & & Set of Facilities with a DSP WEMS Type in Trading Day d & I\\ \hline WEMS\_SG(d) & \{\} & G & D & & Set of Facilities with a SG WEMS Type in Trading Day d & I\\ \hline WEMS\_NSG(d) & \{\} & G & D & & Set of Facilities with a NSG WEMS Type in Trading Day d & I\\ \hline WEMS\_INSG(d) & \{\} & G & D & & Set of Facilities with a INSG WEMS Type in Trading Day d & I\\ \hline WEMS\_IL(d) & \{\} & G & D & & Set of Facilities with a IL WEMS Type in Trading Day d & I\\ \hline WEMS\_N(d) & \{\} & G & D & & Set of Facilities with a N WEMS Type in Trading Day d & I\\ \hline WEMS\_NDL(d) & \{\} & G & D & & Set of Facilities with a NDL WEMS Type in Trading Day d & I\\ \hline NDL\_MTR(d) & \{\} & G & D & & Set of Non-Dispatchable Loads with interval meters that are not in WEMS in Trading Day d & I\\ \hline WEMS\_FREG(d) & \{\} & G & D & & Set of Facilities that are registered in WEMS in Trading Day d & I\\ \hline WEMS\_FCAND(d) & \{\} & G & D & & Set of Facilities that are candidate Facilities WEMS in Trading Day d & I\\ \hline WEMS\_IM(d) & \{\} & G & D & & Set of Facilities that are Intermittent Loads in WEMS in Trading Day d & I\\ \hline WEMS\_RLG(d) & \{\} & G & D & & Set of Facilities in WEMS that serve an Intermittent Load in Trading Day d & I\\ \hline WEMS\_RG(d) & \{\} & G & D & & Set of Facilities in WEMS that remotely serve an Intermittent Load in Trading Day d & I\\ \hline NOINTMETER(d) & \{\} & G & D & & Set of Facilities in WEMS for which no Interval meter exists in Trading Day d & I\\ \hline WEMS\_SAF(d) & \{\} & G & D & & Set of Facilities in WEMS that are Stand Alone Facilities in Trading Day d & I\\ \hline MTR\_AGG(d) & \{\} & G & D & 2.30 & Set of Facilities that are the aggregate of other Facilities in Trading Day d & I\\ \hline CCF(d) & \{\} & G & D & & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline WEMS\_LFAS(d) & \{\} & G & D & & Set of Facilities in WEMS that are marked as intending to provide LFAS, and have standing data (in an accepted change request) for LFAS enablement limitations on Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Sets of Facility Types and Facility Classes} The following are Facilities [MR 2.29.1]: \begin{itemize} \item distribution system (DX) \item transmission system (TX) \item generation system (GEN) \item Load (LOAD) \item Demand Side Programme (DSP) \end{itemize} The following are Facility Classes [MR 2.29.1A]: \begin{itemize} \item Network (NTWK) \item Scheduled Generator (SG) \item Non-Scheduled Generator (NSG) \item Interruptible Load (IRL) \item Demand Side Programme (DSP) \end{itemize} The diagram below shows the relationship between Facility types (orange) and Facility Classes (purple). \begin{center} \includegraphics[height=15cm]{FacilityClasses} \end{center} These sets are defined as follows. \begin{dmath} \label{DSP} DSP(d) = WEMS\_FREG(d) \cap WEMS\_DSP(d) \end{dmath} \begin{dmath} \label{GEN} GEN(d) = SG(d) \cup NSG(d) \cup GEN\_UREG(d) \end{dmath} \begin{dmath} \label{SG} SG(d) = WEMS\_FREG(d) \cap WEMS\_SG(d) \end{dmath} \begin{dmath} \label{NSG} NSG(d) = WEMS\_FREG(d) \cap \left(WEMS\_NSG(d) \cup WEMS\_INSG(d) \right) \end{dmath} \begin{dmath} \label{GEN_UREG} GEN\_UREG(d) = WEMS\_FCAND(d) \cap \left(WEMS\_SG(d) \cup WEMS\_NSG(d) \cup WEMS\_INSG(d) \right) \end{dmath} \begin{dmath} \label{LOAD} LOAD(d) = IRL(d) \cup IRL\_UREG(d) \cup NDL\_WEMS(d) \cup NDL\_MTR(d) \cup NOTIONAL(d) \end{dmath} \begin{dmath} \label{IRL} IRL(d) = WEMS\_FREG(d) \cap WEMS\_IL(d) \end{dmath} \begin{dmath} \label{IRL_UREG} IRL\_UREG(d) = WEMS\_FCAND(d) \cap WEMS\_IL(d) \end{dmath} \begin{dmath} \label{NDL_WEMS} NDL\_WEMS(d) = WEMS\_FREG(d) \cap WEMS\_NDL(d) \end{dmath} \begin{dmath} \label{NOTIONAL} NOTIONAL(d) = \{NOTIONAL\} \end{dmath} \begin{dmath} \label{NTWK} NTWK(d) = WEMS\_FREG(d) \cap WEMS\_N(d) \end{dmath} $NTWK(d)$ is represented as $NTWK\_TX \cup NTWK\_DX$ in the diagram above showing the relationship between Facility types and Facility Classes. \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline GEN(d) & \{\} & G & D & 2.29.1(c) & Set of generation systems in Trading Day d & (\ref{GEN})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline NSG(d) & \{\} & G & D & 11 & Set of Non-Scheduled Generators in Trading Day d & (\ref{NSG})\\ \hline GEN\_UREG(d) & \{\} & G & D & & Set of unregistered generation systems in Trading Day d & (\ref{GEN_UREG})\\ \hline LOAD(d) & \{\} & G & D & 11 & Set of Loads in Trading Day d & (\ref{LOAD})\\ \hline IRL(d) & \{\} & G & D & 11 & Set of Interruptible Loads in Trading Day d & (\ref{IRL})\\ \hline IRL\_UREG(d) & \{\} & G & D & & Set of unregistered Loads that can be interrupted upon request in Trading Day d & (\ref{IRL_UREG})\\ \hline NDL\_WEMS(d) & \{\} & G & D & & Set of Non-Dispatchable Loads in WEMS registration in Trading Day d & (\ref{NDL_WEMS})\\ \hline NDL\_MTR(d) & \{\} & G & D & & Set of Non-Dispatchable Loads with interval meters that are not in WEMS in Trading Day d & I\\ \hline NOTIONAL(d) & \{\} & G & D & 11 & Set containing the Notional Wholesale Meter & (\ref{NOTIONAL})\\ \hline NTWK(d) & \{\} & G & D & 11 & Set of Networks in Trading Day d. & (\ref{NTWK})\\ \hline WEMS\_DSP(d) & \{\} & G & D & & Set of Facilities with a DSP WEMS Type in Trading Day d & I\\ \hline WEMS\_SG(d) & \{\} & G & D & & Set of Facilities with a SG WEMS Type in Trading Day d & I\\ \hline WEMS\_NSG(d) & \{\} & G & D & & Set of Facilities with a NSG WEMS Type in Trading Day d & I\\ \hline WEMS\_INSG(d) & \{\} & G & D & & Set of Facilities with a INSG WEMS Type in Trading Day d & I\\ \hline WEMS\_IL(d) & \{\} & G & D & & Set of Facilities with a IL WEMS Type in Trading Day d & I\\ \hline WEMS\_N(d) & \{\} & G & D & & Set of Facilities with a N WEMS Type in Trading Day d & I\\ \hline WEMS\_NDL(d) & \{\} & G & D & & Set of Facilities with a NDL WEMS Type in Trading Day d & I\\ \hline WEMS\_FREG(d) & \{\} & G & D & & Set of Facilities that are registered in WEMS in Trading Day d & I\\ \hline WEMS\_FCAND(d) & \{\} & G & D & & Set of Facilities that are candidate Facilities WEMS in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Other Facility Sets} Additional sets of Facilities are required by the rules and are defined below. \begin{dmath} \label{F} F(d) = REG\_F(d) \cup GEN\_UREG(d) \cup IRL\_UREG(d) \end{dmath} \begin{dmath} \label{F_REG} REG\_F(d) = DSP(d) \cup SG(d) \cup NSG(d) \cup IRL(d) \cup NTWK(d) \end{dmath} \begin{dmath} \label{NDL} NDL(d) = NDL\_WEMS(d) \cup NDL\_MTR(d) \cup NOTIONAL(d) \end{dmath} \begin{dmath} \label{IML} IML(d) = \left(IRL(d) \cup NDL\_WEMS(d) \right) \cap WEMS\_IM(d) \end{dmath} \begin{dmath} \label{IG} IG(d) = WEMS\_FREG(d) \cap WEMS\_INSG(d) \end{dmath} \begin{dmath} \label{RG} RG(d) = WEMS\_FREG(d) \cap WEMS\_RG(d) \end{dmath} \begin{dmath} \label{EG} EG(d) = WEMS\_FREG(d) \cap WEMS\_RLG(d) \cap \overline{WEMS\_RG(d)} \end{dmath} \begin{dmath} \label{BALPF} BALPF(d) = REG\_F(p, d) \cap \overline{SAF(d) \cup DSP(d) \cup IRL(d)} \ \text{where $p \in Synergy(d)$} \end{dmath} \begin{dmath} \label{BALF} BALF(d) = SG(p, d) \cup NSG(p, d) \cup SAF(d) \ \text{where $p \notin Synergy(d)$} \end{dmath} \begin{dmath} \label{LFASF} LFASF(d) = (BALF(d) \cap WEMS\_LFAS(d)) \cup PORTFOLIO(d) \end{dmath} \begin{dmath} \label{SAF} SAF(d) = \left(SG(d) \cup NSG(d) \right) \cap WEMS\_SAF(d) \end{dmath} \begin{dmath} \label{AF} AF(d) = \left(SG(d) \cap \overline{AGG(d)}\right) \cup SGpreAGG(d) \cup NSG(d) \cup GEN\_UREG\_L(d) \cup EG(d) \end{dmath} \begin{dmath} \label{GEN_UREG_L} GEN\_UREG\_L(d) = GEN\_UREG(d) \cap WEMS\_RLG(d)\cap \overline{WEMS\_RG(d)} \end{dmath} \begin{dmath} \label{AGG} AGG(d) = REG\_F(d) \cap MTR\_AGG(d) \end{dmath} \begin{dmath} \label{SGpreAGG} SGpreAGG(d) = \bigcup_{f \in SG(d) \cap AGG(d)} NMI(f, d) \end{dmath} \begin{dmath} \label{DSPNMI} DSPNMI(d) = \bigcup_{f \in DSP(d)} NMI(f, d) \end{dmath} \begin{dmath} \label{PORTFOLIO} PORTFOLIO(d) = \{PORTFOLIO\} \end{dmath} \begin{dmath} \label{AF_M} AF\_M(m) = \displaystyle \bigcup_{d \in D(m)} AF(d) \end{dmath} \begin{dmath} \label{IG_M} IG\_M(m) = \displaystyle \bigcup_{d \in D(m)} IG(d) \end{dmath} \begin{dmath} \label{NSG_M} NSG\_M(m) = \displaystyle \bigcup_{d \in D(m)} NSG(d) \end{dmath} \begin{dmath} \label{F_CY} F\_CY(cy) = \displaystyle \bigcup_{d \in D\_CY(cy)} F(d) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead F(d) & \{\} & G & D & & Set of Registered Facilities, unregistered generation systems and unregistered interruptible loads in Trading Day d & (\ref{F})\\ \hline REG\_F(d) & \{\} & G & D & 11 & Set of Registered Facilities in Trading Day d & (\ref{F_REG})\\ \hline NDL(d) & \{\} & G & D & 11 & Set of Non-Dispatchable Loads in Trading Day d & (\ref{NDL})\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline IG(d) & \{\} & G & D & 11 & Set of Intermittent Generators in Trading Day d & (\ref{IG})\\ \hline RG(d) & \{\} & G & D & 2.30B.2(a) & Set of Scheduled Generators that serve an Intermittent Load remotely in Trading Day d & (\ref{RG})\\ \hline EG(d) & \{\} & G & D & 2.30B.2(a) & Set of Scheduled Generators that serve an Intermittent Load locally in Trading Day d & (\ref{EG})\\ \hline BALPF(d) & \{\} & G & D & 11 & Set of Facilities in the Balancing Portfolio in Trading Day d & (\ref{BALPF})\\ \hline BALF(d) & \{\} & G & D & 11 & Set of Balancing Facilities in Trading Day d & (\ref{BALF})\\ \hline LFASF(d) & \{\} & G & D & 11 & Set of LFAS Facilities in Trading Day d & (\ref{LFASF})\\ \hline SAF(d) & \{\} & G & D & 11 & Set of Stand Alone Facilities in Trading Day d & (\ref{SAF})\\ \hline AF(d) & \{\} & G & D & Appendix 2 & Set of applicable facilities (including any exempt under 2.30A.2) in Trading Day d & (\ref{AF})\\ \hline GEN\_UREG\_L(d) & \{\} & G & D & & Set of unregistered generation system serving an Intermittent Load in Trading Day d & (\ref{GEN_UREG_L})\\ \hline AGG(d) & \{\} & G & D & 2.30 & Set of accepted aggregated Facilities in Trading Day d & (\ref{AGG})\\ \hline SGpreAGG(d) & \{\} & G & D & 2.30 & Set of Facilities which comprise an aggregated Scheduled Generator on Trading Day d & (\ref{SGpreAGG})\\ \hline DSPNMI(d) & \{\} & G & D & & Set of connection points which comprise a Demand Side Programme on Trading Day d & (\ref{DSPNMI})\\ \hline PORTFOLIO(d) & \{\} & G & D & 11 & Set containing the Balancing Portfolio & (\ref{PORTFOLIO})\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline NSG(d) & \{\} & G & D & 11 & Set of Non-Scheduled Generators in Trading Day d & (\ref{NSG})\\ \hline NDL\_WEMS(d) & \{\} & G & D & & Set of Non-Dispatchable Loads in WEMS registration in Trading Day d & (\ref{NDL_WEMS})\\ \hline NDL\_MTR(d) & \{\} & G & D & & Set of Non-Dispatchable Loads with interval meters that are not in WEMS in Trading Day d & I\\ \hline NOTIONAL(d) & \{\} & G & D & 11 & Set containing the Notional Wholesale Meter & (\ref{NOTIONAL})\\ \hline IRL(d) & \{\} & G & D & 11 & Set of Interruptible Loads in Trading Day d & (\ref{IRL})\\ \hline Synergy(d) & \{\} & G & D & 11 & Set containing Synergy & (\ref{Synergy})\\ \hline WEMS\_IM(d) & \{\} & G & D & & Set of Facilities that are Intermittent Loads in WEMS in Trading Day d & I\\ \hline WEMS\_FREG(d) & \{\} & G & D & & Set of Facilities that are registered in WEMS in Trading Day d & I\\ \hline WEMS\_INSG(d) & \{\} & G & D & & Set of Facilities with a INSG WEMS Type in Trading Day d & I\\ \hline WEMS\_RG(d) & \{\} & G & D & & Set of Facilities in WEMS that remotely serve an Intermittent Load in Trading Day d & I\\ \hline WEMS\_SAF(d) & \{\} & G & D & & Set of Facilities in WEMS that are Stand Alone Facilities in Trading Day d & I\\ \hline GEN\_UREG(d) & \{\} & G & D & & Set of unregistered generation systems in Trading Day d & (\ref{GEN_UREG})\\ \hline WEMS\_RLG(d) & \{\} & G & D & & Set of Facilities in WEMS that serve an Intermittent Load in Trading Day d & I\\ \hline MTR\_AGG(d) & \{\} & G & D & 2.30 & Set of Facilities that are the aggregate of other Facilities in Trading Day d & I\\ \hline WEMS\_LFAS(d) & \{\} & G & D & & Set of Facilities in WEMS that are marked as intending to provide LFAS, and have standing data (in an accepted change request) for LFAS enablement limitations on Trading Day d & I\\ \hline AF\_M(m) & \{\} & G & M & Appendix 2 & Set of applicable facilities (including any exempt under 2.30A.2) in Trading Month m & (\ref{AF_M})\\ \hline IG\_M(m) & \{\} & G & M & 11 & Set of Intermittent Generators in Trading Month m & (\ref{IG_M})\\ \hline NSG\_M(m) & \{\} & G & M & 11 & Set of Non-Scheduled Generators in Trading Month m & (\ref{NSG_M})\\ \hline F\_CY(cy) & \{\} & G & CY & & Set of Registered Facilities and unregistered generation systems and unregistered interruptible loads in Capacity Year cy & (\ref{F_CY})\\ \hline CCF(d) & \{\} & G & D & & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline NTWK(d) & \{\} & G & D & 11 & Set of Networks in Trading Day d. & (\ref{NTWK})\\ \hline D(m) & \{\} & G & M & & Set of Trading Days in Trading Month m & I\\ \hline D\_CY(cy) & \{\} & G & CY & & Set of Trading Days in Capacity Year cy & I\\ \hline \end{longtabu} \subsection{Other Sets} \begin{dmath} \label{CCPF} CCPF(d) = \text{\{$(p, f) : p \in P(d), f \in CCF(p, d)$\}} \end{dmath} \begin{dmath} \label{CCPF_M} CCPF\_M(m) = \displaystyle \bigcup_{d \in D(m)} CCPF(d) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead CCPF(d) & \{\} & G & D & & Set of participant-facility combinations in Trading D d & (\ref{CCPF})\\ \hline CCPF\_M(m) & \{\} & G & M & & Set of participant-facility combinations in Trading Month m & (\ref{CCPF_M})\\ \hline CCF(d) & \{\} & G & D & & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline P(d) & \{\} & G & D & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Day d & (\ref{P})\\ \hline D(m) & \{\} & G & M & & Set of Trading Days in Trading Month m & I\\ \hline \end{longtabu} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead B(d) & \{\} & G & D & & Set of all generation metering channels associated with NMIs in Trading Day d & I\\ \hline E(d) & \{\} & G & D & & Set of all consumption metering channels associated with NMIs in Trading Day d & I\\ \hline NS(d) & \{\} & G & D & 2.30B.10(a)ii & Set of all separately metered connection points (NMIs) that are also measured by another connection point in Trading Day d & I\\ \hline BPQP(i) & \{\} & G & I & 11 & Set of Balancing Price-Quantity Pairs in Trading Interval i & I\\ \hline SUP(m) & \{\} & G & M & & Set of Supplementary Capacity contracts in Trading Month m & I\\ \hline CC(d) & \{\} & G & D & & Set of all price-quantity pairs associated with Capacity Credits (excluding DSM and SPA) for Trading Day d (ordered by ascending price) & I\\ \hline CCAM(m) & \{\} & G & M & & Set of Capacity Credit Allocations made (by Facility f and Market Participant p) in Trading Month m & I\\ \hline CCAR(m) & \{\} & G & M & & Set of Capacity Credit Allocations received (by Market Participant p from Facility f) in Trading Month m & I\\ \hline \end{longtabu} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead PGSTSTEM(d) & \{\} & G & D & & Set of all STEM variables which are payments to which GST applies in Trading Day d & I\\ \hline CGSTSTEM(d) & \{\} & G & D & & Set of all STEM variables which are charges to which GST applies in Trading Day d & I\\ \hline PGSTNSTEM(d) & \{\} & G & D & & Set of all NSTEM variables which are payments to which GST applies in Trading Day d & I\\ \hline CGSTNSTEM(d) & \{\} & G & D & & Set of all NSTEM variables which are charges to which GST applies in Trading Day d & I\\ \hline \end{longtabu} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead I\_M(m) & \{\} & G & M & & Set of Trading Intervals in Trading Month m & I\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline I\_CY(cy) & \{\} & G & CY & & Set of Trading Intervals in Capacity Year cy & I\\ \hline PI4320a(i) & \{\} & G & I & & Set of Trading Intervals within the 90th Trading Day prior to Trading Interval i's Trading Day that form part of the 4320 Trading Intervals prior to and including Trading Interval i & I\\ \hline PI4320b(i) & \{\} & G & I & & Set of Trading Intervals within Trading Interval i's Trading Day that form part of the 4320 Trading Intervals prior to and including Trading Interval i & I\\ \hline PD89(d) & \{\} & G & D & & Set of 89 Trading Days prior to Trading Day d & I\\ \hline PI1440(i) & \{\} & G & I & & Set of 1440 Trading Intervals prior to and including Trading Interval i & I\\ \hline PITD(i) & \{\} & G & I & & Set of Trading Intervals in the same Trading Day as, but prior to, Trading Interval i & I\\ \hline PD1000(d) & \{\} & G & D & & Set of 1000 Trading Days preceding (and excluding) Trading Day d & I\\ \hline INTDAYS1(m) & \{\} & G & M & 9.1.3 & Set of days from (and including) the settlement day associated with the original NSTEM Settlement Statement up to (but excluding) settlement day for adjustment 1 Non-STEM Settlement Statement for Trading Month m & I\\ \hline INTDAYS2(m) & \{\} & G & M & 9.1.3 & Set of days from (and including) the settlement day associated with the original NSTEM Settlement Statement up to (but excluding) settlement day for adjustment 2 Non-STEM Settlement Statement for Trading Month m & I\\ \hline INTDAYS3(m) & \{\} & G & M & 9.1.3 & Set of days from (and including) the settlement day associated with the original NSTEM Settlement Statement up to (but excluding) settlement day for adjustment 3 Non-STEM Settlement Statement for Trading Month m & I\\ \hline D(m) & \{\} & G & M & & Set of Trading Days in Trading Month m & I\\ \hline D\_W(w) & \{\} & G & W & & Set of Trading Days in Trading Week w & I\\ \hline D\_CY(cy) & \{\} & G & CY & & Set of Trading Days in Capacity Year cy & I\\ \hline EXPDAYS(d) & \{\} & G & D & & Set of Trading Days that have not yet had the final Settlement Statement issued, up to and including Trading Day d-1 & I\\ \hline \end{longtabu} \subsection{Associations} Associations are used to link two entities to each other. These associations are used in the document for the following purposes: \begin{itemize} \item To reference a variable or attribute that applies to the parent of a child by relying on the primary or additional associations listed below. E.g. $UOOM\_F\_I(t, i)$ is referring to the $UOOM\_F\_I$ quantity for the Facility that is associated with tranche t. \item To reference a Facility or NMI associated with an Intermittent Load by relying on the additional associations listed below. E.g. $NMI(IML2RG(f, i), i)$ is referring to the set of NMIs that are associated with the Remote Generator that is associated with Intermittent Load f. \end{itemize} \subsubsection{Primary Associations} \begin{longtabu}{|m{0.20\linewidth}|m{0.10\linewidth}|m{0.10\linewidth}|m{0.50\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Association & Child SC & Parent SC & Description \\ \hline \endhead F2P & F & P & Association between Facility f and participant p \\ \hline N2F & N & F & Association between NMI n and Facility f (excluding DSPs) \\ \hline CH2N & CH & N & Association between channel ch and NMI n \\ \hline SUP2P & C & P & Association between Supplementary Capacity contract c and participant p \\ \hline BPQP2F & T & F & Association between a Balancing Price-Quantity Pair t and Facility f \\ \hline A2F & A & F & Association between a Capacity Credit Allocation a and Facility f \\ \hline PF2P & PF & P & Association between a Participant-Facility (p, f) and a Participant p \\ \hline PF2F & PF & F & Association between a Participant-Facility (p, f) and a Facility f \\ \hline \end{longtabu} \subsubsection{Additional Associations} \begin{longtabu}{|m{0.20\linewidth}|m{0.10\linewidth}|m{0.10\linewidth}|m{0.50\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Association & Child SC & Parent SC & Description \\ \hline \endhead N2DSP & N & F & Association between NMI n and DSP f \\ \hline IML2EG & F & F & Association between Intermittent Load f and any embedded generator \\ \hline IML2RG & F & F & Association between Intermittent Load f and any remote generator \\ \hline IML2NS & N & F & Association between Intermittent Load f and any separately metered NMI that is measured by another connection point \\ \hline A2PM & A & P & Association between Capacity Credit Allocation a and the Market Participant making the allocation \\ \hline A2PR & A & P & Association between Capacity Credit Allocation a and the Market Participant receiving the allocation \\ \hline T2F & T & F & Association between a price-quantity pair and the Facility associated with the price-quantity pair \\ \hline T2P & T & P & Associations between a price-quantity pair and the participant associated with the price-quantity pair \\ \hline \end{longtabu} \section{Metered Schedules} Metering calculations are fundamental to settlement and prudential calculations. Due to the large volumes of data, metering calculations are separated from the main calculation engine.\\ Metered Schedules are calculated for: \begin{itemize} \item Non-Dispatchable Loads (excluding those represented by the Notional Wholesale Meter) \item Interruptible Loads \item Scheduled Generators \item Non-Scheduled Generators \item Notional Wholesale Meter \end{itemize} In order to determine these Metered Schedules the following information is required: \begin{itemize} \item Connection point energy quantities \item Facility category \item Facility aggregation requirements \end{itemize} The purpose of this section is to define Sent Out Metered Schedules (Non-loss adjusted energy) and Metered Schedules (loss adjusted energy) for each category of facility defined in the registration chapter. Unregistered NDLs' Metered Schedules and Sent Out Metered Schedules are the same as the connection point's Metered Schedules as defined previously. Intermittent Load facilities Metered Schedules do not use the same variables as all other facilities. These Metered Schedules are detailed in their own section.\\ The equations in the following sections incorporate the concept of aggregated facilities [MR 2.30], which is a Registered Facility with more than one connection point. \subsection{Invocation} The following table outlines the invocation for the high-level calculations. \begin{longtabu}{|m{0.25\linewidth}|m{0.70\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Scope Set\\ \hline \endhead $SOMS\_N\_I(n, i)$ & $\forall n \in NMI(i)$ \\ \hline $SOMS\_F\_I(f, i)$ & $\forall f \in NDL(i) \cup IRL(i) \cup SG(i) \cup NSG(i)$ \\ \hline \end{longtabu} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SOMS\_N\_I(n, i) & MWh & N & I & & Sent Out Metered Schedule for NMI n in Trading Interval i & (\ref{SOMS_N_I})\\ \hline SOMS\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline NDL(d) & \{\} & G & D & 11 & Set of Non-Dispatchable Loads in Trading Day d & (\ref{NDL})\\ \hline IRL(d) & \{\} & G & D & 11 & Set of Interruptible Loads in Trading Day d & (\ref{IRL})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline NSG(d) & \{\} & G & D & 11 & Set of Non-Scheduled Generators in Trading Day d & (\ref{NSG})\\ \hline \end{longtabu} \subsection{Connection point energy quantities} Western Power is a Metering Data Agent and provides AEMO with: \begin{itemize} \item Energy data (kWh); and \item Standing data (Participant, TLF, DLF). \end{itemize} Each connection point is assigned a NMI (National Meter Identifier).\\ For any single interval, a NMI may have multiple meter channels that measure and store data. The type of data varies; however, the channels containing data relevant to AEMO are B channels which measure generation, and E channels which measure consumption.\\ The image below shows a sample of energy data received from Western Power. In this example it shows that NMI 8001000347 had 9.600 kWh of consumption for Trading Interval 03:30 on its E1 channel. \\ \begin{center} \includegraphics[width=12cm]{MeterData} \end{center} The image below shows a sample of standing data received from Western Power. In this example it shows that NMI 8001000266 had a TLF of TSAV, a DLF of QRT6, and a Financially Responsible Market Participant (FRMP) of ERMPOWER.\\ \begin{center} \includegraphics[width=17cm]{StandingData} \end{center} Some specific items of note: \begin{itemize} \item Standing Data only provides data at a specific point in time - i.e. no historical data is stored in the file. Therefore AEMO's databases must consider how it will maintain historical information. \item The TLF is sent to AEMO against the TransmissionNodeIdentifier attribute. Market Participants (other than AEMO) receive files with the Transmission Network Identifier (TNI) in this field, and they do not receive TLFs. A TLF can be derived from a TNI and historical metering data. \end{itemize} Each NMI n has a non-loss adjusted energy quantity associated with it for every Trading Interval i.\\ Facilities without an interval meter (i.e. SCADA-only facilities) have the identical NMI name and Facility name in AEMO's systems (e.g. n = COLLIE_G1, f = COLLIE_G1).\\ Note, that the equation below (\ref{SettlementSOMS_N_I}), is as per the rules. AEMO's implementation uses a more generalised equation, (\ref{SOMS_N_I}), to handle prudentials as well as settlement. \begin{equation} \label{SettlementSOMS_N_I} SettlementSOMS\_N\_I(n, i) = \begin{dcases} SCADA\_F\_I(n, i) & \text{for $n \in NOINTMETER(i)$}\\ \displaystyle \sum_{ch \in B(n, i)}MQ\_CH\_I(ch, i) - \sum_{ch \in E(n, i)}MQ\_CH\_I(ch, i) & \text{for $n \notin NOINTMETER(i)$}\\ \end{dcases} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SettlementSOMS\_N\_I(n, i) & MWh & N & I & & Sent Out Metered Schedule for NMI n in Trading Interval i & (\ref{SettlementSOMS_N_I})\\ \hline SOMS\_N\_I(n, i) & MWh & N & I & & Sent Out Metered Schedule for NMI n in Trading Interval i & (\ref{SOMS_N_I})\\ \hline SCADA\_F\_I(f, i) & MWh & F & I & & Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & I\\ \hline MQ\_CH\_I(ch, i) & MWh & CH & I & & Energy measured by metering channel ch in Trading Interval i, non-loss adjusted & I\\ \hline B(d) & \{\} & G & D & & Set of all generation metering channels associated with NMIs in Trading Day d & I\\ \hline E(d) & \{\} & G & D & & Set of all consumption metering channels associated with NMIs in Trading Day d & I\\ \hline NOINTMETER(d) & \{\} & G & D & & Set of Facilities in WEMS for which no Interval meter exists in Trading Day d & I\\ \hline \end{longtabu} \subsection{Standard Metered Schedules} Note, that the equation below (\ref{SettlementSOMS_F_I}), is as per the rules. AEMO's implementation uses a more generalised equation, (\ref{SOMS_F_I}), to handle prudentials as well as settlement. \begin{dmath} \label{SettlementSOMS_F_I} SettlementSOMS\_F\_I(f, i) = \begin{dcases} & \text{for $f \in NDL\_WEMS(i) \cup IRL(i) \cup SG(i) \cup NSG(i)$}\\ \displaystyle \sum_{n \in NMI(f, i)} SOMS\_N\_I(n, i) & \ \text{and $f \notin IML(i) \cup EG(i) \cup RG(i)$}\\ SOMS\_N\_I(f, i) & \text{for $f \in NDL\_MTR(i)$}\\ SOMSIL\_F\_I(f, i) + SOMSEL\_F\_I(f, i) & \text{for $f \in IML(i)$}\\ SOMSEG\_F\_I(EG2IML(f, i), i) & \text{for $f \in EG(i)$}\\ 0 & \text{for $f \in RG(i)$}\\ \frac{MS\_F\_I(f, i)}{TLF\_F\_D(f, i) \times DLF\_F\_D(f, i)} & \text{for $f \in NOTIONAL(i)$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{MS_F_I} MS\_F\_I(f, i) = \begin{dcases} & \text{for $f \in NDL\_WEMS(i) \cup IRL(i) \cup SG(i) \cup NSG(i)$}\\ SOMS\_F\_I(f, i) \times TLF\_F\_D(f, i) \times DLF\_F\_D(f, i) & \ \text{and $f \notin IML(i) \cup EG(i) \cup RG(i)$}\\ SOMS\_N\_I(f, i) \times TLF\_N\_D(f, i) \times DLF\_N\_D(f, i) & \text{for $f \in NDL\_MTR(i)$}\\ MSIL\_F\_I(f, i) + MSEL\_F\_I(f, i) & \text{for $f \in IML(i)$}\\ MSEG\_F\_I(EG2IML(f, i), i) & \text{for $f \in EG(i)$}\\ 0 & \text{for $f \in RG(i)$}\\ -1 \times \displaystyle \sum_{f \notin NOTIONAL(i)} MS\_F\_I(f, i) & \text{for $f \in NOTIONAL(i)$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SettlementSOMS\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SettlementSOMS_F_I})\\ \hline SOMS\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.3.4, 2.30B.10(c), 2.30B.12 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline SOMS\_N\_I(n, i) & MWh & N & I & & Sent Out Metered Schedule for NMI n in Trading Interval i & (\ref{SOMS_N_I})\\ \hline MSIL\_F\_I(f, i) & MWh & F & I & 9.3.4, 2.30B.10(c) i.1, ii.1, iii.1, iv.1 & Metered Schedule for the intermittent load associated with Facility f in Trading Interval i & (\ref{MSIL_F_I})\\ \hline SOMSIL\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the intermittent load associated with Facility f in Trading Interval i & (\ref{SOMSIL_F_I})\\ \hline MSEL\_F\_I(f, i) & MWh & F & I & 9.3.4, 2.30B.10(c) i.2, ii.2, iii.2, iv.2 & Metered Schedule for the embedded load associated with Facility f in Trading Interval i & (\ref{MSEL_F_I})\\ \hline SOMSEL\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the embedded load associated with Facility f in Trading Interval i & (\ref{SOMSEL_F_I})\\ \hline MSEG\_F\_I(f, i) & MWh & F & I & 9.3.4, 2.30B.10(c) i.3, ii.3, iii.3, iv.3 & Metered Schedule for the embedded generator associated with Intermittent Load Facility f in Trading Interval i & (\ref{MSEG_F_I})\\ \hline SOMSEG\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the embedded generator associated with Intermittent Load Facility f in Trading Interval i & (\ref{SOMSEG_F_I})\\ \hline TLF\_F\_D(f, d) & & F & D & & Transmission Loss Factor for Facility f for Trading Day d & I\\ \hline DLF\_F\_D(f, d) & & F & D & & Distribution Loss Factor for Facility f for Trading Day d & I\\ \hline TLF\_N\_D(n, d) & & N & D & & Transmission Loss Factor for NMI n for Trading Day d & I\\ \hline DLF\_N\_D(n, d) & & N & D & & Distribution Loss Factor for NMI n for Trading Day d & I\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline NDL\_WEMS(d) & \{\} & G & D & & Set of Non-Dispatchable Loads in WEMS registration in Trading Day d & (\ref{NDL_WEMS})\\ \hline NDL\_MTR(d) & \{\} & G & D & & Set of Non-Dispatchable Loads with interval meters that are not in WEMS in Trading Day d & I\\ \hline IRL(d) & \{\} & G & D & 11 & Set of Interruptible Loads in Trading Day d & (\ref{IRL})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline NSG(d) & \{\} & G & D & 11 & Set of Non-Scheduled Generators in Trading Day d & (\ref{NSG})\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline EG(d) & \{\} & G & D & 2.30B.2(a) & Set of Scheduled Generators that serve an Intermittent Load locally in Trading Day d & (\ref{EG})\\ \hline RG(d) & \{\} & G & D & 2.30B.2(a) & Set of Scheduled Generators that serve an Intermittent Load remotely in Trading Day d & (\ref{RG})\\ \hline NOTIONAL(d) & \{\} & G & D & 11 & Set containing the Notional Wholesale Meter & (\ref{NOTIONAL})\\ \hline \end{longtabu} \subsection{Intermittent Load Metered Schedules} An Intermittent Load comprises 4 components. The first 3 components are measured by the single connection point associated with the Intermittent Load, the 4th component is located at a different connection point: \begin{itemize} \item Intermittent load associated with Load f \item Embedded Load (non-Intermittent Load) that is non-Intermittent Load f \item Embedded generation associated with an embedded generator $IML2EG(f, d)$ \item Remote generation associated with a remote generator $IML2RG(f, d)$ \end{itemize} MR 2.30B.10(c)(i)3 requires the generation to be from a Registered Scheduled Generator at the connection point.\\ The figure below is a graphical representation of this configuration.\\ \begin{center} \includegraphics[width=17cm]{IntermittentLoad} \end{center} The purpose of this section is to define the Metered Schedule Quantities for each of the components. To do this, various standing data relating to the Intermittent Load and the embedded generator is used; however, the first step is to perform the following preliminary calculations to derive $AMQ\_F\_I$.\\ If there is a remote generator $IML2RG(f, d)$ associated with Intermittent Load f, its Metered Schedule for the purposes of Appendix 2 is defined below, for all other settlement calculations the Metered Schedule is not to be used. [MR 2.30B.12(b)]\\ Note, that the equation below (\ref{SettlementSOMSRG_F_I}), is as per the rules. AEMO's implementation uses a more generalised equation, (\ref{SOMSRG_F_I}), to handle prudentials as well as settlement. \begin{equation} \label{SettlementSOMSRG_F_I} SettlementSOMSRG\_F\_I(f, i) = \displaystyle \sum_{n \in NMI(IML2RG(f, i), i)}SOMS\_N\_I(n, i) \end{equation} \begin{equation} \label{MSRG_F_I} MSRG\_F\_I(f, i) = SOMSRG\_F\_I(f, i) \times TLF\_F\_D(IML2RG(f, i), i) \times DLF\_F\_D(IML2RG(f, i), i) \end{equation} The net metered quantity associated with the Intermittent Load is calculated: \begin{equation} \label{NNMQ_F_I} NNMQ\_F\_I(f, i) = \displaystyle \sum_{n \in NMI(f, i)}SOMS\_N\_I(n, i) \end{equation} \begin{equation} \label{NMQ_F_I} NMQ\_F\_I(f, i) = NNMQ\_F\_I(f, i) \times TLF\_F\_D(f, i) \times DLF\_F\_D(f, i) \end{equation} The meter data associated with each individual NMI that is separately metered (and settled) associated with the Intermittent Load is calculated: \begin{equation} \label{NS_F_I} NS\_F\_I(f, i) = \displaystyle \sum_{n \in NS(f, i)} SOMS\_N\_I(n, i) \times TLF\_N\_D(n, i) \times DLF\_N\_D(n, i) \end{equation} Any separately metered (and settled) quantities associated with the Intermittent Load are removed to determine AMQnoRG.\\ Note, that the equation below (\ref{SettlementAMQnoRG_F_I}), is as per the rules. AEMO's implementation uses a more generalised equation, (\ref{AMQnoRG_F_I}), to handle prudentials as well as settlement. \begin{equation} \label{SettlementAMQnoRG_F_I} SettlementAMQnoRG\_F\_I(f, i) = NMQ\_F\_I(f, i) - NS\_F\_I(f, i) \end{equation} Any remote generator is accounted for to determine AMQ: \begin{equation} \label{AMQ_F_I} AMQ\_F\_I(f, i) = AMQnoRG\_F\_I(f, i) + MSRG\_F\_I(f, i) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead AMQ\_F\_I(f, i) & MWh & F & I & 2.30B.10 (a)vi, 2.30B.12(a) & Adjusted meter quantity (including Remote Generators) for Facility f in Trading Interval i & (\ref{AMQ_F_I})\\ \hline SettlementAMQnoRG\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)vi & Adjusted meter quantity (except Remote Generators) for Facility f in Trading Interval i & (\ref{SettlementAMQnoRG_F_I})\\ \hline AMQnoRG\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)vi & Adjusted meter quantity (except Remote Generators) for Facility f in Trading Interval i & (\ref{AMQnoRG_F_I})\\ \hline NMQ\_F\_I(f, i) & MWh & F & I & 2.30B.10 (a)i & Loss adjusted net metered energy measured by the connection point for Facility f in Trading Interval i & (\ref{NMQ_F_I})\\ \hline NS\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)ii & Net supply that is separately metered associated with Facility f for Trading Interval i & (\ref{NS_F_I})\\ \hline NNMQ\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)i & Non-loss adjusted net metered energy measured by the connection point for Facility f in Trading Interval i & (\ref{NNMQ_F_I})\\ \hline SettlementSOMSRG\_F\_I(f, i) & MWh & F & I & & Non-loss adjusted energy output of remote generators associated with Intermittent Load Facility f in Trading Interval i & (\ref{SettlementSOMSRG_F_I})\\ \hline SOMSRG\_F\_I(f, i) & MWh & F & I & & Non-loss adjusted energy output of remote generators associated with Intermittent Load Facility f in Trading Interval i & (\ref{SOMSRG_F_I})\\ \hline MSRG\_F\_I(f, i) & MWh & F & I & & Loss-adjusted energy output of remote generators associated with Intermittent Load Facility f in Trading Interval i & (\ref{MSRG_F_I})\\ \hline SOMS\_N\_I(n, i) & MWh & N & I & & Sent Out Metered Schedule for NMI n in Trading Interval i & (\ref{SOMS_N_I})\\ \hline TLF\_F\_D(f, d) & & F & D & & Transmission Loss Factor for Facility f for Trading Day d & I\\ \hline DLF\_F\_D(f, d) & & F & D & & Distribution Loss Factor for Facility f for Trading Day d & I\\ \hline TLF\_N\_D(n, d) & & N & D & & Transmission Loss Factor for NMI n for Trading Day d & I\\ \hline DLF\_N\_D(n, d) & & N & D & & Distribution Loss Factor for NMI n for Trading Day d & I\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline RG(d) & \{\} & G & D & 2.30B.2(a) & Set of Scheduled Generators that serve an Intermittent Load remotely in Trading Day d & (\ref{RG})\\ \hline EG(d) & \{\} & G & D & 2.30B.2(a) & Set of Scheduled Generators that serve an Intermittent Load locally in Trading Day d & (\ref{EG})\\ \hline NS(d) & \{\} & G & D & 2.30B.10(a)ii & Set of all separately metered connection points (NMIs) that are also measured by another connection point in Trading Day d & I\\ \hline \end{longtabu} Then the $AMQ\_F\_I$ value is split into three components based on the standing data of the Intermittent Load or its associated embedded generator. If $AMQ\_F\_I$ is positive (generating) the generation is attributed to the embedded generator up until its maximum sent out generation, with any excess generation being attributed to the Intermittent Load Metered Schedules. Similarly, if $AMQ\_F\_I$ is negative (consuming) the consumption is attributed to the embedded load up until its maximum non-intermittent consumption, with any excess consumption being attributed to the Intermittent Load Metered Schedules. The diagram below illustrates this concept. \begin{center} \includegraphics[width=12cm]{IntLoadMS} \end{center} Mathematically, this is achieved by performing the following calculations:\\ The maximum non-intermittent Load associated with Intermittent load f is determined as: \begin{equation} \label{NL_F_D} NL\_F\_D(f, d) = -NLstanding\_F\_D(f, d) \times TLF\_F\_D(f, d) \times DLF\_F\_D(f, d) \end{equation} The maximum Sent Out Generation for an embedded generator, e, associated with Intermittent Load f is determined as: \begin{equation} \label{MSGEG_F_D} MSGEG\_F\_D(f, d) = MSG\_F\_D(IML2EG(f, d), d) \end{equation} \begin{equation} \label{MSG_F_D} MSG\_F\_D(f, d) = 0.5h \times SOC\_F\_D(f, d) \times TLF\_F\_D(f, d) \times DLF\_F\_D(f, d) \end{equation} \begin{equation} \label{SOC_F_D} SOC\_F\_D(f, d) = \begin{dcases} \displaystyle \sum_{g \in BALPF(d)} SOC\_F\_D(g, d) & \text{for $f \in PORTFOLIO(d)$}\\ max(0, MSGL\_F\_D(f, d), MSGNL\_F\_D(f, d)) & \text{for $f \notin PORTFOLIO(d)$}\\ \end{dcases} \end{equation} The Metered Schedule for the three components: Embedded Load, Intermittent Load and Embedded Generation of facility f are shown by the four equations below which is the mathematical representation of the image above. \begin{equation} \label{MSEL_F_Irules} MSEL\_F\_I(f, i) = \begin{dcases} NL\_F\_D(f, i) & \text{for $AMQ\_F\_I(f, i) \leq NL\_F\_D(f, i)$} \\ AMQ\_F\_I(f, i) & \text{for $NL\_F\_D(f, i) < AMQ\_F\_I(f, i) \leq 0$} \\ 0 & \text{for $0 < AMQ\_F\_I(f, i) \leq MSGEG\_F\_D(f, i)$} \\ 0 & \text{for $AMQ\_F\_I(f, i) > MSGEG\_F\_D(f, i)$} \\ \end{dcases} \end{equation} \begin{equation} \label{MSEG_F_Irules} MSEG\_F\_I(f, i) = \begin{dcases} 0 & \text{for $AMQ\_F\_I(f, i) \leq NL\_F\_D(f, i)$} \\ 0 & \text{for $NL\_F\_D(f, i) < AMQ\_F\_I(f, i) \leq 0$} \\ AMQ\_F\_I(f, i) & \text{for $0 < AMQ\_F\_I(f, i) \leq MSGEG\_F\_D(f, i)$} \\ MSGEG\_F\_D(f, i) & \text{for $AMQ\_F\_I(f, i) > MSGEG\_F\_D(f, i)$} \\ \end{dcases} \end{equation} \begin{equation} \label{MSIL_F_Irules} MSIL\_F\_I(f, i) = \begin{dcases} AMQ\_F\_I(f, i) - NL\_F\_D(f, i) & \text{for $AMQ\_F\_I(f, i) \leq NL\_F\_D(f, i)$} \\ 0 & \text{for $NL\_F\_D(f, i) < AMQ\_F\_I(f, i) \leq 0$} \\ 0 & \text{for $0 < AMQ\_F\_I(f, i) \leq MSGEG\_F\_D(f, i)$} \\ AMQ\_F\_I(f, i) - MSGEG\_F\_D(f, i) & \text{for $AMQ\_F\_I(f, i) > MSGEG\_F\_D(f, i)$} \\ \end{dcases} \end{equation} These equations are mathematically equivalent to: \begin{equation} \label{MSEL_F_I} MSEL\_F\_I(f, i) = min(0, max(NL\_F\_D(f, i), AMQ\_F\_I(f, i))) \end{equation} \begin{equation} \label{MSEG_F_I} MSEG\_F\_I(f, i) = max(0, min(MSGEG\_F\_D(f, i), AMQ\_F\_I(f, i))) \end{equation} \begin{equation} \label{MSIL_F_I} MSIL\_F\_I(f, i) = AMQ\_F\_I(f, i) - MSEL\_F\_I(f, i) - MSEG\_F\_I(f, i) \end{equation} The non-loss adjusted Metered Schedules for Embedded Load and Embedded Generator and Intermittent Load are defined as: \begin{equation} \label{SOMSEL_F_I} SOMSEL\_F\_I(f, i) =\frac{MSEL\_F\_I(f, i)}{TLF\_F\_D(f, i) \times DLF\_F\_D(f, i)} \end{equation} \begin{equation} \label{SOMSEG_F_I} SOMSEG\_F\_I(f, i) =\frac{MSEG\_F\_I(f, i)}{TLF\_F\_D(f, i) \times DLF\_F\_D(f, i)} \end{equation} \begin{equation} \label{SOMSIL_F_I} SOMSIL\_F\_I(f, i) =\frac{MSIL\_F\_I(f, i)}{TLF\_F\_D(f, i) \times DLF\_F\_D(f, i)} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead MSIL\_F\_I(f, i) & MWh & F & I & 9.3.4, 2.30B.10(c) i.1, ii.1, iii.1, iv.1 & Metered Schedule for the intermittent load associated with Facility f in Trading Interval i & (\ref{MSIL_F_I})\\ \hline SOMSIL\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the intermittent load associated with Facility f in Trading Interval i & (\ref{SOMSIL_F_I})\\ \hline MSEL\_F\_I(f, i) & MWh & F & I & 9.3.4, 2.30B.10(c) i.2, ii.2, iii.2, iv.2 & Metered Schedule for the embedded load associated with Facility f in Trading Interval i & (\ref{MSEL_F_I})\\ \hline SOMSEL\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the embedded load associated with Facility f in Trading Interval i & (\ref{SOMSEL_F_I})\\ \hline MSEG\_F\_I(f, i) & MWh & F & I & 9.3.4, 2.30B.10(c) i.3, ii.3, iii.3, iv.3 & Metered Schedule for the embedded generator associated with Intermittent Load Facility f in Trading Interval i & (\ref{MSEG_F_I})\\ \hline SOMSEG\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the embedded generator associated with Intermittent Load Facility f in Trading Interval i & (\ref{SOMSEG_F_I})\\ \hline AMQ\_F\_I(f, i) & MWh & F & I & 2.30B.10 (a)vi, 2.30B.12(a) & Adjusted meter quantity (including Remote Generators) for Facility f in Trading Interval i & (\ref{AMQ_F_I})\\ \hline MSGL\_F\_D(f, d) & MW & F & D & Appendix 1 (b)iii & Maximum sent out capacity (liquid fuel) of Facility f in Trading Day d. & I\\ \hline MSGNL\_F\_D(f, d) & MW & F & D & Appendix 1 (b)iii, Appendix 1 (e)iiiA & Maximum sent out capacity (Non-liquid fuel) of Facility f in Trading Day d. & I\\ \hline MSG\_F\_D(f, d) & MWh & F & D & 2.30B.10(a)v & Maximum sent out generation of Facility f in Trading Day d & (\ref{MSG_F_D})\\ \hline MSGEG\_F\_D(f, d) & MWh & F & D & 2.30B.10(a)v & Maximum sent out generation of the embedded generator serving Intermittent Load Facility f in Trading Day d & (\ref{MSGEG_F_D})\\ \hline SOC\_F\_D(f, d) & MW & F & D & 11 & Sent Out Capacity of Facility f in Trading Day d & (\ref{SOC_F_D})\\ \hline NLstanding\_F\_D(f, d) & MWh & F & D & Appendix 1 (f)viii or (g)xiii & Maximum possible consumption that is non-intermittent (nominated in standing data) associated with Facility f in Trading Day d. This has a positive value. & I\\ \hline NL\_F\_D(f, d) & MWh & F & D & 2.30B.10(a)iii & Maximum possible consumption that is non-intermittent associated with Facility f in Trading Day d. This has a negative value. & (\ref{NL_F_D})\\ \hline TLF\_F\_D(f, d) & & F & D & & Transmission Loss Factor for Facility f for Trading Day d & I\\ \hline DLF\_F\_D(f, d) & & F & D & & Distribution Loss Factor for Facility f for Trading Day d & I\\ \hline EG(d) & \{\} & G & D & 2.30B.2(a) & Set of Scheduled Generators that serve an Intermittent Load locally in Trading Day d & (\ref{EG})\\ \hline PORTFOLIO(d) & \{\} & G & D & 11 & Set containing the Balancing Portfolio & (\ref{PORTFOLIO})\\ \hline BALPF(d) & \{\} & G & D & 11 & Set of Facilities in the Balancing Portfolio in Trading Day d & (\ref{BALPF})\\ \hline \end{longtabu} \subsection{Metering Aggregations} \subsubsection{Invocation} The following table outlines the preliminary invocation for the high-level calculations. \begin{longtabu}{|m{0.25\linewidth}|m{0.70\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Scope Set\\ \hline \endhead $ABSLOAD\_G\_I(i)$ & N/A \\ \hline $ABSGEN\_G\_I(i)$ & N/A \\ \hline $LFCQ\_P\_M(p, m)$ & $\forall p \in P\_M(m)$ \\ \hline $DSPL\_F\_I(f, i)$ & $\forall f \in DSP(i)$ \\ \hline $SOMSAV\_F\_M(f, m)$ & $\forall f \in AF\_M(m) \cap IG\_M(m)$ \\ \hline $SOMS\_G\_I(i)$ & N/A \\ \hline \end{longtabu} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead ABSLOAD\_G\_I(i) & MWh & G & I & 9.13.1 & Metered Load in Trading Interval i & (\ref{ABSLOAD_G_I})\\ \hline ABSGEN\_G\_I(i) & MWh & G & I & 9.13.1 & Metered Generation in Trading Interval i & (\ref{ABSGEN_G_I})\\ \hline LFCQ\_P\_M(p, m) & MWh & P & M & 3.14.1(a) & Load following contributing quantity for Market Participant p in Trading Month m & (\ref{LFCQ_P_M})\\ \hline DSPL\_F\_I(f, i) & MWh & F & I & 6.16.2 & Demand Side Programme Load for Facility f in Trading Interval i & (\ref{DSPL_F_I})\\ \hline SOMSAV\_F\_M(f, m) & MWh & F & M & & Average Sent Out Metered Schedule for Facility f in Trading Month m & (\ref{SOMSAV_F_M})\\ \hline SOMS\_G\_I(i) & MWh & G & I & 11 & Total Sent Out Generation in Trading Interval i & (\ref{SOMS_G_I})\\ \hline DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline AF\_M(m) & \{\} & G & M & Appendix 2 & Set of applicable facilities (including any exempt under 2.30A.2) in Trading Month m & (\ref{AF_M})\\ \hline IG\_M(m) & \{\} & G & M & 11 & Set of Intermittent Generators in Trading Month m & (\ref{IG_M})\\ \hline \end{longtabu} \subsubsection{ABSLOAD\_G\_I, ABSLOAD\_P\_I} \begin{equation} \label{ABSLOAD_G_I} ABSLOAD\_G\_I(i) = \displaystyle \sum_{p \in MP(i)} ABSLOAD\_P\_I(p, i) \end{equation} \begin{dmath} \label{ABSLOAD_P_I} ABSLOAD\_P\_I(p, i) = ABSNDL\_P\_I(p, i) + \displaystyle \sum_{f \in IRL(p, i)}\abs{MS\_F\_I(f, i)} \end{dmath} \begin{dmath} \label{ABSNDL_P_I} ABSNDL\_P\_I(p, i) = \displaystyle \sum_{f \in NDL(p, i)}\abs{MS\_F\_I(f, i)} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead ABSLOAD\_G\_I(i) & MWh & G & I & 9.13.1 & Metered Load in Trading Interval i & (\ref{ABSLOAD_G_I})\\ \hline ABSLOAD\_P\_I(p, i) & MWh & P & I & 9.13.1 & Metered Load for Market Participant p in Trading Interval i & (\ref{ABSLOAD_P_I})\\ \hline ABSNDL\_P\_I(p, i) & MWh & P & I & 9.13.1 & Sum of the absolute values of the Non-Dispatchable Load Metered Schedules for Market Participant p in Trading Interval i & (\ref{ABSNDL_P_I})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.3.4, 2.30B.10(c), 2.30B.12 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline IRL(d) & \{\} & G & D & 11 & Set of Interruptible Loads in Trading Day d & (\ref{IRL})\\ \hline NDL(d) & \{\} & G & D & 11 & Set of Non-Dispatchable Loads in Trading Day d & (\ref{NDL})\\ \hline MP(d) & \{\} & G & D & 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline \end{longtabu} \subsubsection{ABSGEN\_G\_I, ABSGEN\_P\_I} \begin{equation} \label{ABSGEN_G_I} ABSGEN\_G\_I(i) = \displaystyle \sum_{p \in MP(i)} ABSGEN\_P\_I(p, i) \end{equation} \begin{equation} \label{ABSGEN_P_I} ABSGEN\_P\_I(p, i) = \displaystyle \sum_{f \in SG(p, i) \cup NSG(p, i)} \abs{MS\_F\_I(f, i)} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead ABSGEN\_G\_I(i) & MWh & G & I & 9.13.1 & Metered Generation in Trading Interval i & (\ref{ABSGEN_G_I})\\ \hline ABSGEN\_P\_I(p, i) & MWh & P & I & 9.13.1 & Metered Generation for Market Participant p in Trading Interval i & (\ref{ABSGEN_P_I})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.3.4, 2.30B.10(c), 2.30B.12 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline NSG(d) & \{\} & G & D & 11 & Set of Non-Scheduled Generators in Trading Day d & (\ref{NSG})\\ \hline MP(d) & \{\} & G & D & 11 & Set of Market Participants in Trading Day d & (\ref{MP})\\ \hline \end{longtabu} \subsubsection{LFCQ\_P\_M, CQ\_P\_M} \begin{dmath} \label{LFCQ_P_M} LFCQ\_P\_M(p, m) = \displaystyle \sum_{i \in I\_M(m)} \left( \sum_{f \in NSG(p, i)} MS\_F\_I(f, i) \right) + \abs{CQ\_P\_M(p, m)} \end{dmath} \begin{dmath} \label{CQ_P_M} CQ\_P\_M(p, m) = \displaystyle \sum_{i \in I\_M(m)} \left(MSNDL\_P\_I(p, i) + \sum_{f \in IRL(p, i)} MS\_F\_I(f, i) \right) \end{dmath} \begin{dmath} \label{MSNDL_P_I} MSNDL\_P\_I(p, i) = \displaystyle \sum_{f \in NDL(p, i)} MS\_F\_I(f, i) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead LFCQ\_P\_M(p, m) & MWh & P & M & 3.14.1(a) & Load following contributing quantity for Market Participant p in Trading Month m & (\ref{LFCQ_P_M})\\ \hline CQ\_P\_M(p, m) & MWh & P & M & 9.3.7(a) & Contributing quantity for Market Participant p in Trading Month m & (\ref{CQ_P_M})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.3.4, 2.30B.10(c), 2.30B.12 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline MSNDL\_P\_I(p, i) & MWh & P & I & & Sum of all Non-Dispatchable Load Metered Schedules for Market Participant p in Trading Interval i & (\ref{MSNDL_P_I})\\ \hline IRL(d) & \{\} & G & D & 11 & Set of Interruptible Loads in Trading Day d & (\ref{IRL})\\ \hline NDL(d) & \{\} & G & D & & Set of Non-Dispatchable Loads in Trading Day d & (\ref{NDL})\\ \hline NSG(d) & \{\} & G & D & 11 & Set of Non-Scheduled Generators in Trading Day d & (\ref{NSG})\\ \hline I\_M(m) & \{\} & G & M & & Set of Trading Intervals in Trading Month m & I\\ \hline \end{longtabu} \subsubsection{DSPL\_F\_I} \begin{equation} \label{DSPL_F_I} DSPL\_F\_I(f, i) = \displaystyle \sum_{n \in NMI(f, i)} -SOMS\_N\_I(n, i) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead DSPL\_F\_I(f, i) & MWh & F & I & 6.16.2 & Demand Side Programme Load for Facility f in Trading Interval i & (\ref{DSPL_F_I})\\ \hline SOMS\_N\_I(n, i) & MWh & N & I & & Sent Out Metered Schedule for NMI n in Trading Interval i & (\ref{SOMS_N_I})\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{SOMSAV\_F\_M} \begin{equation} \label{SOMSAV_F_M} SOMSAV\_F\_M(f, m) = \begin{dcases} 0 & \text{for $REGTITM\_F\_M(f, m) = 0$}\\ \frac{\displaystyle \sum_{i \in I\_M(m)} SOMS\_F\_I(f, i)}{REGTITM\_F\_M(f, m)} & \text{otherwise} \end{dcases} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SOMSAV\_F\_M(f, m) & MWh & F & M & & Average Sent Out Metered Schedule for Facility f in Trading Month m & (\ref{SOMSAV_F_M})\\ \hline SOMS\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline REGTITM\_F\_M(f, m) & & F & M & & Number of Trading Intervals for which Facility f is registered in Trading Month m & I\\ \hline I\_M(m) & \{\} & G & M & & Set of Trading Intervals in Trading Month m & I\\ \hline \end{longtabu} \subsubsection{SOMS\_G\_I} \begin{equation} \label{SOMS_G_I} SOMS\_G\_I(i) = \displaystyle \sum_{f \in SG(i) \cup NSG(i)} max( 0, SOMS\_F\_I(f, i)) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SOMS\_G\_I(i) & MWh & G & I & 11 & Total Sent Out Generation in Trading Interval i & (\ref{SOMS_G_I})\\ \hline SOMS\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline NSG(d) & \{\} & G & D & 11 & Set of Non-Scheduled Generators in Trading Day d & (\ref{NSG})\\ \hline \end{longtabu} \section{Calculation Engine} AEMO uses the same calculation engine for both settlement and prudentials. Settlement calculations are determined for either a Trading Week (STEM) or Trading Month (NSTEM); however, prudential calculations are determined for each Trading Day. Therefore, the common calculation engine has been implemented on a daily basis, and can then be aggregated to achieve the required settlement outputs. Some calculations are to be calculated prior to those outlined in the main calculation engine. These calculations have been chosen based on implementation considerations. The example below is offered to illustrate an implementation consideration. \\ AEMO is required to perform a calculation that requires the previous 1000 Trading Days for each Trading Day in April. If AEMO performs the calculation for all 30 days together then it imports 1030 Trading Days of Data. If AEMO performs the calculations for each individual Trading Day it will import 1000 Trading Days of data, 30 times, which is inefficient. These following invocation sections outlines the order in which calculations are invoked in the system. \subsection{Preliminary Calculations} \subsubsection{Preliminary Invocation} The following table outlines the preliminary invocation for the high-level calculations. \begin{longtabu}{|m{0.25\linewidth}|m{0.70\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Scope Set\\ \hline \endhead $MAX2\_F\_M(f, m)$ & $\forall f \in NSG\_M(m)$ \\ \hline $REPOC1000\_F\_D(f, d)$ & $\forall f \in SG(d)$ \\ \hline $DISP\_F\_I(f, i)$ & $\forall f \in CCF(i) \cap \overline{DSP(i)}$ \\ \hline $DISP1440Flag\_F\_I(f, i)$ & $\forall f \in SG(i) \cup DSP(i)$ \\ \hline $SCADASOI\_F\_I(f, i)$ & $\forall f \in BALF(i) \cup PORTFOLIO(i)$ \\ \hline $MAXFR\_F\_CY(f, cy)$ & $\forall f \in F\_CY(cy)$ \\ \hline $MAXPGR\_P\_CY(p, cy)$ & $\forall p \in P\_CY(cy)$ \\ \hline $CC\_PF\_M(p, f, m)$ & $\forall (p, f) \in CCPF\_M(m)$ \\ \hline \end{longtabu} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead MAX2\_F\_M(f, m) & MWh & F & M & 4.26.1A (a)(ii).3 & 2nd highest Sent Out Metered Schedule of Facility f up to and including Trading Month m & (\ref{MAX2_F_M})\\ \hline REPOC1000\_F\_D(f, d) & & F & D & 11 & Refund Exempt Planned Outage Count for Facility f over the preceding 1000 Trading Days prior to (and excluding) Trading Day d & (\ref{REPOC1000_F_D})\\ \hline DISP\_F\_I(f, i) & & F & I & 4.26.1(f)i & Portion of capacity which is not subject to a Forced Outage for Facility f over the previous 4320 Trading Intervals up to and including Trading Interval i & (\ref{DISP_F_I})\\ \hline DISP1440Flag\_F\_I(f, i) & Flag & F & I & 4.26.6(e)i.1, 4.26.6(e)ii.1 & Flag that is 1 when Facility f has been dispatched in the previous 1440 intervals prior to and including Trading Interval i and 0 otherwise & (\ref{DISP1440Flag_F_I})\\ \hline SCADASOI\_F\_I(f, i) & MW & F & I & & The start of interval output of Facility f for Trading Interval i & (\ref{SCADASOI_F_I})\\ \hline MAXFR\_F\_CY(f, cy) & \$ & F & CY & 11 & Maximum Facility Refund for Facility f in Capacity Year cy & (\ref{MAXFR_F_CY})\\ \hline MAXPGR\_P\_CY(p, cy) & \$ & P & CY & 11 & Maximum Participant Generation Refund for Market Participant p in Capacity Year cy & (\ref{MAXPGR_P_CY})\\ \hline CC\_PF\_M(p, f, m) & MW & PF & M & & Capacity Credits associated with Facility f and Market Participant p for Trading Month m & (\ref{CC_PF_M})\\ \hline P\_CY(cy) & \{\} & G & CY & & Set of participants (Rule Participants, ERA and the Coordinator) in Capacity Year cy & (\ref{P_CY})\\ \hline F\_CY(cy) & \{\} & G & CY & & Set of Registered Facilities and unregistered generation systems and unregistered interruptible loads in Capacity Year cy & (\ref{F_CY})\\ \hline NSG\_M(m) & \{\} & G & M & 11 & Set of Non-Scheduled Generators in Trading Month m & (\ref{NSG_M})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline BALF(d) & \{\} & G & D & 11 & Set of Balancing Facilities in Trading Day d & (\ref{BALF})\\ \hline PORTFOLIO(d) & \{\} & G & D & 11 & Set containing the Balancing Portfolio & (\ref{PORTFOLIO})\\ \hline CCF(d) & \{\} & G & D & & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline CCPF\_M(m) & \{\} & G & M & & Set of participant-facility combinations in Trading Month m & (\ref{CCPF_M})\\ \hline \end{longtabu} \subsubsection{MAX2\_F\_M} \begin{dmath} \label{MAX2_F_M} MAX2\_F\_M(f, m) = \text{2nd highest value of }\\ \text{$\{MAX1CM\_F\_M(f, j) : n < j \leq m \} \ \cup$} \\ \text{$\{MAX2CM\_F\_M(f, j) : n 0$} \\ 1 & \text{$f \in DSP(i)$ and $\displaystyle \sum_{j \in PI1440(i)} max(0, DI\_F\_I(f, j)) > 0$} \\ 0 & \text{otherwise} \\ \end{dcases} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead DISP1440Flag\_F\_I(f, i) & Flag & F & I & 4.26.6(e)i.1, 4.26.6(e)ii.1 & Flag that is 1 when Facility f has been dispatched in the previous 1440 intervals prior to and including Trading Interval i and 0 otherwise & (\ref{DISP1440Flag_F_I})\\ \hline SOMS\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline DI\_F\_I(f, i) & MWh & F & I & 7.13.1(eG) & Dispatch Instruction for Facility f in Trading Interval i & I\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline PI1440(i) & \{\} & G & I & & Set of 1440 Trading Intervals prior to and including Trading Interval i & I\\ \hline \end{longtabu} \subsubsection{CC\_PF\_M} The calculation of $CC\_PF\_M$ requires calculations for all Trading Days in the Trading Month. This is important to note as very few other calculations require this forward-looking calculation. In order to perform this forward-looking calculation, the following assumptions are made for future Trading Days: \begin{itemize} \item $CC\_F\_D(f, d + 1) = CC\_F\_D(f, d)$ \item The Facility remains registered to the current Market Participant for the remainder of the Capacity Year. \end{itemize} \begin{equation} \label{CC_PF_M} CC\_PF\_M(p, f, m) = \frac{\displaystyle \sum_{d \in D(m)} CC\_PF\_D(p, f, d)}{TDTM\_G\_M(m)} \end{equation} \begin{equation} \label{CC_PF_D} CC\_PF\_D(p, f, d) = \begin{dcases} CC\_F\_D(f, d) & \text{for $f \in CCF(p, d)$}\\ 0 & \text{otherwise} \end{dcases} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead CC\_PF\_M(p, f, m) & MW & PF & M & & Capacity Credits associated with Facility f and Market Participant p for Trading Month m & (\ref{CC_PF_M})\\ \hline CC\_PF\_D(p, f, d) & MW & PF & D & & Capacity Credits associated with Facility f and Market Participant p for Trading Day d & (\ref{CC_PF_D})\\ \hline CC\_F\_D(f, d) & MW & F & D & 11 & Capacity Credits associated with Facility f on Trading Day d & I\\ \hline TDTM\_G\_M(m) & & G & M & & Number of Trading Days in Trading Month m & (\ref{TDTM_G_M})\\ \hline CCF(d) & \{\} & G & D & & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline D(m) & \{\} & G & M & & Set of Trading Days in Trading Month m & I\\ \hline \end{longtabu} \subsection{Invocation} The following table outlines the invocation for the high-level calculations that occur after the preliminary calculations. \begin{longtabu}{|m{0.25\linewidth}|m{0.70\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Scope Set\\ \hline \endhead $TOTSTEM\_P\_D(p, d)$ & $\forall p \in P(d)$ \\ \hline $TOTNSTEM\_P\_D(p, d)$ & $\forall p \in P\_M(d)$ \\ \hline $LFPDNQ\_G\_I(i)$ & N/A \\ \hline $LFBDNQ\_G\_I(i)$ & N/A \\ \hline $UASLR\_G\_I(i)$ & N/A \\ \hline $SOMS\_G\_I(i)$ & N/A \\ \hline \end{longtabu} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead TOTNSTEM\_P\_D(p, d) & \$ & P & D & & Total settlement amount for NSTEM (including GST and interest) for Market Participant p in Trading Day d & (\ref{TOTNSTEM_P_D})\\ \hline TOTSTEM\_P\_D(p, d) & \$ & P & D & & Total settlement amount for STEM (including GST and interest) for Market Participant p in Trading Day d & (\ref{TOTSTEM_P_D})\\ \hline LFPDNQ\_G\_I(i) & MW & G & I & 11 & Sum of any Ex-post Downwards LFAS Enablement quantities in Trading Interval i & (\ref{LFPDNQ_G_I})\\ \hline LFBDNQ\_G\_I(i) & MW & G & I & 11 & Sum of any Backup Downwards LFAS Enablement quantities in Trading Interval i & (\ref{LFBDNQ_G_I})\\ \hline UASLR\_G\_I(i) & \$ & G & I & 9.9.1 & Amount paid for un-contracted Load Rejection and System Restart Services in Trading Interval i & (\ref{UASLR_G_I})\\ \hline SOMS\_G\_I(i) & MWh & G & I & 11 & Total Sent Out Generation in Trading Interval i & (\ref{SOMS_G_I})\\ \hline P(d) & \{\} & G & D & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Day d & (\ref{P})\\ \hline P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline \end{longtabu} \subsection{Daily Aggregations} \begin{dmath} \label{TOTSTEM_P_D} TOTSTEM\_P\_D(p, d) = STEMSA\_P\_D(p, d) + GSTSTEM\_P\_D(p, d) \end{dmath} \begin{dmath} \label{TOTNSTEM_P_D} TOTNSTEM\_P\_D(p, d) = NOINTNSTEM\_P\_D(p, d) + INTNSTEM\_P\_D(p, d) \end{dmath} \begin{equation} \label{NOINTNSTEM_P_D} NOINTNSTEM\_P\_D(p, d) = NSTEMSA\_P\_D(p, d) + RRSA\_P\_D(p, d) + GSTNSTEM\_P\_D(p, d) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead TOTNSTEM\_P\_D(p, d) & \$ & P & D & & Total settlement amount for NSTEM (including GST and interest) for Market Participant p in Trading Day d & (\ref{TOTNSTEM_P_D})\\ \hline TOTSTEM\_P\_D(p, d) & \$ & P & D & & Total settlement amount for STEM (including GST and interest) for Market Participant p in Trading Day d & (\ref{TOTSTEM_P_D})\\ \hline NOINTNSTEM\_P\_D(p, d) & \$ & P & D & & Total settlement amount for NSTEM (including GST, excluding interest) for Market Participant p in Trading Day d & (\ref{NOINTNSTEM_P_D})\\ \hline NSTEMSA\_P\_D(p, d) & \$ & P & D & 9.14.1 & Net NSTEM Settlement amount for Market Participant p in Trading Day d & (\ref{NSTEMSA_P_D})\\ \hline STEMSA\_P\_D(p, d) & \$ & P & D & 9.6.1 & Settlement amount for energy cleared in STEM for Market Participant p in Trading Day d & (\ref{STEMSA_P_D})\\ \hline RRSA\_P\_D(p, d) & \$ & P & D & 9.15.1 & Service Fee Settlement Amount paid to Rule Participant p for Trading Day d & (\ref{RRSA_P_D})\\ \hline GSTNSTEM\_P\_D(p, d) & \$ & P & D & & Net GST associated with NSTEM paid to participant p for Trading Day d & (\ref{GSTNSTEM_P_D})\\ \hline GSTSTEM\_P\_D(p, d) & \$ & P & D & & Net GST associated with STEM paid to participant p for Trading Day d & (\ref{GSTSTEM_P_D})\\ \hline INTNSTEM\_P\_D(p, d) & \$ & P & D & & Net interest paid to participant p for Trading Day d & (\ref{INTNSTEM_P_D})\\ \hline \end{longtabu} \subsubsection{NSTEM} These equations are based on the equations stated in MR 9.14. They have been modified to attribute a monthly calculation to an interval calculation and then aggregate to a Trading Day. \begin{dmath} \label{NSTEMSA_P_D} NSTEMSA\_P\_D(p, d) = RCSA\_P\_D(p, d) + BSA\_P\_D(p, d) + ASSA\_P\_D(p, d) + COCSA\_P\_D(p, d) + RSA\_P\_D(p, d) + MPFSA\_P\_D(p, d) + DLASA\_P\_D(p, d) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead- NSTEMSA\_P\_D(p, d) & \$ & P & D & 9.14.1 & Net NSTEM Settlement amount for Market Participant p in Trading Day d & (\ref{NSTEMSA_P_D})\\ \hline RCSA\_P\_D(p, d) & \$ & P & D & 9.7.1 & Reserve Capacity settlement amount for Market Participant p in Trading Day d & (\ref{RCSA_P_D})\\ \hline BSA\_P\_D(p, d) & \$ & P & D & 9.8.1 & Balancing settlement amount for Market Participant p in Trading Day d & (\ref{BSA_P_D})\\ \hline ASSA\_P\_D(p, d) & \$ & P & D & 9.9.1 & Ancillary Services settlement amount for Market Participant p in Trading Day d & (\ref{ASSA_P_D})\\ \hline COCSA\_P\_D(p, d) & \$ & P & D & 9.10.1 & Outage compensation settlement amount for Market Participant p in Trading Day d & (\ref{COCSA_P_D})\\ \hline RSA\_P\_D(p, d) & \$ & P & D & 9.11.1 & Reconciliation Settlement amount for Market Participant p in Trading Day d & (\ref{RSA_P_D})\\ \hline MPFSA\_P\_D(p, d) & \$ & P & D & 9.13.1 & Market Participant Fee Settlement Amount charged to Market Participant p for Trading Day d & (\ref{MPFSA_P_D})\\ \hline DLASA\_P\_D(p, d) & \$ & P & D & 9.24.9 & Default Levy Adjustment settlement amount for Participant p in Trading Day d & (\ref{DLASA_P_D}) \\ \hline \end{longtabu} \subsection{STEM} \begin{equation} \label{STEMSA_P_D} STEMSA\_P\_D(p, d) = STEMSAS\_P\_D(p, d) - STEMSAD\_P\_D(p, d) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead STEMSA\_P\_D(p, d) & \$ & P & D & 9.6.1 & Settlement amount for energy cleared in STEM for Market Participant p in Trading Day d & (\ref{STEMSA_P_D})\\ \hline STEMSAS\_P\_D(p, d) & \$ & P & D & 9.6.1 & Settlement amount for energy sold in STEM for Market Participant p in Trading Day d & (\ref{STEMSAS_P_D})\\ \hline STEMSAD\_P\_D(p, d) & \$ & P & D & 9.6.1 & Settlement amount for energy purchased in STEM for Market Participant p in Trading Day d & (\ref{STEMSAD_P_D})\\ \hline \end{longtabu} \subsubsection{STEM Payments and Charges} These equations are based on the equations stated in 9.6.1. They have been modified to aggregate to a Trading Day and to separate quantities into supply and demand. \begin{equation} \label{STEMSAS_P_D} STEMSAS\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} STEMSAS\_P\_I(p, i) \end{equation} \begin{equation} \label{STEMSAD_P_D} STEMSAD\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} STEMSAD\_P\_I(p, i) \end{equation} \begin{equation} \label{STEMSAS_P_I} STEMSAS\_P\_I(p, i) = \begin{dcases} STEMP\_G\_I(i) \times STEMSQ\_P\_I(p, i) & SSF\_G\_D(i) = 1 \\ 0 & SSF\_G\_D(i) = 0 \\ \end{dcases} \end{equation} \begin{equation} \label{STEMSAD_P_I} STEMSAD\_P\_I(p, i) = \begin{dcases} STEMP\_G\_I(i) \times STEMDQ\_P\_I(p, i) & SSF\_G\_D(i) = 1 \\ 0 & SSF\_G\_D(i) = 0 \\ \end{dcases} \end{equation} \begin{equation} \label{STEMSQ_P_I} STEMSQ\_P\_I(p, i) = max(0, STEMQ\_P\_I(p, i) \times SSF\_G\_D(i)) \end{equation} \begin{equation} \label{STEMDQ_P_I} STEMDQ\_P\_I(p, i) = -min(0, STEMQ\_P\_I(p, i) \times SSF\_G\_D(i)) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead STEMSAS\_P\_D(p, d) & \$ & P & D & 9.6.1 & Settlement amount for energy sold in STEM for Market Participant p in Trading Day d & (\ref{STEMSAS_P_D})\\ \hline STEMSAD\_P\_D(p, d) & \$ & P & D & 9.6.1 & Settlement amount for energy purchased in STEM for Market Participant p in Trading Day d & (\ref{STEMSAD_P_D})\\ \hline STEMSAS\_P\_I(p, i) & \$ & P & I & 9.6.1 & Settlement amount for energy sold in STEM for Market Participant p in Trading Interval i & (\ref{STEMSAS_P_I})\\ \hline STEMSAD\_P\_I(p, i) & \$ & P & I & 9.6.1 & Settlement amount for energy purchased in STEM for Market Participant p in Trading Interval i & (\ref{STEMSAD_P_I})\\ \hline STEMSQ\_P\_I(p, i) & MWh & P & I & & Energy sold in STEM by Market Participant p in Trading Interval i & (\ref{STEMSQ_P_I})\\ \hline STEMDQ\_P\_I(p, i) & MWh & P & I & & Energy bought in STEM by Market Participant p in Trading Interval i & (\ref{STEMDQ_P_I})\\ \hline STEMQ\_P\_I(p, i) & MWh & P & I & 6.9.13(b), 6.9.13(c), 6.10.2 & Energy purchased (sold) in STEM by Market Participant p in Trading Interval i & I\\ \hline SSF\_G\_D(d) & Flag & G & D & & 0 if STEM was suspended in Trading Day d, and 1 otherwise & I\\ \hline STEMP\_G\_I(i) & \$/MWh & G & I & 6.9.7, 6.10.2 & STEM Clearing Price declared for Trading Interval i & I\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsection{Balancing} Balancing is split into four parts: \begin{itemize} \item Balancing Market - Market Participants are paid and charged for selling and buying energy in the Balancing Market \item Constrained Compensation - Market Participants are paid for being constrained on or off \item DSM Dispatch Payments - Market Participants are paid when Non-Balancing Facilities are Dispatched \item Additional Repaid Amounts - Market Participants are paid when AEMO is required to disgorge funds (in addition to returning Credit Support) in accordance with the Corporations Act \end{itemize} The funding of constrained compensation, non-Balancing Facility Dispatch Instruction Payments and additional Repaid Amounts, is recovered as part of the reconciliation settlement calculations. \begin{dmath}\label{BSA_P_D} BSA\_P\_D(p, d) = BSAS\_P\_D(p, d) - BSAD\_P\_D(p, d) + CONC\_P\_D(p, d) + COFFC\_P\_D(p, d) + DIP\_P\_D(p, d) + ARA\_P\_D(p, d) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead BSA\_P\_D(p, d) & \$ & P & D & 9.8.1 & Balancing settlement amount for Market Participant p in Trading Day d & (\ref{BSA_P_D})\\ \hline BSAS\_P\_D(p, d) & \$ & P & D & 9.8.1 & Settlement amount for energy sold in the Balancing Market for Market Participant p in Trading Day d & (\ref{BSAS_P_D})\\ \hline BSAD\_P\_D(p, d) & \$ & P & D & 9.8.1 & Settlement amount for energy purchased in the Balancing Market for Market Participant p in Trading Day d & (\ref{BSAD_P_D})\\ \hline CONC\_P\_D(p, d) & \$ & P & D & 9.8.1 & Constrained On Compensation for Market Participant p in Trading Day d & (\ref{CONC_P_D})\\ \hline COFFC\_P\_D(p, d) & \$ & P & D & 9.8.1 & Constrained Off Compensation for Market Participant p in Trading Day d & (\ref{COFFC_P_D})\\ \hline DIP\_P\_D(p, d) & \$ & P & D & 6.17.6 & DSM Dispatch Payments for Market Participant p in Trading Day d & (\ref{DIP_P_D})\\ \hline ARA\_P\_D(p, d) & \$ & P & D & 9.24.2(b) & Repaid Amount that AEMO disgorges in addition to returning Credit Support for Market Participant p for Trading Day d & (\ref{ARA_P_D})\\ \hline \end{longtabu} \subsubsection{Balancing Market Payments and Charges} \begin{equation}\label{BSAS_P_D} BSAS\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} BSAS\_P\_I(p, i) \end{equation} \begin{equation}\label{BSAD_P_D} BSAD\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} BSAD\_P\_I(p, i) \end{equation} \begin{equation} \label{BSAS_P_I} BSAS\_P\_I(p, i) = BP\_G\_I(i) \times MBSQ\_P\_I(p, i) \end{equation} \begin{equation} \label{BSAD_P_I} BSAD\_P\_I(p, i) = BP\_G\_I(i) \times MBDQ\_P\_I(p, i) \end{equation} \begin{equation} \label{MBSQ_P_I} MBSQ\_P\_I(p, i) = max(0, MBQ\_P\_I(p, i)) \end{equation} \begin{equation} \label{MBDQ_P_I} MBDQ\_P\_I(p, i) = -min(0, MBQ\_P\_I(p, i)) \end{equation} \begin{dmath} \label{MBQ_P_I} MBQ\_P\_I(p, i) = MS\_P\_I(p, i) - NCP\_P\_I(p, i) \end{dmath} \begin{dmath} \label{MS_P_I} MS\_P\_I(p, i) = MSNDL\_P\_I(p, i) + \displaystyle \sum_{f \in REG\_F(p, i)} MS\_F\_I(f, i) \end{dmath} \begin{equation} \label{NCP_P_I} NCP\_P\_I(p, i) = NBP\_P\_I(p, i) + STEMQ\_P\_I(p, i) \times SSF\_G\_D(i) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead BSAS\_P\_D(p, d) & \$ & P & D & 9.8.1 & Settlement amount for energy sold in the Balancing Market for Market Participant p in Trading Day d & (\ref{BSAS_P_D})\\ \hline BSAD\_P\_D(p, d) & \$ & P & D & 9.8.1 & Settlement amount for energy purchased in the Balancing Market for Market Participant p in Trading Day d & (\ref{BSAD_P_D})\\ \hline BSAS\_P\_I(p, i) & \$ & P & I & 9.8.1 & Settlement amount for energy sold in the Balancing Market for Market Participant p in Trading Interval i & (\ref{BSAS_P_I})\\ \hline BSAD\_P\_I(p, i) & \$ & P & I & 9.8.1 & Settlement amount for energy purchased in the Balancing Market for Market Participant p in Trading Interval i & (\ref{BSAD_P_I})\\ \hline BP\_G\_I(i) & \$/MWh & G & I & 7A.3.10 & Balancing Price for Trading Interval i & I\\ \hline MBSQ\_P\_I(p, i) & MWh & P & I & & Energy sold in the Balancing Market by Market Participant p in Trading Interval i & (\ref{MBSQ_P_I})\\ \hline MBDQ\_P\_I(p, i) & MWh & P & I & & Energy purchased in the Balancing Market by Market Participant p in Trading Interval i & (\ref{MBDQ_P_I})\\ \hline MBQ\_P\_I(p, i) & MWh & P & I & 6.17.2 & Metered Balancing Quantity for Market Participant p in Trading Interval i & (\ref{MBQ_P_I})\\ \hline MS\_P\_I(p, i) & MWh & P & I & & Sum of all Metered Schedules for Market Participant p in Trading Interval i & (\ref{MS_P_I})\\ \hline NCP\_P\_I(p, i) & MWh & P & I & 6.9.13 & Net Contract Position for Market Participant p in Trading Interval i & (\ref{NCP_P_I})\\ \hline NBP\_P\_I(p, i) & MWh & P & I & 6.9.2 & Net Bilateral Position for Market Participant p in Trading Interval i & I\\ \hline STEMQ\_P\_I(p, i) & MWh & P & I & 6.9.13(b), 6.9.13(c), 6.10.2 & Energy purchased (sold) in STEM by Market Participant p in Trading Interval i & I\\ \hline MSNDL\_P\_I(p, i) & MWh & P & I & & Sum of all Non-Dispatchable Load Metered Schedules for Market Participant p in Trading Interval i & (\ref{MSNDL_P_I})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.3.4, 2.30B.10(c), 2.30B.12 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline SSF\_G\_D(d) & Flag & G & D & & 0 if STEM was suspended in Trading Day d, and 1 otherwise & I\\ \hline REG\_F(d) & \{\} & G & D & 11 & Set of Registered Facilities in Trading Day d & (\ref{F_REG})\\ \hline \end{longtabu} \subsubsection{Constrained Compensation} For implementation purposes the Balancing Portfolio is considered a Facility. Any Facilities that are members of the Balancing Portfolio are not considered individually, but only as a contribution to the Balancing Portfolio.\\ \begin{equation} \label{CONC_P_D} CONC\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} CONC\_P\_I(p, i) \end{equation} \begin{equation} \label{COFFC_P_D} COFFC\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} COFFC\_P\_I(p, i) \end{equation} \begin{equation} \label{CONC_P_I} CONC\_P\_I(p, i) = \displaystyle \sum_{f \in BALF(p, i) \cup PORTFOLIO(p, i)} CONC\_F\_I(f, i) \end{equation} \begin{equation} \label{COFFC_P_I} COFFC\_P\_I(p, i) = \displaystyle \sum_{f \in BALF(p, i) \cup PORTFOLIO(p, i)} COFFC\_F\_I(f, i) \end{equation} \begin{equation} \label{CONC_F_I} CONC\_F\_I(f, i) = \displaystyle \sum_{t \in BPQP(f, i)} CONC\_T\_I(t, i) \end{equation} \begin{equation} \label{COFFC_F_I} COFFC\_F\_I(f, i) = \displaystyle \sum_{t \in BPQP(f, i)} COFFC\_T\_I(t, i) \end{equation} \begin{equation} \label{CONC_T_I} CONC\_T\_I(t, i) = CONQLA\_T\_I(t, i) \times CONP\_T\_I(t, i) \end{equation} \begin{equation} \label{COFFC_T_I} COFFC\_T\_I(t, i) = COFFQLA\_T\_I(t, i) \times COFFP\_T\_I(t, i) \end{equation} \begin{equation} \label{CONQLA_T_I} CONQLA\_T\_I(t, i) = \begin{dcases} LF\_F\_D(f, i) \times CONQ\_T\_I(t, i) & \text{for $f \notin PORTFOLIO(i)$}\\ LFBP\_F\_I(f, i) \times CONQ\_T\_I(t, i) & \text{for $f \in PORTFOLIO(i)$}\\ \end{dcases} \end{equation} \begin{equation} \label{COFFQLA_T_I} COFFQLA\_T\_I(t, i) = \begin{dcases} LF\_F\_D(f, i) \times COFFQ\_T\_I(t, i) & \text{for $f \notin PORTFOLIO(i)$}\\ LFBP\_F\_I(f, i) \times COFFQ\_T\_I(t, i) & \text{for $f \in PORTFOLIO(i)$}\\ \end{dcases} \end{equation} \begin{equation} \label{LFBP_F_I} LFBP\_F\_I(f, i) = \begin{dcases} \frac{\displaystyle \sum_{g \in BALPF(i)} MS\_F\_I(g, i)}{SOMSBP\_F\_I(f, i)} & \text{for $SOMSBP\_F\_I(f, i) \neq 0$}\\ 1 & \text{otherwise} \end{dcases} \end{equation} \begin{equation} \label{SOMSBP_F_I} SOMSBP\_F\_I(f, i) = \displaystyle \sum_{g \in BALPF(i)} SOMS\_F\_I(g, i) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead CONC\_P\_D(p, d) & \$ & P & D & 9.8.1 & Constrained On Compensation for Market Participant p in Trading Day d & (\ref{CONC_P_D})\\ \hline COFFC\_P\_D(p, d) & \$ & P & D & 9.8.1 & Constrained Off Compensation for Market Participant p in Trading Day d & (\ref{COFFC_P_D})\\ \hline CONC\_P\_I(p, i) & \$ & P & I & 9.8.1 & Constrained On Compensation for Market Participant p in Trading Interval i & (\ref{CONC_P_I})\\ \hline COFFC\_P\_I(p, i) & \$ & P & I & 9.8.1 & Constrained Off Compensation for Market Participant p in Trading Interval i & (\ref{COFFC_P_I})\\ \hline CONC\_F\_I(f, i) & \$ & F & I & 9.8.1 & Constrained On Compensation relating to Facility f in Trading Interval i & (\ref{CONC_F_I})\\ \hline COFFC\_F\_I(f, i) & \$ & F & I & 9.8.1 & Constrained Off Compensation relating to Facility f in Trading Interval i & (\ref{COFFC_F_I})\\ \hline CONC\_T\_I(t, i) & \$ & T & I & 9.8.1 & Constrained On Compensation relating to tranche t in Trading Interval i & (\ref{CONC_T_I})\\ \hline COFFC\_T\_I(t, i) & \$ & T & I & 9.8.1 & Constrained Off Compensation relating to tranche t in Trading Interval i & (\ref{COFFC_T_I})\\ \hline CONP\_T\_I(t, i) & \$/MWh & T & I & 6.17.3(b), 6.17.3(c)ii, 6.17.3(d), 6.17.3A(b), 6.17.5(b), 6.17.5(c)ii, 6.17.5(d) & Constrained On Compensation Price for tranche t in Trading Interval i & (\ref{CONP_T_I})\\ \hline COFFP\_T\_I(t, i) & \$/MWh & T & I & 6.17.4(b), 6.17.4(c)ii, 6.17.4(d), 6.17.4A(b), 6.17.5A(b), 6.17.5A(c)ii, 6.17.5A(d) & Constrained Off Compensation Price for tranche t in Trading Interval i & (\ref{COFFP_T_I})\\ \hline CONQ\_T\_I(t, i) & MWh & T & I & 6.17.3(f), 6.17.3(g), 6.17.3A(a), 6.17.5(f), 6.17.5(g) & Constrained On Quantity for tranche t in Trading Interval i & (\ref{CONQ_T_I})\\ \hline COFFQ\_T\_I(t, i) & MWh & T & I & 6.17.4(f), 6.17.4(g), 6.17.4A(a), 6.17.5A(f), 6.17.5A(g) & Constrained Off Quantity for tranche t in Trading Interval i & (\ref{COFFQ_T_I})\\ \hline CONQLA\_T\_I(t, i) & MWh & T & I & 6.17.3(h), 6.17.3A(a), 6.17.5(h) & Loss adjusted Constrained On Quantity for tranche t in Trading Interval i & (\ref{CONQLA_T_I})\\ \hline COFFQLA\_T\_I(t, i) & MWh & T & I & 6.17.4(h), 6.17.4A(a), 6.17.5A(h) & Loss adjusted Constrained Off Quantity for tranche t in Trading Interval i & (\ref{COFFQLA_T_I})\\ \hline MS\_F\_I(f, i) & MWh & F & I & 9.3.4, 2.30B.10(c), 2.30B.12 & Metered Schedule for Facility f in Trading Interval i & (\ref{MS_F_I})\\ \hline SOMS\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline SOMSBP\_F\_I(f, i) & MWh & F & I & 6.16B.1(a) & Sum of Sent Out Metered Schedules for Facilities in the Balancing Portfolio for Facility f in Trading Interval i & (\ref{SOMSBP_F_I})\\ \hline LF\_F\_D(f, d) & & F & D & & Loss Factor for Facility f for Trading Day d & (\ref{LF_F_D})\\ \hline LFBP\_F\_I(f, i) & & F & I & 11 & Portfolio Loss Factor for Facility f for Trading Interval i & (\ref{LFBP_F_I})\\ \hline BPQP(i) & \{\} & G & I & 11 & Set of Balancing Price-Quantity Pairs in Trading Interval i & I\\ \hline BALF(d) & \{\} & G & D & 11 & Set of Balancing Facilities in Trading Day d & (\ref{BALF})\\ \hline BALPF(d) & \{\} & G & D & 11 & Set of Facilities in the Balancing Portfolio in Trading Day d & (\ref{BALPF})\\ \hline PORTFOLIO(d) & \{\} & G & D & 11 & Set containing the Balancing Portfolio & (\ref{PORTFOLIO})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \paragraph{Constrained Compensation Quantities} The rules manipulate the constrained compensation quantities for Scheduled Generators and the Balancing Portfolio in two stages as follows: \begin{itemize} \item Initial calculation which attributes a Facility's Out of Merit generation to each tranche\\ \item Adjustment of this quantity to remove any non-qualifying generation\\ \end{itemize} This is illustrated in the figure below.\\ \begin{center} \includegraphics[width=12cm]{CONQ} \end{center} \begin{dmath} \label{CONQ_T_I} CONQ\_T\_I(t, i) = \begin{dcases} UOOM\_F\_I(t, i) & \text{for $t \in NSG(i)$}\\ max(0, CONQinit\_T\_I(t, i) - max(0, NQCONMAX\_F\_I(t, i) - CCONQinit\_T\_I(t, i))) & \text{for $t \notin NSG(i)$} \end{dcases} \end{dmath} \begin{dmath} \label{COFFQ_T_I} COFFQ\_T\_I(t, i) = \begin{dcases} DOOM\_F\_I(t, i) & \text{for $t \in NSG(i)$}\\ max(0, COFFQinit\_T\_I(t, i) - max(0, NQCOFFMAX\_F\_I(t, i) - CCOFFQinit\_T\_I(t, i))) & \text{for $t \notin NSG(i)$}\\ \end{dcases} \end{dmath} \begin{dmath} \label{CONQinit_T_I} CONQinit\_T\_I(t, i) = \begin{dcases} min(TES\_T\_I(t, i), UOOM\_F\_I(t, i) - CCONQinit\_T\_I(t, i)) & \text{for $round(OPLA\_T\_I(t, i), 2) > BP\_G\_I(i)$}\\ 0 & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{COFFQinit_T_I} COFFQinit\_T\_I(t, i) = \begin{dcases} min(TESAC\_T\_I(t, i), DOOM\_F\_I(t, i) - CCOFFQinit\_T\_I(t, i)) & \text{for $round(OPLA\_T\_I(t, i), 2) < BP\_G\_I(i)$}\\ & \ \text{and $OPLA\_T\_I(t, i) \leq ACAPP\_F\_I(t, i)$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{equation} \label{CCONQinit_T_I} CCONQinit\_T\_I(t, i) = \displaystyle \sum_{\substack{u \in BPQP(f, i) \\ BMORank\_T\_I(u, i) < BMORank\_T\_I(t, i)}} CONQinit\_T\_I(u, i) \end{equation} \begin{equation} \label{CCOFFQinit_T_I} CCOFFQinit\_T\_I(t, i) = \displaystyle \sum_{\substack{u \in BPQP(f, i) \\ BMORank\_T\_I(u, i) > BMORank\_T\_I(t, i)}} COFFQinit\_T\_I(u, i) \end{equation} \begin{equation} \label{ACAPP_F_I} ACAPP\_F\_I(f, i) = \begin{dcases} & \text{if $\exists t \in BPQP(f, i): $}\\ OPLA\_T\_I(t, i) & \ \text{$COQ\_T\_I(t, i) \leq ACAPQ\_F\_I(f, i)$}\\ & \ \text{$ 10MW \\ 0 & \frac{SRSOMS\_F\_I(f, i)}{0.5h} \leq 10MW \end{dcases} \end{equation} \begin{dmath} \label{SRSOMS_F_I} SRSOMS\_F\_I(f, i) = \begin{dcases} SOMS\_N\_I(f, i) & \text{where $f \in SGpreAGG(i) \cup \left(SG(i) \cap \overline{AGG(i)} \cap \overline{EG(i)} \right)$} \\ SOMSAV\_F\_M(f, i) & \text{where $f \in IG(i)$} \\ SCADA\_F\_I(f, i) & \text{where $f \in EG(i) \cup GEN\_UREG\_L(i)$} \\ 0 & \text{otherwise} \\ \end{dcases} \end{dmath} Step 2 - Order applicable facilities by ascending applicable capacity\\ \begin{equation} \label{AF_G_I} AF\_G\_I(i) = AF(i) \ \text{ordered by ascending $AC\_F\_I(f, i)$ and then alphabetically} \end{equation} \begin{equation} \label{SRrank_F_I} SRrank\_F\_I(f, i) = \text{Position of applicable facility $f$ in $AF\_G\_I(i)$} \end{equation} The expression $AF[r]$ returns the $r$-th element of the set $AF\_G\_I(i)$ and the following equation shows the interaction between $AF\_G\_I(i)$, $SRrank\_F\_I(f, i)$ and $AF[r]$: \begin{equation} \label{AF[r]} AF[SRrank\_F\_I(f, i)] = f \end{equation} Step 3 - Determine Facility Spinning Reserve Share\\ \begin{equation} \label{FSRS_F_I} FSRS\_F\_I(f, i) = \displaystyle \sum_{r = 1}^{SRrank\_F\_I(f, i)} \frac{\left( \frac{AC\_F\_I(AF[r], i) - AC\_F\_I(AF[r-1], i)}{MAXAC\_G\_I(i)} \right)}{MAXr\_G\_I(i) - r + 1} \end{equation} \begin{equation} \label{AC_F_I(0, i)} AC\_F\_I(AF[0], i) = 0 \end{equation} \begin{equation} \label{MAXr_G_I} MAXr\_G\_I(i) = \abs{AF\_G\_I(i)} \end{equation} \begin{equation} \label{MAXAC_G_I} MAXAC\_G\_I(i) = AC\_F\_I(AF[MAXr\_G\_I(i)], i) \end{equation} The image below is to assist in visualising the calculation of FSRS\_F\_I(f, i). Each applicable facility is represented by a letter, and the facility share is visually represented as the area of the 'runway'.\\ \begin{center} \includegraphics[width=18cm]{FullRunwayModel} \end{center} Step 4 - Determine participant Spinning Reserve share\\ \begin{equation} \label{SRS_P_I} SRS\_P\_I(p, i) = \displaystyle \sum_{f \in AF(p, i)} FSRS\_F\_I(f, i) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SRS\_P\_I(p, i) & & P & I & Appendix 2 Step 4 & The share of Spinning Reserve costs for Market Participant p in Trading Interval i & (\ref{SRS_P_I})\\ \hline FSRS\_F\_I(f, i) & & F & I & Appendix 2 Step 3 & The share of Spinning Reserve costs for Facility f in Trading Interval i & (\ref{FSRS_F_I})\\ \hline MAXr\_G\_I(i) & & G & I & & The number of applicable facilities in Trading Interval i & (\ref{MAXr_G_I})\\ \hline MAXAC\_G\_I(i) & MW & G & I & & The largest applicable capacity in Trading Interval i & (\ref{MAXAC_G_I})\\ \hline AF\_G\_I(i) & \{\} & G & I & Appendix 2 Step 2 & Ordered set of applicable facilities in Trading Interval i (ordered by ascending applicable capacity) & (\ref{AF_G_I})\\ \hline AF[r] & & G & I & & The r-th element of the set $AF\_G\_I(i)$ & (\ref{AF[r]})\\ \hline AF(d) & \{\} & G & D & Appendix 2 & Set of applicable facilities (including any exempt under 2.30A.2) in Trading Day d & (\ref{AF})\\ \hline AC\_F\_I(f, i) & MW & F & I & Appendix 2 Step 1 & Applicable capacity for applicable facility f in Trading Interval i & (\ref{AC_F_I}) \& (\ref{AC_F_I(0, i)})\\ \hline SRrank\_F\_I(f, i) & & F & I & & The element number of applicable facility f in AF\_G\_I(i), where 1 is the applicable facility with the lowest applicable capacity. & (\ref{SRrank_F_I})\\ \hline SRSFlag\_F\_I(f, i) & Flag & F & I & & Flag used to set the applicable capacity for applicable facility f in Trading Interval i to 0, when required & (\ref{SRSFlag_F_I})\\ \hline SRsynchFlag\_F\_I(f, i) & Flag & F & I & Appendix 2 Step 1 1. & Flag that is 1 when applicable facility f is synchronised to the SWIS in Trading Interval i & I\\ \hline SR10Flag\_F\_I(f, i) & Flag & F & I & Appendix 2 Step 1 2. & Flag that is 1 when applicable facility f sent power out at an average rate greater than 10MW over Trading Interval i & (\ref{SR10Flag_F_I})\\ \hline SRpayableFlag\_F\_I(f, i) & Flag & F & I & & Flag that is 1 when the Facility associated with applicable facility f is required to fund Spinning Reserve in Trading Interval i & (\ref{SRpayableFlag_F_I})\\ \hline SRexemptFlag\_F\_D(f, d) & Flag & F & D & 2.30A.2 & Flag that is 1 when the Facility associated with applicable facility f is exempt from funding Spinning Reserve in Trading Day d & I\\ \hline SRSOMS\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Scheduled used when determining applicable capacity for connection point n in Trading Interval i & (\ref{SRSOMS_F_I})\\ \hline SOMS\_N\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for applicable facility f in Trading Interval i & (\ref{SOMS_N_I})\\ \hline SCADA\_F\_I(f, i) & MWh & F & I & & Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & I\\ \hline SOMSAV\_F\_M(f, m) & MWh & F & M & & Average Sent Out Metered Schedule for Facility f in Trading Month m & (\ref{SOMSAV_F_M})\\ \hline SGpreAGG(d) & \{\} & G & D & 2.30 & Set of Facilities which comprise an aggregated Scheduled Generator on Trading Day d & (\ref{SGpreAGG})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline IG(d) & \{\} & G & D & 11 & Set of Intermittent Generators in Trading Day d & (\ref{IG})\\ \hline AGG(d) & \{\} & G & D & 2.30 & Set of accepted aggregated Facilities in Trading Day d & (\ref{AGG})\\ \hline EG(d) & \{\} & G & D & 2.30B.2(a) & Set of Scheduled Generators that serve an Intermittent Load locally in Trading Day d & (\ref{EG})\\ \hline GEN\_UREG\_L(d) & \{\} & G & D & & Set of unregistered generation system serving an Intermittent Load in Trading Day d & (\ref{GEN_UREG_L})\\ \hline \end{longtabu} \subsubsection{Load Rejection, System Restart and un-contracted Dispatch Support Services Costs} \begin{equation} \label{COSTLR_P_D} COSTLR\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} COSTLR\_P\_I(p, i) \end{equation} \begin{equation} \label{COSTLR_P_I} COSTLR\_P\_I(p, i) = CS\_P\_M(p, i) \times \frac{COSTLR\_G\_M(i)}{TITM\_G\_M(i)} \end{equation} \begin{equation} \label{CS_P_M} CS\_P\_M(p, m) = \frac{CQ\_P\_M(p, m)}{CQ\_G\_M(m)} \end{equation} \begin{equation} \label{CQ_G_M} CQ\_G\_M(m) = \displaystyle \sum_{p \in P\_M(m)} CQ\_P\_M(p, m) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead COSTLR\_P\_D(p, d) & \$ & P & D & 9.9.1 & Amount charged to recover the cost of Load Rejection Service and System Restart Service for Market Participant p in Trading Day d & (\ref{COSTLR_P_D})\\ \hline COSTLR\_P\_I(p, i) & \$ & P & I & 9.9.1 & Amount charged to recover the cost of Load Rejection Service and System Restart Service for Market Participant p in Trading Interval i & (\ref{COSTLR_P_I})\\ \hline CS\_P\_M(p, m) & & P & M & 9.3.7 & Consumption share for Market Participant p in Trading Month m & (\ref{CS_P_M})\\ \hline CQ\_P\_M(p, m) & MWh & P & M & 9.3.7(a) & Contributing quantity for Market Participant p in Trading Month m & (\ref{CQ_P_M})\\ \hline CQ\_G\_M(m) & MWh & G & M & 9.3.7(b) & Sum of all contributing quantities in Trading Month m & (\ref{CQ_G_M})\\ \hline COSTLR\_G\_M(m) & \$ & G & M & 3.22.1(g)i & The monthly equivalent of the amount determined by the ERA to cover the costs of Load Rejection and System Restart Services, and un-contracted Dispatch Support Services for Trading Month m & (\ref{COSTLR_G_M})\\ \hline TITM\_G\_M(m) & & G & M & & Number of Trading Intervals in Trading Month m & (\ref{TITM_G_M})\\ \hline P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Contracted Dispatch Support Costs} \begin{equation} \label{COSTD_P_D} COSTD\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} COSTD\_P\_I(p, i) \end{equation} \begin{equation} \label{COSTD_P_I} COSTD\_P\_I(p, i) = CS\_P\_M(p, i) \times \frac{CASD\_G\_M(i)}{TITM\_G\_M(i)} \end{equation} \begin{equation} \label{CASD_G_M} CASD\_G\_M(m) = \displaystyle \sum_{p \in P\_M(m)} CASD\_P\_M(p, m) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead COSTD\_P\_D(p, d) & \$ & P & D & 9.9.1 & Amount charged to recover the cost of Dispatch Support Services for Market Participant p in Trading Day d & (\ref{COSTD_P_D})\\ \hline COSTD\_P\_I(p, i) & \$ & P & I & 9.9.1 & Amount charged to recover the cost of Dispatch Support Services for Market Participant p in Trading Interval i & (\ref{COSTD_P_I})\\ \hline CS\_P\_M(p, m) & & P & M & 9.3.7 & Consumption share for Market Participant p in Trading Month m & (\ref{CS_P_M})\\ \hline CASD\_G\_M(m) & \$ & G & M & 3.22.1(g)ii & The monthly amount for Dispatch Support Services for Trading Month m & (\ref{CASD_G_M})\\ \hline CASD\_P\_M(p, m) & \$ & P & M & 9.9.3(e) & Payment for the provision of contracted Dispatch Support Services for Rule Participant p for Trading Month m & I\\ \hline TITM\_G\_M(m) & & G & M & & Number of Trading Intervals in Trading Month m & (\ref{TITM_G_M})\\ \hline P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsection{Reserve Capacity} Reserve Capacity is split into the following parts: \begin{itemize} \item Capacity Payments - Payment to Market Participants for unallocated Capacity Credits. \item Capacity Credit Over-allocations Payment - Payment to Market Participants for receiving more Capacity Credit Allocations than its IRCR. \item Supplementary Capacity Payments - Payment to Market Participants associated with a Supplementary Capacity Contract. \item TRCC Charges - Charge to Market Participants to fund the cost of Capacity up to the Reserve Capacity Requirement. \item SRCC Charges - Charge to Market Participants to fund the payment of Capacity in excess of the Reserve Capacity Requirement. \item Capacity Cost Refund - Charge to Market Participants resulting from failure to meet obligations relating to Capacity Credits. \item Intermittent Load Refunds - Charge to Market Participants for Intermittent Load Refunds. \item Capacity Rebate - Payment to Market Participants redistributing the Capacity Refunds. \item Load Following Capacity Rebate - Payment to Market Participants to return Capacity charges relating to the Load Following Requirement (as these are paid through another equation). \end{itemize} These equations are based on the equations stated in MR 9.7. They have been modified to attribute a monthly calculation to an interval calculation and then aggregate to a Trading Day. They have also been altered so that payments are represented as positive values and charges negative values. If the calculations were aggregated to a Trading Month they would be mathematically equivalent to the equations detailed in the rules. \begin{equation} \label{RCSA_P_D} RCSA\_P\_D(p, d) = CPP\_P\_D(p, d) - CPC\_P\_D(p, d) \end{equation} \begin{dmath} \label{CPP_P_D} CPP\_P\_D(p, d) = CAPREBSA\_P\_D(p, d) + CCSA\_P\_D(p, d) - IMLR\_P\_D(p, d) + SUPCAPSA\_P\_D(p, d) - CCR\_P\_D(p, d) + CCAOASA\_P\_D(p, d) \end{dmath} \begin{dmath} \label{CPC_P_D} CPC\_P\_D(p, d) = TRCC\_P\_D(p, d) + SRCC\_P\_D(p, d) - LFREBATE\_P\_D(p, d) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead RCSA\_P\_D(p, d) & \$ & P & D & 9.7.1 & Reserve Capacity settlement amount for Market Participant p in Trading Day d & (\ref{RCSA_P_D})\\ \hline CPP\_P\_D(p, d) & \$ & P & D & 9.7.1A & Capacity Provider Payment for Market Participant p in Trading Day d & (\ref{CPP_P_D})\\ \hline CPC\_P\_D(p, d) & \$ & P & D & 9.7.1B & Capacity Purchaser Charge for Market Participant p in Trading Day d & (\ref{CPC_P_D})\\ \hline CAPREBSA\_P\_D(p, d) & \$ & P & D & 4.26.4 & Participant Capacity Rebate (whereby Capacity Cost Refunds are redistributed) for Market Participant p in Trading Day d & (\ref{CAPREBSA_P_D})\\ \hline CCSA\_P\_D(p, d) & \$ & P & D & 9.7.1A & Payment for non-allocated Capacity Credits for Market Participant p in Trading Day d & (\ref{CCSA_P_D})\\ \hline IMLR\_P\_D(p, d) & \$ & P & D & 4.28A.1 & Intermittent Load Refunds for Market Participant p in Trading Day d & (\ref{IMLR_P_D})\\ \hline SUPCAPSA\_P\_D(p, d) & \$ & P & D & 9.7.1 & Payment to be made under Supplementary Capacity Contracts to Market Participant p in Trading Day d & (\ref{SUPCAPSA_P_D})\\ \hline CCR\_P\_D(p, d) & \$ & P & D & 4.26.2E & Capacity Cost Refund charged to Market Participant p in Trading Day d & (\ref{CCR_P_D})\\ \hline CCAOASA\_P\_D(p, d) & \$ & P & D & 9.7.1A & Capacity Credit Allocation over-allocation Payment (when Capacity Credit Allocations exceed IRCR) for Market Participant p in Trading Day d & (\ref{CCAOASA_P_D})\\ \hline TRCC\_P\_D(p, d) & \$ & P & D & 9.7.1B & Charge to cover the Targeted Reserve Capacity Cost for Market Participant p in Trading Day d & (\ref{TRCC_P_D})\\ \hline SRCC\_P\_D(p, d) & \$ & P & D & 9.7.1B & Charge to cover the Shared Reserve Capacity Cost for Market Participant p in Trading Day d & (\ref{SRCC_P_D})\\ \hline LFREBATE\_P\_D(p, d) & \$ & P & D & 9.7.1B & Payment returning cost of Capacity associated with Load Following, for Market Participant p in Trading Day d & (\ref{LFREBATE_P_D})\\ \hline \end{longtabu} \subsubsection{Capacity Payments} This implementation appears slightly inconsistent with the rule stated in 9.7.1A as it includes the term $DSPVRR\_F\_I$. This term relates to a refund outlined in clause 4.25.4E. The rules do not state where this refund should be included in 9.7.1A, and therefore AEMO has included it within this term. The rules are explicit in defining a Demand Side Programme Capacity Cost Refund, which does not include the refund outlined in 4.25.4E. Similarly, the rules are explicit in defining what refunds are distributed as a Participant Capacity Rebate which again do not include the $DSPVRR\_F\_I$ refund. Implementing this refund here, allows AEMO to maintain the zero-sum nature of the settlement equations by returning the refund in the calculation of the Shared Reserve Capacity Cost. \begin{equation} \label{CCSA_P_D} CCSA\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} CCSA\_P\_I(p, i) \end{equation} \begin{equation} \label{CCSA_P_I} CCSA\_P\_I(p, i) = \displaystyle \sum_{(pp, f) \in CCPF\_M(p, i)} CCSA\_PF\_I(pp, f, i) \end{equation} \begin{equation} \label{CCSA_PF_I} CCSA\_PF\_I(p, f, i) = \begin{dcases} NetCC\_PF\_M(p, f, i) \times RCP\_F\_I(f, i) & \text{for $f \notin DSP(i)$}\\ NetCC\_PF\_M(p, f, i) \times RCP\_F\_I(f, i) - DSPVRR\_F\_I(f, i) & \text{for $f \in DSP(i)$} \end{dcases} \end{equation} \begin{equation} \label{NetCC_PF_M} NetCC\_PF\_M(p, f, m) = CC\_PF\_M(p, f, m) - CCAM\_PF\_M(p, f, m) \end{equation} \begin{equation} \label{CCAM_PF_M} CCAM\_PF\_M(p, f, m) = \displaystyle \sum_{a \in CCAM(p, f, m)}CCAQ\_A\_M(a) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead CCSA\_P\_D(p, d) & \$ & P & D & 9.7.1A & Payment for non-allocated Capacity Credits for Market Participant p in Trading Day d & (\ref{CCSA_P_D})\\ \hline CCSA\_P\_I(p, i) & \$ & P & I & 9.7.1A & Payment for non-allocated Capacity Credits for Market Participant p in Trading Interval i & (\ref{CCSA_P_I})\\ \hline CCSA\_PF\_I(p, f, i) & \$ & PF & I & 9.7.1A & Payment for non-allocated Capacity Credits for Facility f and Market Participant p in Trading Interval i & (\ref{CCSA_PF_I})\\ \hline NetCC\_PF\_M(p, f, m) & MW & PF & M & & Net Capacity Credits (net of any Capacity Credit Allocations) for Facility f and Market Participant p for Trading Month m & (\ref{NetCC_PF_M})\\ \hline CC\_PF\_M(p, f, m) & MW & PF & M & & Capacity Credits associated with Facility f and Market Participant p for Trading Month m & (\ref{CC_PF_M})\\ \hline CCAM\_PF\_M(pf, m) & MW & PF & M & & Number of Capacity Credits allocated to another Market Participant by Market Participant p in relation to Facility f in Trading Month m & (\ref{CCAM_PF_M})\\ \hline CCAQ\_A\_M(a) & MW & A & M & & Number of Capacity Credits associated with Capacity Credit Allocation a & I\\ \hline RCP\_F\_I(f, i) & \$/MW & F & I & & Interval Reserve Capacity Price for Facility f in Trading Interval i & (\ref{RCP_F_I})\\ \hline DSPVRR\_F\_I(f, i) & \$ & F & I & 4.25.4E & Refund payable related to the voluntary reduction of Capacity Credits for Facility f in Trading Interval i & (\ref{DSPVRR_F_I})\\ \hline DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline CCAM(m) & \{\} & G & M & & Set of Capacity Credit Allocations made (by Facility f and Market Participant p) in Trading Month m & I\\ \hline CCPF\_M(m) & \{\} & G & M & & Set of participant-facility combinations in Trading Month m & (\ref{CCPF_M})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Capacity Credit Over-Allocations Payment} \begin{equation} \label{CCAOASA_P_D} CCAOASA\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} CCAOASA\_P\_I(p, i) \end{equation} \begin{equation} \label{CCAOASA_P_I} CCAOASA\_P\_I(p, i) = CCAOA\_P\_M(p, i) \times \frac{EAP\_P\_M(p, i)}{TITM\_G\_M(i)} \end{equation} \begin{equation} \label{CCAOA_P_M} CCAOA\_P\_M(p, m) = max(0, CCAR\_P\_M(p, m) - IRCR\_P\_M(p, m)) \end{equation} \begin{equation} \label{EAP_P_M} EAP\_P\_M(p, m) = \begin{dcases} \frac{\displaystyle \sum_{a \in CCAR(p, m)}CCAQ\_A\_M(a) \times RCP\_F\_M(A2F(a), m)}{CCAR\_P\_M(p, m)} & \text{for $CCAR\_P\_M(p, m) \neq 0$}\\ 0 & \text{for $CCAR\_P\_M(p, m) = 0$} \end{dcases} \end{equation} \begin{equation} \label{CCAR_P_M} CCAR\_P\_M(p, m) = \displaystyle \sum_{a \in CCAR(p, m)}CCAQ\_A\_M(a) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead CCAOASA\_P\_D(p, d) & \$ & P & D & 9.7.1A & Capacity Credit Allocation over-allocation Payment (when Capacity Credit Allocations exceed IRCR) for Market Participant p in Trading Day d & (\ref{CCAOASA_P_D})\\ \hline CCAOASA\_P\_I(p, i) & \$ & P & I & 9.7.1A & Capacity Credit Allocation over-allocation Payment (when Capacity Credit Allocations exceed IRCR) for Market Participant p in Trading Interval i & (\ref{CCAOASA_P_I})\\ \hline CCAOA\_P\_M(p, m) & MW & P & M & & Number of Capacity Credit Allocations received by Market Participant p in excess of its IRCR for Trading Month m & (\ref{CCAOA_P_M})\\ \hline IRCR\_P\_M(p, m) & MW & P & M & 4.28.7, 4.28.11A & Individual Reserve Capacity Requirement for Market Participant p for Trading Month m & (\ref{IRCR_P_M})\\ \hline CCAR\_P\_M(p, m) & MW & P & M & & Number of Capacity Credits received by Market Participant p through Capacity Credit Allocations in Trading Month m & (\ref{CCAR_P_M})\\ \hline EAP\_P\_M(m) & \$/MW & P & M & 9.7.1A & Excess allocation price for Participant p in Trading Month m & (\ref{EAP_P_M})\\ \hline RCP\_F\_M(f, m) & \$/MW & F & M & 11 & Facility Monthly Reserve Capacity Price for Facility f in Trading Month m & (\ref{RCP_F_M})\\ \hline CCAQ\_A\_M(a) & MW & A & M & & Number of Capacity Credits associated with Capacity Credit Allocation a & I\\ \hline TITM\_G\_M(m) & & G & M & & Number of Trading Intervals in Trading Month m & (\ref{TITM_G_M})\\ \hline CCAR(m) & \{\} & G & M & & Set of Capacity Credit Allocations received (by Market Participant p from Facility f) in Trading Month m & I\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Supplementary Capacity Payments} \begin{equation} \label{SUPCAPSA_P_D} SUPCAPSA\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} SUPCAPSA\_P\_I(p, i) \end{equation} \begin{equation} \label{SUPCAPSA_P_I} SUPCAPSA\_P\_I(p, i) = \displaystyle \sum_{c \in SUP(p, i)} SUPCAPSA\_C\_I(c, i) \end{equation} \begin{equation} \label{SUPCAPSA_C_I} SUPCAPSA\_C\_I(c, i) = \frac{SUPCAPSA\_C\_M(c, i)}{TITM\_G\_M(i)} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SUPCAPSA\_P\_D(p, d) & \$ & P & D & 9.7.1 & Payment to be made under Supplementary Capacity Contracts to Market Participant p in Trading Day d & (\ref{SUPCAPSA_P_D})\\ \hline SUPCAPSA\_P\_I(p, i) & \$ & P & I & 9.7.1 & Payment to be made under Supplementary Capacity Contracts to Market Participant p in Trading Interval i & (\ref{SUPCAPSA_P_I})\\ \hline SUPCAPSA\_C\_M(c, m) & \$ & C & M & 4.29.3(e)i & Payment to be made under Supplementary Capacity Contract c in Trading Month m & I\\ \hline SUPCAPSA\_C\_I(c, i) & \$ & C & I & & Payment to be made under Supplementary Capacity Contract c in Trading Interval i & (\ref{SUPCAPSA_C_I})\\ \hline TITM\_G\_M(m) & & G & M & & Number of Trading Intervals in Trading Month m & (\ref{TITM_G_M})\\ \hline SUP(m) & \{\} & G & M & & Set of Supplementary Capacity contracts in Trading Month m & I\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{TRCC Charges} \begin{equation} \label{TRCC_P_D} TRCC\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} TRCC\_P\_I(p, i) \end{equation} \begin{equation} \label{TRCC_P_I} TRCC\_P\_I(p, i) = \begin{cases} SS\_P\_M(p, i) \times TRCC\_G\_I(i) & \text{for $TRCC\_G\_I(i) \neq 0$} \\ 0 & \text{otherwise} \end{cases} \end{equation} \begin{equation} \label{SS_P_M} SS\_P\_M(p, m) = \frac{CCASF\_P\_M(p, m)}{CCASF\_G\_M(m)} \end{equation} \begin{equation} \label{CCASF_G_M} CCASF\_G\_M(m) = \displaystyle \sum_{p \in P\_M(m)} CCASF\_P\_M(p, m) \end{equation} \begin{equation} \label{CCASF_P_M} CCASF\_P\_M(p, m) = max(0, IRCR\_P\_M(p, m) - CCAR\_P\_M(p, m)) \end{equation} \begin{dmath} \label{IRCR_P_M} IRCR\_P\_M(p, m) = \begin{dcases} IRCR3\_P\_M(p, m) & \text{if $IRCR3NULLFlag\_G\_M(m) = 0$}\\ IRCR2\_P\_M(p, m) & \text{if $IRCR2NULLFlag\_G\_M(m) = 0$ and $IRCR3NULLFlag\_G\_M(m) = 1$}\\ IRCR1\_P\_M(p, m) & \text{if $IRCR1NULLFlag\_G\_M(m) = 0$ and $IRCR3NULLFlag\_G\_M(m) = 1$}\\ & \ \text{and $IRCR2NULLFlag\_G\_M(m) = 1$}\\ IRCR0\_P\_M(p, m) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{TRCC_G_I} TRCC\_G\_I(i) = \frac{TRCC\_G\_M(i)}{TITM\_G\_M(i)} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead TRCC\_P\_D(p, d) & \$ & P & D & 9.7.1B & Charge to cover the Targeted Reserve Capacity Cost for Market Participant p in Trading Day d & (\ref{TRCC_P_D})\\ \hline TRCC\_P\_I(p, i) & \$ & P & I & 9.7.1B & Charge to cover the Targeted Reserve Capacity Cost for Market Participant p in Trading Interval i & (\ref{TRCC_P_I})\\ \hline TRCC\_G\_I(i) & \$ & G & I & 4.28.3 & Targeted Reserve Capacity Cost in Trading Interval i & (\ref{TRCC_G_I})\\ \hline SS\_P\_M(p, m) & & P & M & 9.7.1B & Shortfall share for Market Participant p in Trading Month m & (\ref{SS_P_M})\\ \hline CCASF\_G\_M(m) & MW & G & M & 9.7.1B & The sum of the amount IRCR exceeds Capacity Credit Allocations received by Market Participants in Trading Month m & (\ref{CCASF_G_M})\\ \hline CCASF\_P\_M(p, m) & MW & P & M & 9.7.1B & The amount IRCR exceeds Capacity Credit Allocations received by Market Participant p in Trading Month m & (\ref{CCASF_P_M})\\ \hline IRCR\_P\_M(p, m) & MW & P & M & 4.28.7, 4.28.11A & Latest published Individual Reserve Capacity Requirement for Market Participant p for Trading Month m & (\ref{IRCR_P_M})\\ \hline IRCR3\_P\_M(p, m) & MW & P & M & 4.28.11A & Third adjustment of the Individual Reserve Capacity Requirement for Market Participant p for Trading Month m & I\\ \hline IRCR2\_P\_M(p, m) & MW & P & M & 4.28.11A & Second adjustment of the Individual Reserve Capacity Requirement for Market Participant p for Trading Month m & I\\ \hline IRCR1\_P\_M(p, m) & MW & P & M & 4.28.11A & First adjustment of the Individual Reserve Capacity Requirement for Market Participant p for Trading Month m & I\\ \hline IRCR0\_P\_M(p, m) & MW & P & M & 4.28.7 & Individual Reserve Capacity Requirement (prior to any adjustments) for Market Participant p for Trading Month m & I\\ \hline IRCR3NULLFlag\_G\_M(m) & MW & G & M & & Flag that is 0 if the third adjustment of the Individual Reserve Capacity Requirements have been published for Trading Month m, and 0 otherwise & I\\ \hline IRCR2NULLFlag\_G\_M(m) & MW & G & M & & Flag that is 0 if the second adjustment of the Individual Reserve Capacity Requirements have been published for Trading Month m, and 0 otherwise & I\\ \hline IRCR1NULLFlag\_G\_M(m) & MW & G & M & & Flag that is 0 if the first adjustment of the Individual Reserve Capacity Requirements have been published for Trading Month m, and 0 otherwise & I\\ \hline CCAR\_P\_M(p, m) & MW & P & M & & Number of Capacity Credits received by Market Participant p through Capacity Credit Allocations in Trading Month m & (\ref{CCAR_P_M})\\ \hline TRCC\_G\_M(m) & \$ & G & M & 4.28.3 & Targeted Reserve Capacity Cost in Trading Interval i & (\ref{TRCC_G_M})\\ \hline TITM\_G\_M(m) & & G & M & & Number of Trading Intervals in Trading Month m & (\ref{TITM_G_M})\\ \hline P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \paragraph{Targeted Reserve Capacity Cost} MR 4.28.1(a) outlines the Targeted Reserve Capacity Cost as the cost of Capacity Credits acquired by AEMO (not traded bilaterally through a Capacity Credit Allocation) to just meet the Reserve Capacity Requirement. To implement this the following steps are followed.\\ Step 1: Determine how many Capacity Credits need to be acquired by AEMO to just meet the Reserve Capacity Requirement \begin{equation} \label{TRCCQ_G_M} TRCCQ\_G\_M(m) = min(RCR\_G\_CY(m), CC\_G\_M(m)) - (CCAR\_G\_M(m) - CCAOA\_G\_M(m)) \end{equation} \begin{equation} \label{CC_G_M} CC\_G\_M(m) = \displaystyle \sum_{(p, f) \in CCPF\_M(m)} CC\_PF\_M(p, f, m) \end{equation} \begin{equation} \label{CCAR_G_M} CCAR\_G\_M(m) = \displaystyle \sum_{p \in P\_M(m)} CCAR\_P\_M(p, m) \end{equation} \begin{equation} \label{CCAOA_G_M} CCAOA\_G\_M(m) = \displaystyle \sum_{p \in P\_M(m)} CCAOA\_P\_M(p, m) \end{equation} Step 2: Identify the set of all Capacity Credits acquired by AEMO and order them by descending price. \begin{dmath} \label{CCTRCC_G_M} CCTRCC\_G\_M(m) = \{\text{$t: T2P(t) \in P\_M(m)$ or $(T2P(t), T2F(t)) \in CCPF\_M(m)$} \} \\ \text{ordered by descending $CCP\_T\_M(t, m)$ and then alphabetically, where $t \in CCTRCC\_G\_M(m)$} \end{dmath} \begin{dmath} \label{CCP_T_M} CCP\_T\_M(t, m) = \begin{dcases} EAP\_P\_M(t, m) & \text{for $t \in P\_M(m)$}\\ RCP\_F\_M(T2F(t), m) & \text{for $t \in CCPF\_M(m)$}\\ \end{dcases} \end{dmath} \begin{dmath} \label{CCQ_T_M} CCQ\_T\_M(t, m) = \begin{dcases} CCAOA\_P\_M(t, m) & \text{for $t \in P\_M(m)$}\\ NetCC\_PF\_M(t, m) & \text{for $t \in CCPF\_M(m)$}\\ \end{dcases} \end{dmath} \begin{equation} \label{TRCCrank_T_M} TRCCrank\_T\_M(t, m) = \text{Position of price-quantity pair $t$ in $CCTRCC\_G\_M(m)$} \end{equation} Step 3: Determine the cost of Capacity Credits acquired by AEMO to just meet the Reserve Capacity Target. \begin{dmath} \label{TRCC_G_M} TRCC\_G\_M(m) = \displaystyle \sum_{t \in CCTRCC\_G\_M} CCP\_T\_M(t, m) \times min \left( CCQ\_T\_M(t, m), max(0, TRCCQ\_G\_M(m) - CCCQ\_T\_M(t, m) )\right) \end{dmath} \begin{equation} \label{CCCQ_T_M} CCCQ\_T\_M(t, m) = \displaystyle \sum_{\substack{u \in CCTRCC\_G\_M(m) \\ TRCCrank\_T\_M(u, m) < TRCCrank\_T\_M(t, m)}} CCQ\_T\_M(u, m) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead TRCCQ\_G\_M(m) & MW & G & M & 4.28.1(a) & The number of Capacity Credits acquired by AEMO to meet the Reserve Capacity Requirement after allowing for Capacity Credits traded bilaterally for Trading Month m & (\ref{TRCCQ_G_M})\\ \hline RCR\_G\_CY(cy) & MW & G & CY & 4.6.1 & Reserve Capacity Requirement for Capacity Year cy & I\\ \hline CC\_G\_M(m) & MW & G & M & & Bilaterally tradeable Capacity Credits for Trading Month m & (\ref{CC_G_M})\\ \hline CC\_PF\_M(p, f, m) & MW & PF & M & & Capacity Credits associated with Facility f and Market Participant p for Trading Month m & (\ref{CC_PF_M})\\ \hline CCAR\_G\_M(m) & MW & G & M & & Number of Capacity Credits received through Capacity Credit Allocations in Trading Month m & (\ref{CCAR_G_M})\\ \hline CCAR\_P\_M(p, m) & MW & P & M & & Number of Capacity Credits received by Market Participant p through Capacity Credit Allocations in Trading Month m & (\ref{CCAR_P_M})\\ \hline CCAOA\_G\_M(m) & MW & G & M & & Sum of Capacity Credit Allocations received in excess of a Market Participant's IRCR for Trading Month m & (\ref{CCAOA_G_M})\\ \hline CCAOA\_P\_M(p, m) & MW & P & M & & Number of Capacity Credit Allocations received by Market Participant p in excess of its IRCR for Trading Month m & (\ref{CCAOA_P_M})\\ \hline CCTRCC\_G\_M(m) & \{\} & G & M & & Ordered set of all price-quantity pairs associated with Capacity Credits used in the calculation of the Targeted Reserve Capacity Cost for Trading Month m (ordered by descending $TRCCrank\_T\_M(t, m)$) & (\ref{CCTRCC_G_M})\\ \hline CCP\_T\_M(t, m) & \$/MW & T & M & & Daily capacity price for tranche t in Trading Month m & (\ref{CCP_T_M})\\ \hline CCQ\_T\_M(t, m) & MW & T & M & & Capacity Credits associated with tranche t on Trading Month m & (\ref{CCQ_T_M})\\ \hline CCCQ\_T\_M(t, m) & MW & T & M & & Sum of Capacity Credits with a lower $TRCCrank\_T\_M(t, m)$ than tranche t on Trading Month m & (\ref{CCCQ_T_M})\\ \hline NetCC\_PF\_M(p, f, m) & MW & PF & M & & Net Capacity Credits (net of any Capacity Credit Allocations) for Facility f and Market Participant p for Trading Month m & (\ref{NetCC_PF_M})\\ \hline RCP\_F\_M(f, m) & \$/MW & F & M & 11 & Facility Monthly Reserve Capacity Price for Facility f in Trading Month m & (\ref{RCP_F_M})\\ \hline EAP\_P\_M(m) & \$/MW & P & M & 9.7.1A & Excess allocation price for Participant p in Trading Month m & (\ref{EAP_P_M})\\ \hline TRCCrank\_T\_M(t, m) & & T & M & & The element number of price-quantity pair $t$ in $CCTRCC\_G\_M(m)$ where 1 is the price-quantity pair with the highest price. & (\ref{TRCCrank_T_M})\\ \hline TRCC\_G\_M(m) & \$ & G & M & 4.28.3 & Targeted Reserve Capacity Cost in Trading Interval i & (\ref{TRCC_G_M})\\ \hline CCPF\_M(m) & \{\} & G & M & & Set of participant-facility combinations in Trading Month m & (\ref{CCPF_M})\\ \hline P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline \end{longtabu} \subsubsection{SRCC Charges} \begin{equation} \label{SRCC_P_D} SRCC\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} SRCC\_P\_I(p, i) \end{equation} \begin{equation} \label{SRCC_P_I} SRCC\_P\_I(p, i) = IRCRS\_P\_M(p, i) \times SRCC\_G\_I(i) \end{equation} \begin{dmath} \label{SRCC_G_I} SRCC\_G\_I(i) = ECCSA\_G\_I(i) + SUPCAPSA\_G\_I(i) - IMLR\_G\_I(i) - RCSD\_G\_I(i) - DSMRCSD\_G\_I(i) \end{dmath} \begin{equation} \label{ECCSA_G_I} ECCSA\_G\_I(i) = CCSA\_G\_I(i) + CCAOASA\_G\_I(i) - TRCC\_G\_I(i) \end{equation} \begin{equation} \label{SUPCAPSA_G_I} SUPCAPSA\_G\_I(i) = \displaystyle \sum_{p \in P\_M(i)} SUPCAPSA\_P\_I(p, i) \end{equation} \begin{equation} \label{IMLR_G_I} IMLR\_G\_I(i) = \displaystyle \sum_{p \in P\_M(i)} IMLR\_P\_I(p, i) \end{equation} \begin{equation} \label{CCSA_G_I} CCSA\_G\_I(i) = \displaystyle \sum_{p \in P\_M(i)} CCSA\_P\_I(p, i) \end{equation} \begin{equation} \label{CCAOASA_G_I} CCAOASA\_G\_I(i) = \displaystyle \sum_{p \in P\_M(i)} CCAOASA\_P\_I(p, i) \end{equation} \begin{equation} \label{RCSD_G_I} RCSD\_G\_I(i) = \frac{RCSD\_G\_M(i)}{TITM\_G\_M(i)} \end{equation} \begin{equation} \label{DSMRCSD_G_I} DSMRCSD\_G\_I(i) = \frac{DSMRCSD\_G\_M(i)}{TITM\_G\_M(i)} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SRCC\_P\_D(p, d) & \$ & P & D & 9.7.1B & Charge to cover the Shared Reserve Capacity Cost for Market Participant p in Trading Day d & (\ref{SRCC_P_D})\\ \hline SRCC\_P\_I(p, i) & \$ & P & I & 9.7.1B & Charge to cover the Shared Reserve Capacity Cost for Market Participant p in Trading Interval i & (\ref{SRCC_P_I})\\ \hline SRCC\_G\_I(i) & \$ & G & I & 4.28.4 & Shared Reserve Capacity Cost for Trading Interval i & (\ref{SRCC_G_I})\\ \hline ECCSA\_G\_I(i) & \$ & G & I & 4.28.4(a) & Payments made for Capacity Credits in excess of the Reserve Capacity Requirement for Trading Interval i & (\ref{ECCSA_G_I})\\ \hline IRCRS\_P\_M(p, m) & & P & M & 9.7.1B & Capacity share for Market Participant p for Trading Month m & (\ref{IRCRS_P_M})\\ \hline CCSA\_P\_I(p, i) & \$ & P & I & 9.7.1A & Payment for non-allocated Capacity Credits for Market Participant p in Trading Interval i & (\ref{CCSA_P_I})\\ \hline CCSA\_G\_I(i) & \$ & G & I & & Payment for non-allocated Capacity Credits in Trading Interval i & (\ref{CCSA_G_I})\\ \hline TRCC\_G\_I(i) & \$ & G & I & 4.28.3 & Targeted Reserve Capacity Cost in Trading Interval i & (\ref{TRCC_G_I})\\ \hline SUPCAPSA\_P\_I(p, i) & \$ & P & I & 9.7.1 & Payment to be made under Supplementary Capacity Contracts to Market Participant p in Trading Interval i & (\ref{SUPCAPSA_P_I})\\ \hline SUPCAPSA\_G\_I(i) & \$ & G & I & 4.28.4(b) & Payment to be made under Supplementary Capacity Contracts in Trading Interval i & (\ref{SUPCAPSA_G_I})\\ \hline IMLR\_P\_I(p, i) & \$ & P & I & 4.28A.1 & Intermittent Load Refunds for Market Participant p in Trading Interval i & (\ref{IMLR_P_I})\\ \hline IMLR\_G\_I(i) & \$ & G & I & 4.28.4(c) & Intermittent Load Refunds for Trading Interval i & (\ref{IMLR_G_I})\\ \hline RCSD\_G\_I(i) & \$ & G & I & 4.28.4(b), 4.28.4(d) & Total amount drawn under a Reserve Capacity Security by AEMO for Trading Interval i & (\ref{RCSD_G_I})\\ \hline RCSD\_G\_M(m) & \$ & G & M & 4.28.4(b), 4.28.4(d) & Total amount drawn under a Reserve Capacity Security by AEMO for Trading Month m & I\\ \hline DSMRCSD\_G\_I(i) & \$ & G & I & 4.28.4(b), 4.28.4(d) & Total amount drawn under a DSM Reserve Capacity Security by AEMO for Trading Interval i & (\ref{DSMRCSD_G_I})\\ \hline DSMRCSD\_G\_M(m) & \$ & G & M & 4.28.4(b), 4.28.4(d) & Total amount drawn under a DSM Reserve Capacity Security by AEMO for Trading Month m & I\\ \hline CCAOASA\_P\_I(p, i) & \$ & P & I & 9.7.1A & Capacity Credit Allocation over-allocation Payment (when Capacity Credit Allocations exceed IRCR) for Market Participant p in Trading Interval i & (\ref{CCAOASA_P_I})\\ \hline CCAOASA\_G\_I(i) & \$ & G & I & 9.7.1A & Capacity Credit Allocation over-allocation Payment (when Capacity Credit Allocations exceed IRCR) in Trading Interval i & (\ref{CCAOASA_G_I})\\ \hline TITM\_G\_M(m) & & G & M & & Number of Trading Intervals in Trading Month m & (\ref{TITM_G_M})\\ \hline P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Capacity Cost Refunds} The rules have many defined terms relating to refunds. The drawing below outlines some of these terms/variables and how they relate to each other. The important points to note are: \begin{itemize} \item Whether the variable relates to the 'lowest-level' refund (shown as rectangles) or whether it is an aggregation of other lower-level refunds (shown as ellipses) \item Whether the variable is capped \item Whether the variable relates to a Facility (shown in purple) or Market Participant (shown in orange) \end{itemize} \begin{center} \includegraphics[width=17cm]{Refunds} \end{center} To assist in understanding this document has grouped most of the refund types into this section; however, the Intermittent Load Refunds and DSP voluntary reduction refunds are aggregated and handled in separate sections as they are returned to a different set of Market Participants than Capacity Cost Refunds. \paragraph{Refund Aggregations} \begin{equation} \label{CCR_P_D} CCR\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} CCR\_P\_I(p, i) \end{equation} \begin{equation} \label{CCR_P_I} CCR\_P\_I(p, i) = GCCR\_P\_I(p, i) + DSPCCR\_P\_I(p, i) \end{equation} \begin{dmath} \label{GCCR_P_I} GCCR\_P\_I(p, i) = min(MAXPGR\_P\_CY(p, i) - CGCCR\_P\_I(p, i), GRCDR\_P\_I(p, i) + NSR\_P\_I(p, i)) \end{dmath} \begin{dmath} \label{CGCCR_P_I} CGCCR\_P\_I(p, i) = CGCCRstart\_P\_D(p, d) + \displaystyle \sum_{j \in PITD(i)} GCCR\_P\_I(p, j) \end{dmath} \begin{dmath} \label{GRCDR_P_I} GRCDR\_P\_I(p, i) = \displaystyle \sum_{f \in F(p, i) \cap \overline{DSP(i)}} GRCDR\_F\_I(f, i) \end{dmath} \begin{dmath} \label{GRCDR_F_I} GRCDR\_F\_I(f, i) = \begin{dcases} FRCDR\_F\_I(f, i) & \text{for $f \notin DSP(i)$} \\ 0 & \text{for $f \in DSP(i)$} \\ \end{dcases} \end{dmath} \begin{dmath} \label{DSPCCR_P_I} DSPCCR\_P\_I(p, i) = \displaystyle \sum_{f \in DSP(p, i)} DSPCCR\_F\_I(f, i) \end{dmath} \begin{dmath} \label{DSPCCR_F_I} DSPCCR\_F\_I(f, i) = \begin{dcases} min(MAXFR\_F\_CY(f, i) - CDSPCCR\_F\_I(f, i), DSPCSR\_F\_I(f, i) + FRCDR\_F\_I(f, i)) & \text{for $f \in DSP(i)$} \\ 0 & \text{for $f \notin DSP(i)$} \\ \end{dcases} \end{dmath} \begin{dmath} \label{CDSPCCR_F_I} CDSPCCR\_F\_I(f, i) = CDSPCCRstart\_F\_D(f, i) + \displaystyle \sum_{j \in PITD(i)} DSPCCR\_F\_I(f, j) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead CCR\_P\_D(p, d) & \$ & P & D & 4.26.2E & Capacity Cost Refund charged to Market Participant p in Trading Day d & (\ref{CCR_P_D})\\ \hline CCR\_P\_I(p, i) & \$ & P & I & 4.26.2E & Capacity Cost Refund charged to Market Participant p in Trading Interval i & (\ref{CCR_P_I})\\ \hline GCCR\_P\_I(p, i) & \$ & P & I & 4.26.3 & Generation Capacity Cost Refund for Market Participant p in Trading Interval i & (\ref{GCCR_P_I})\\ \hline DSPCCR\_P\_I(p, i) & \$ & P & I & 4.26.2F(b) & Sum of DSP Capacity Cost Refunds for Market Participant p in Trading Interval i & (\ref{DSPCCR_P_I})\\ \hline DSPCCR\_F\_I(f, i) & \$ & F & I & 4.26.3A & DSP Capacity Cost Refund for Facility f in Trading Interval i & (\ref{DSPCCR_F_I})\\ \hline CDSPCCR\_F\_I(f, i) & \$ & F & I & 4.26.3A & Sum of DSP Capacity Cost Refund for Facility f in Trading Intervals in the same Capacity Year as, but prior to, Trading Interval i & (\ref{CDSPCCR_F_I})\\ \hline CDSPCCRstart\_F\_D(f, d) & \$ & F & D & 4.26.3A & Sum of DSP Capacity Cost Refund for Facility f in the same Capacity Year as, but prior to, Trading Day d & I\\ \hline CGCCR\_P\_I(p, i) & \$ & P & I & 4.26.3 & Sum of Generation Capacity Cost Refund for Market Participant p in Trading Intervals in the same Capacity Year as, but prior to, Trading Day d & (\ref{CGCCR_P_I})\\ \hline CGCCRstart\_P\_D(p, d) & \$ & P & D & 4.26.3 & Sum of Generation Capacity Cost Refund for Market Participant p in the same Capacity Year as, but prior to, Trading Day d & I\\ \hline MAXPGR\_P\_CY(p, cy) & \$ & P & CY & 11 & Maximum Participant Generation Refund for Market Participant p in Capacity Year cy & (\ref{MAXPGR_P_CY})\\ \hline GRCDR\_P\_I(p, i) & \$ & P & I & 4.26.1B & Generation Reserve Capacity Deficit Refund for Market Participant p in Trading Interval i & (\ref{GRCDR_P_I})\\ \hline GRCDR\_F\_I(f, i) & \$ & F & I & & Generation Reserve Capacity Deficit Refund contribution by Facility f in Trading Interval i & (\ref{GRCDR_F_I})\\ \hline FRCDR\_F\_I(f, i) & \$ & F & I & 4.26.1A & Facility Reserve Capacity Deficit Refund for Facility f in Trading Interval i & (\ref{FRCDR_F_I})\\ \hline DSPCSR\_F\_I(f, i) & \$ & F & I & 4.26.3A(b) & DSP capacity shortfall refund for Facility f in Trading Interval i & (\ref{DSPCSR_F_I})\\ \hline NSR\_P\_I(p, i) & \$ & P & I & 4.26.3(b) & Net STEM Refund for Market Participant p in Trading Interval i & (\ref{NSR_P_I})\\ \hline MAXFR\_F\_CY(f, cy) & \$ & F & CY & 11 & Maximum Facility Refund for Facility f in Capacity Year cy & (\ref{MAXFR_F_CY})\\ \hline F(d) & \{\} & G & D & & Set of Registered Facilities, unregistered generation systems and unregistered interruptible loads in Trading Day d & (\ref{F})\\ \hline DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline PITD(i) & \{\} & G & I & & Set of Trading Intervals in the same Trading Day as, but prior to, Trading Interval i & I\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \paragraph{Net STEM Refund} \begin{dmath} \label{NSR_P_I} NSR\_P\_I(p, i) = TIRRW\_P\_I(p, i) \times NSSF\_P\_I(p, i) \end{dmath} In the WEM Rules $NSSF\_P\_I(p, i)$ is expressed as shown in (\ref{NSSF_P_I}) and (\ref{A_P_I}). \begin{dmath} \label{NSSF_P_I} NSSF\_P\_I(p, i) = max(RCDF\_P\_I(p, i), RCOQ\_P\_I(p, i) - A\_P\_I(p, i)) - RCDF\_P\_I(p, i) \end{dmath} \begin{dmath} \label{A_P_I} A\_P\_I(p, i) = min(RCOQ\_P\_I(p, i), CAPA\_P\_I(p, i)) \end{dmath} Because $RCDF\_P\_I(p, i)$ is non-negative, (\ref{NSSF_P_I}) and (\ref{A_P_I}) are equivalent to (\ref{NSSF_P_Isimplified}), which makes it simpler to understand what the shortfall represents conceptually. The Net STEM Shortfall is the difference between a Market Participant's obligation ($RCOQ\_P\_I$) and the capacity it makes available ($CAPA\_P\_I$), net of any deficits it will pay refunds for by another mechanism ($RCDF\_P\_I$). \begin{dmath} \label{NSSF_P_Isimplified} NSSF\_P\_I(p, i) = max(0, RCOQ\_P\_I(p, i) - CAPA\_P\_I(p, i) - RCDF\_P\_I(p, i)) \end{dmath} \begin{dmath} \label{CAPA_P_I} CAPA\_P\_I(p, i) = \begin{dcases} RCOQ\_P\_I(p, i) & \text{if $SSF\_G\_D(i)=0$}\\ RCOQIL\_P\_I(p, i) + \frac{NCP\_P\_I(p, i)}{0.5h \times LF\_P\_D(p, i)} + \frac{STEMNSOQ\_P\_I(p, i) + STEMDQ\_P\_I(p, i)}{0.5h \times LF\_P\_D(p, i)} & \text{if $SSF\_G\_D(i)=1$}\\ \ + \frac{BSASQ\_P\_I(p, i)}{0.5h \times LF\_P\_D(p, i)} + max(0, BSFO\_P\_I(p, i) - RTFO\_P\_I(p, i)) & \\ \end{dcases} \end{dmath} \begin{dmath} \label{RCOQIL_P_I} RCOQIL\_P\_I(p, i) = \displaystyle \sum_{f \in IRL(p, i)} RCOQ\_F\_I(f, i) \end{dmath} \begin{dmath} \label{LF_P_D} LF\_P\_D(p, d) = 1 \end{dmath} \begin{dmath} \label{LFCAPPED_F_D} LFCAPPED\_F\_D(f, d) = min(1, TLF\_F\_D(f, d) \times DLF\_F\_D(f, d)) \end{dmath} \begin{dmath} \label{BSFO_P_I} BSFO\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} min(RCOQ\_F\_I(f, i), BSFO\_F\_I(f, i)) \end{dmath} \begin{dmath} \label{RCOQ_P_I} RCOQ\_P\_I(p, i) = RCOQU\_P\_I(p, i) + \displaystyle \sum_{f \in REG\_F(p, i) \cap \overline{DSP(i)}} LFCAPPED\_F\_D(f, i) \times RCOQ\_F\_I(f, i) \end{dmath} \begin{dmath} \label{RCOQU_P_I} RCOQU\_P\_I(p, i) = \displaystyle \sum_{f \in CCF(p, i) \cap \overline{REG\_F(i)} \cap \overline{IRL\_UREG(i)}} RCOQ\_F\_I(f, i) \end{dmath} \begin{dmath} \label{RCDF_P_I} RCDF\_P\_I(p, i) = RTFO\_P\_I(p, i) + RTRPPO\_P\_I(p, i) \end{dmath} \begin{dmath} \label{RTFO_P_I} RTFO\_P\_I(p, i) = \displaystyle \sum_{f \in REG\_F(p, i)} RTFO\_F\_I(f, i) \end{dmath} \begin{dmath} \label{RTRPPO_P_I} RTRPPO\_P\_I(p, i) = \displaystyle \sum_{f \in SG(p, i)} RTRPPO\_F\_I(f, i) \end{dmath} \begin{dmath} \label{RTFO_F_I} RTFO\_F\_I(f, i) = min(RCOQ\_F\_I(f, i), EXPFO\_F\_I(f, i)) \end{dmath} \begin{dmath} \label{RTRPPO_F_I} RTRPPO\_F\_I(f, i) = max(0, RPPO\_F\_I(f, i) - BSPO\_F\_I(f, i)) \end{dmath} \begin{dmath} \label{STEMNSOQ_P_I} STEMNSOQ\_P\_I(p, i) = STEMOQ\_P\_I(p, i) - STEMSQ\_P\_I(p, i) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead NSR\_P\_I(p, i) & \$ & P & I & 4.26.3(b) & Net STEM Refund for Market Participant p in Trading Interval i & (\ref{NSR_P_I})\\ \hline TIRRW\_P\_I(p, i) & \$/MW & P & I & 4.26.3(b)ii & Weighted average Trading Interval refund rate for Market Participant p in Trading Interval i & (\ref{TIRRW_P_I})\\ \hline NSSF\_P\_I(p, i) & MW & P & I & 4.26.2 & Net STEM Shortfall for Market Participant p in Trading Interval i & (\ref{NSSF_P_I}) \& (\ref{NSSF_P_Isimplified})\\ \hline RCDF\_P\_I(p, i) & MW & P & I & 4.26.2 & Reserve capacity deficit caused by Forced Outages and Refund Payable Planned Outages for Market Participant p in Trading Interval i & (\ref{RCDF_P_I})\\ \hline RCOQ\_P\_I(p, i) & MW & P & I & 4.26.2 & Reserve Capacity Obligation Quantity for Market Participant p in Trading Interval i & (\ref{RCOQ_P_I})\\ \hline RCOQ\_F\_I(f, i) & MW & F & I & 11 & Reserve Capacity Obligation Quantity of Facility f in Trading Interval i & I\\ \hline RCOQU\_P\_I(p, i) & MW & P & I & 4.26.2(a) & Reserve Capacity Obligation Quantity associated with unregistered Facilities (excluding interruptible loads) for Market Participant p in Trading Interval i & (\ref{RCOQU_P_I})\\ \hline RCOQIL\_P\_I(p, i) & MW & P & I & 4.26.2(d)i & Sum of Interruptible Load Reserve Capacity Obligation Quantities for Market Participant p in Trading Interval i & (\ref{RCOQIL_P_I})\\ \hline CAPA\_P\_I(p, i) & MW & P & I & 4.26.2 & Capacity made available by Market Participant p in Trading Interval i & (\ref{CAPA_P_I})\\ \hline NCP\_P\_I(p, i) & MWh & P & I & 6.9.13 & Net Contract Position for Market Participant p in Trading Interval i & (\ref{NCP_P_I})\\ \hline LF\_P\_D(p, d) & & P & D & 4.26.2A & Loss Factor for Market Participant p for Trading Day d & (\ref{LF_P_D})\\ \hline LFCAPPED\_F\_D(f, d) & & F & D & 4.26.2B & Loss Factor (capped at 1) for Facility f for Trading Day d & (\ref{LFCAPPED_F_D})\\ \hline TLF\_F\_D(f, d) & & F & D & & Transmission Loss Factor for Facility f for Trading Day d & I\\ \hline DLF\_F\_D(f, d) & & F & D & & Distribution Loss Factor for Facility f for Trading Day d & I\\ \hline RTFO\_P\_I(p, i) & MW & P & I & 4.26.2 & Real time Forced Outages for Market Participant p in Trading Interval i & (\ref{RTFO_P_I})\\ \hline RTFO\_F\_I(f, i) & MW & F & I & 4.26.2 & Real time Forced Outage for Facility f in Trading Interval i & (\ref{RTFO_F_I})\\ \hline RTRPPO\_P\_I(p, i) & MW & P & I & 4.26.2 & Real time Refund Payable Planned Outages for Market Participant p in Trading Interval i & (\ref{RTRPPO_P_I})\\ \hline RTRPPO\_F\_I(f, i) & MW & F & I & 4.26.2 & Real time Refund Payable Planned Outage for Facility f in Trading Interval i & (\ref{RTRPPO_F_I})\\ \hline RPPO\_F\_I(f, i) & MW & F & I & 4.26.1C(b) & Refund Payable Planned Outage for Facility f in Trading Interval i & (\ref{RPPO_F_I})\\ \hline BSFO\_P\_I(p, i) & MW & P & I & 4.26.2 & Before STEM Forced Outage for Market Participant p in Trading Interval i & (\ref{BSFO_P_I})\\ \hline BSFO\_F\_I(f, i) & MW & F & I & 7.3.4 & Before STEM Forced Outage for Facility f in Trading Interval i & I\\ \hline BSPO\_F\_I(f, i) & MW & F & I & 7.3.4 & Before STEM Planned Outage for Facility f in Trading Interval i & I\\ \hline BSASQ\_P\_I(p, i) & MWh & P & I & 6.3A.2(e)(i) & Before STEM Ancillary Services quantity for Market Participant p in Trading Interval i & I\\ \hline STEMSQ\_P\_I(p, i) & MWh & P & I & & Energy sold in STEM by Market Participant p in Trading Interval i & (\ref{STEMSQ_P_I})\\ \hline STEMDQ\_P\_I(p, i) & MWh & P & I & & Energy bought in STEM by Market Participant p in Trading Interval i & (\ref{STEMDQ_P_I})\\ \hline STEMNSOQ\_P\_I(p, i) & MWh & P & I & & Energy offered (but not scheduled) in STEM by Market Participant p in Trading Interval i & (\ref{STEMNSOQ_P_I})\\ \hline STEMOQ\_P\_I(p, i) & MWh & P & I & Appendix 6 (e) & Energy offered in STEM by Market Participant p in Trading Interval i & I\\ \hline EXPFO\_F\_I(f, i) & MW & F & I & 7.13.1A(b) & Ex-post Forced Outage for Facility f in Trading Interval i & I\\ \hline SSF\_G\_D(d) & Flag & G & D & & 0 if STEM was suspended in Trading Day d, and 1 otherwise & I\\ \hline A\_P\_I(p, i) & MW & P & I & 4.26.2 & Capped capacity made available by Market Participant p in Trading Interval i & (\ref{A_P_I})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline REG\_F(d) & \{\} & G & D & 11 & Set of Registered Facilities in Trading Day d & (\ref{F_REG})\\ \hline DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline CCF(d) & \{\} & G & D & & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline IRL\_UREG(d) & \{\} & G & D & & Set of unregistered Loads that can be interrupted upon request in Trading Day d & (\ref{IRL_UREG})\\ \hline IRL(d) & \{\} & G & D & 11 & Set of Interruptible Loads in Trading Day d & (\ref{IRL})\\ \hline \end{longtabu} \paragraph{DSP Capacity Shortfall Refund} \begin{equation} \label{DSPCSR_F_I} DSPCSR\_F\_I(f, i) = \begin{dcases} TIRR\_F\_I(f, i) \times DSPSF\_F\_I(f, i) & \text{for $f \in DSP(i)$} \\ 0 & \text{for $f \notin DSP(i)$} \\ \end{dcases} \end{equation} \begin{dmath} \label{DSPSF_F_I} DSPSF\_F\_I(f, i) = max \left(0, min \left( RCOQ\_F\_I(f, i), \frac{DI\_F\_I(f, i)}{0.5h} \right) - max \left(0, RD\_F\_D(f, i) - \frac{DSPL\_F\_I(f, i)}{0.5h} \right)\right) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead DSPCSR\_F\_I(f, i) & \$ & F & I & 4.26.3A(b) & DSP capacity shortfall refund for Facility f in Trading Interval i & (\ref{DSPCSR_F_I})\\ \hline TIRR\_F\_I(f, i) & \$/MW & F & I & 4.26.1(a) & Trading Interval Refund Rate for Facility f in Trading Interval i & (\ref{TIRR_F_I})\\ \hline DSPSF\_F\_I(f, i) & MW & F & I & 4.26.2D & DSP Capacity Shortfall for Facility f for Trading Interval i & (\ref{DSPSF_F_I})\\ \hline RCOQ\_F\_I(f, i) & MW & F & I & 11 & Reserve Capacity Obligation Quantity of Facility f in Trading Interval i & I\\ \hline RD\_F\_D(f, d) & MW & F & D & 4.26.2CA & Relevant Demand of Facility f in Trading Day d & I\\ \hline DSPL\_F\_I(f, i) & MWh & F & I & 6.16.2 & Demand Side Programme Load for Facility f in Trading Interval i & (\ref{DSPL_F_I})\\ \hline DI\_F\_I(f, i) & MWh & F & I & 7.13.1(eG) & Dispatch Instruction for Facility f in Trading Interval i & I\\ \hline DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline \end{longtabu} \paragraph{Facility Reserve Capacity Deficit Refund} \begin{dmath} \label{FRCDR_F_I} FRCDR\_F\_I(f, i) = \begin{dcases} 0 & \text{for $f \in IML(i)$} \\ min(RCD\_F\_I(f, i) \times TIRR\_F\_I(f, i), MAXFR\_F\_CY(f, i) - CFRCDR\_F\_I(f, i)) & \text{for $f \notin IML(i)$} \\ \end{dcases} \end{dmath} \begin{dmath} \label{CFRCDR_F_I} CFRCDR\_F\_I(f, i) = CFRCDRstart\_F\_D(f, i) + \displaystyle \sum_{j \in PITD(i)} FRCDR\_F\_I(f, j) \end{dmath} \begin{dmath} \label{RCD_F_I} RCD\_F\_I(f, i) = \begin{dcases} EXPFO\_F\_I(f, i) + RPPO\_F\_I(f, i) & \text{for $f \in SG(i) \cup IRL(i) \cup \left(NSG(i) \cap \overline{IG(i)} \right)$} \\ & \ \text{and $COP\_F\_D(f, i) = 1$} \\ CC\_F\_D(f, i) & \text{for $f \in IG(i)$ and $COP\_F\_D(f, i) = 0$} \\ REQLA\_F\_D(f, i) - max\left(\frac{MAX2\_F\_M(f, i)}{0.5h}, ESTSOC\_F\_D(f, i)\right) & \text{for $f \in IG(i)$ and $COP\_F\_D(f, i) = 1$} \\ & \ \text{and $Y\_F\_I(f, i) \neq 0$} \\ CC\_F\_D(f, i) & \text{for $f \in F(i) \cap \overline{REG\_F(i)}$}\\ & \ \text{or $\left( f \in \overline{DSP(i) \cup IG(i)} \text{ and } COP\_F\_D(f, i) = 0 \right)$} \\ max(0, RCOQ\_F\_I(f, i) - max(0, RD\_F\_D(f, i) - MINL\_F\_D(f, i))) & \text{for $f \in DSP(i)$} \\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{RPPO_F_I} RPPO\_F\_I(f, i) = \begin{dcases} 0 & \text{for $f \in SG(i)$ and $REPOC1000\_F\_D(f, i) < 8400$}\\ EXPPO\_F\_I(f, i) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{MINL_F_D} MINL\_F\_D(f, d) = \displaystyle \sum_{n \in DSPNMI(f, d)} MINL\_N\_D(n, d) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead FRCDR\_F\_I(f, i) & \$ & F & I & 4.26.1A & Facility Reserve Capacity Deficit Refund for Facility f in Trading Interval i & (\ref{FRCDR_F_I})\\ \hline CFRCDR\_F\_I(f, i) & \$ & F & I & 4.26.1A(b) & Sum of Facility Reserve Capacity Deficit Refunds for Facility f in Trading Intervals in the same Capacity Year as, but prior to, Trading Interval i & (\ref{CFRCDR_F_I})\\ \hline CFRCDRstart\_F\_D(f, d) & \$ & F & D & 4.26.1A(b) & Sum of Facility Reserve Capacity Deficit Refunds for Facility f in the same Capacity Year as, but prior to, Trading Day d & I\\ \hline MAXFR\_F\_CY(f, cy) & \$ & F & CY & 11 & Maximum Facility Refund for Facility f in Capacity Year cy & (\ref{MAXFR_F_CY})\\ \hline CC\_F\_D(f, d) & MW & F & D & 11 & Capacity Credits associated with Facility f on Trading Day d & I\\ \hline RCD\_F\_I(f, i) & MW & F & I & 4.26.1A & Reserve Capacity Deficit for Facility f for Trading Interval i & (\ref{RCD_F_I})\\ \hline COP\_F\_D(f, d) & Flag & F & D & 4.13.10B & Flag that is 1 if Facility f is in Commercial Operations in Trading Day d, and 0 otherwise & I\\ \hline MAX2\_F\_M(f, m) & MWh & F & M & 4.26.1A (a)(ii).3 & 2nd highest Sent Out Metered Schedule of Facility f up to and including Trading Month m & (\ref{MAX2_F_M})\\ \hline ESTSOC\_F\_D(f, d) & MW & F & D & 4.13.10C & Independent expert's estimate of the sent out capacity of Facility f applicable for Trading Day d & I\\ \hline REQLA\_F\_D(f, d) & MW & F & D & & Required Level adjusted to current level of Capacity Credits for Facility f for Trading Day d & I\\ \hline EXPPO\_F\_I(f, i) & MW & F & I & 7.13.1A(b) & Ex-post Planned Outage for Facility f in Trading Interval i & I\\ \hline EXPFO\_F\_I(f, i) & MW & F & I & 7.13.1A(b) & Ex-post Forced Outage for Facility f in Trading Interval i & I\\ \hline RPPO\_F\_I(f, i) & MW & F & I & 4.26.1C(b) & Refund Payable Planned Outage for Facility f in Trading Interval i & (\ref{RPPO_F_I})\\ \hline REPOC1000\_F\_D(f, d) & & F & D & 11 & Refund Exempt Planned Outage Count for Facility f over the preceding 1000 Trading Days prior to (and excluding) Trading Day d & (\ref{REPOC1000_F_D})\\ \hline RCOQ\_F\_I(f, i) & MW & F & I & 11 & Reserve Capacity Obligation Quantity of Facility f in Trading Interval i & I\\ \hline RD\_F\_D(f, d) & MW & F & D & 4.26.2CA & Relevant Demand of Facility f in Trading Day d & I\\ \hline MINL\_F\_D(f, d) & MW & F & D & 4.26.1(e)iii.4 & Minimum load of Facility f for Trading Day d & (\ref{MINL_F_D})\\ \hline MINL\_N\_D(n, d) & MW & N & D & 2.29.5B(c) & Minimum load of NMI n for Trading Day d & I\\ \hline TIRR\_F\_I(f, i) & \$/MW & F & I & 4.26.1(a) & Trading Interval Refund Rate for Facility f in Trading Interval i & (\ref{TIRR_F_I})\\ \hline Y\_F\_I(f, i) & \$/MW & F & I & 4.26.1(b) & Per Interval Reserve Capacity Price for Facility f in Trading Interval i & (\ref{Y_F_I})\\ \hline DSPNMI(d) & \{\} & G & D & & Set of connection points which comprise a Demand Side Programme on Trading Day d & (\ref{DSPNMI})\\ \hline DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline NSG(d) & \{\} & G & D & 11 & Set of Non-Scheduled Generators in Trading Day d & (\ref{NSG})\\ \hline IG(d) & \{\} & G & D & 11 & Set of Intermittent Generators in Trading Day d & (\ref{IG})\\ \hline IRL(d) & \{\} & G & D & 11 & Set of Interruptible Loads in Trading Day d & (\ref{IRL})\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline F(d) & \{\} & G & D & & Set of Registered Facilities, unregistered generation systems and unregistered interruptible loads in Trading Day d & (\ref{F})\\ \hline REG\_F(d) & \{\} & G & D & 11 & Set of Registered Facilities in Trading Day d & (\ref{F_REG})\\ \hline PD1000(d) & \{\} & G & D & & Set of 1000 Trading Days preceding (and excluding) Trading Day d & I\\ \hline PITD(i) & \{\} & G & I & & Set of Trading Intervals in the same Trading Day as, but prior to, Trading Interval i & I\\ \hline \end{longtabu} \paragraph{Intermittent Load Refunds} \begin{equation} \label{IMLR_F_I} IMLR\_F\_I(f, i) = \begin{dcases} IMLSF\_F\_I(f, i) \times Y\_F\_I(f, i) & \text{for $f \in IML(i)$} \\ 0 & \text{otherwise} \\ \end{dcases} \end{equation} \begin{dmath} \label{IMLSF_F_I} IMLSF\_F\_I(f, i) = \begin{dcases} max \left(0, \frac{-SOMSIL\_F\_I(f, i)}{0.5h} - 1.03 \times NC\_F\_D(f, i)\right) & \text{for $IMLPOFlag\_F\_I(f, i)$}\\ & \ \text{$+ IMLCOFlag\_F\_I(f, i) > 0$}\\ & \text{for $IMLPOFlag\_F\_I(f, i)$}\\ max \left(0, \frac{-SOMSIL\_F\_I(f, i)}{0.5h} - 0.03 \times NC\_F\_D(f, i) - ACR\_F\_D(f, i)\right) & \ \text{$+ IMLCOFlag\_F\_I(f, i)$}\\ & \ \text{$+ IMLFOFlag\_F\_I(f, i) = 0$}\\ & \ \text{and $MAXTEMP\_F\_D(f, i) > 41 \degree C$}\\ max \left(0, \frac{-SOMSIL\_F\_I(f, i)}{0.5h} - 0.03 \times NC\_F\_D(f, i)\right) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead IMLR\_F\_I(f, i) & \$ & F & I & 4.28A.1 & Intermittent Load Refunds for Facility f in Trading Interval i & (\ref{IMLR_F_I})\\ \hline IMLSF\_F\_I(f, i) & MW & F & I & 4.28A.1(c) & Intermittent Load Capacity Shortfall for Facility f for Trading Interval i & (\ref{IMLSF_F_I})\\ \hline Y\_F\_I(f, i) & \$/MW & F & I & 4.26.1(b) & Per Interval Reserve Capacity Price for Facility f in Trading Interval i & (\ref{Y_F_I})\\ \hline SOMSIL\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the intermittent load associated with Facility f in Trading Interval i & (\ref{SOMSIL_F_I})\\ \hline IMLPOFlag\_F\_I(f, i) & Flag & F & I & 7.13.1A(b) & Flag indicating if the embedded generator associated with Facility f is on a Planned Outage in Trading Interval i & I\\ \hline IMLFOFlag\_F\_I(f, i) & Flag & F & I & 7.13.1A(b) & Flag indicating if the embedded generator associated with Facility f is on a Forced Outage in Trading Interval i & I\\ \hline IMLCOFlag\_F\_I(f, i) & Flag & F & I & 7.13.1A(b) & Flag indicating if the embedded generator associated with Facility f is on a Consequential Outage in Trading Interval i & I\\ \hline MAXTEMP\_F\_D(f, d) & \degree C & F & D & 2.30B.3(b)ii & Daily maximum temperature associated with Facility f for Trading Day d & I\\ \hline NC\_F\_D(f, d) & MW & F & D & 4.28.8(c) & Nominated capacity for Facility f for Trading Day d & I\\ \hline ACR\_F\_D(f, d) & MW & F & D & 2.30B.3(b)i & Anticipated capacity reduction at 45\degree C associated with Facility f for Trading Day d & I\\ \hline EG(d) & \{\} & G & D & 2.30B.2(a) & Set of Scheduled Generators that serve an Intermittent Load locally in Trading Day d & (\ref{EG})\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline \end{longtabu} \paragraph{DSP Voluntary Reduction Refunds} \begin{dmath} \label{DSPVRR_F_I} DSPVRR\_F\_I(f, i) = \begin{cases} (VRCC\_F\_D(f, i)) \times RCP\_F\_I(f, i) - \frac{VRCC\_F\_D(f, i)}{CC\_F\_D(f, i)} \times DSPCCR\_F\_I(f, i) & \text{for $CC\_F\_D(f, i) \neq 0$} \\ 0 & \text{otherwise} \end{cases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead DSPVRR\_F\_I(f, i) & \$ & F & I & 4.25.4E & Refund payable related to the voluntary reduction of Capacity Credits for Facility f in Trading Interval i & (\ref{DSPVRR_F_I})\\ \hline VRCC\_F\_D(f, d) & MW & F & D & 4.25.4E & The amount of Capacity Credits voluntarily reduced for Facility f in the Capacity Year in which Trading Day d falls, but prior to the application being approved & I\\ \hline DSPCCR\_F\_I(f, i) & \$ & F & I & 4.26.3A & DSP Capacity Cost Refund for Facility f in Trading Interval i & (\ref{DSPCCR_F_I})\\ \hline RCP\_F\_I(f, i) & \$/MW & F & I & & Interval Reserve Capacity Price for Facility f in Trading Interval i & (\ref{RCP_F_I})\\ \hline CC\_F\_D(f, d) & MW & F & D & 11 & Capacity Credits associated with Facility f on Trading Day d & I\\ \hline \end{longtabu} \paragraph{Refund Rates} \begin{dmath} \label{TIRRW_P_I} TIRRW\_P\_I(p, i) = \begin{dcases} 0 & \text{for $\displaystyle \sum_{f \in SG(p, i)} CC\_F\_D(f, i) = 0$} \\ \frac{\displaystyle \sum_{f \in SG(p, i)}TIRR\_F\_I(f, i) \times CC\_F\_D(f, i)}{\displaystyle \sum_{f \in SG(p, i)} CC\_F\_D(f, i)} & \text{otherwise} \\ \end{dcases} \end{dmath} \begin{dmath} \label{TIRR_F_I} TIRR\_F\_I(f, i) = RF\_F\_I(f, i) \times Y\_F\_I(f, i) \end{dmath} \begin{dmath} \label{Y_F_I} Y\_F\_I(f, i) = \begin{dcases} \frac{RCP\_F\_M(f, i) \times 12}{400} & \text{for $f \in DSP(i)$} \\ 0 & \text{for $f \in NSG(i)$ and $REQLAFlag\_F\_I(f, i)=1$} \\ RCP\_G\_I(i) & \text{$f \in IML(i)$} \\ RCP\_F\_I(f, i) & \text{otherwise} \\ \end{dcases} \end{dmath} \begin{equation} \label{RCP_F_I} RCP\_F\_I(f, i) = \frac{RCP\_F\_M(f, m)}{TITM\_G\_M(i)} \end{equation} \begin{equation} \label{RCP_F_M} RCP\_F\_M(f, m) = \frac{RCP\_F\_CY(f, m)}{12} \end{equation} \begin{dmath} \label{REQLAFlag_F_I} REQLAFlag\_F\_I(f, i) = \begin{dcases} 1 & \text{for $COP\_F\_D(f, i) = 1$ and $max\left(\frac{MAX2\_F\_M(f, i)}{0.5h}, ESTSOC\_F\_D(f, i)\right) \geq REQLA\_F\_D(f, i)$} \\ 0 & \text{otherwise} \\ \end{dcases} \end{dmath} \begin{dmath} \label{RF_F_I} RF\_F\_I(f, i) = min(6, max(RFdyn\_G\_I(i), RFfloor\_F\_I(f, i))) \end{dmath} \begin{dmath} \label{RFdyn_G_I} RFdyn\_G\_I(i) = 11.75 - \frac{5.75}{750MW} \times SPARE\_G\_I(i) \end{dmath} \begin{dmath} \label{SPARE_G_I} SPARE\_G\_I(i) = \displaystyle \sum_{f \in CCF(i)} SPARE\_F\_I(f, i) \end{dmath} \begin{dmath} \label{SPARE_F_I} SPARE\_F\_I(f, i) = \begin{dcases} max \left(0, CC\_F\_D(f, i) - EXPPO\_F\_I(f, i) - EXPFO\_F\_I(f, i) - EXPCO\_F\_I(f, i) - \frac{SOMS\_F\_I(f, i)}{0.5h}\right) & \text{for $f \in SG(i)$} \\ max \left(0, min \left(RCOQ\_F\_I(f, i), \frac{DSPL\_F\_I(f, i)}{0.5h} - MINL\_F\_D(f, i)\right)\right) & \text{for $f \in DSP(i)$} \\ 0 & \text{otherwise} \\ \end{dcases} \end{dmath} \begin{dmath} \label{RFfloor_F_I} RFfloor\_F\_I(f, i) = \begin{dcases} 1 & \text{for $f \in DSP(i)$} \\ 1 & \text{for $f \in F(i) \cap \overline{REG\_F(i)}$ or $\left( f \in \overline{DSP(i) \cup IG(i)} \text{ and } COP\_F\_D(f, i) = 0 \right)$} \\ 1 & \text{for $f \in IG(i)$ and $(COP\_F\_D(f, i) = 0$ or $Y\_F\_I(f, i) \neq 0))$} \\ 1 - 0.75 \times DISP\_F\_I(f, i) & \text{otherwise} \\ \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead TIRRW\_P\_I(p, i) & \$/MW & P & I & 4.26.3(b)ii & Weighted average Trading Interval refund rate for Market Participant p in Trading Interval i & (\ref{TIRRW_P_I})\\ \hline TIRR\_F\_I(f, i) & \$/MW & F & I & 4.26.1(a) & Trading Interval Refund Rate for Facility f in Trading Interval i & (\ref{TIRR_F_I})\\ \hline Y\_F\_I(f, i) & \$/MW & F & I & 4.26.1(b) & Per Interval Reserve Capacity Price for Facility f in Trading Interval i & (\ref{Y_F_I})\\ \hline REQLAFlag\_F\_I(f, i) & Flag & F & I & 4.26.1(b)i & Flag that is 1 if Facility f has met its Required Level as at Trading Interval i and 0 otherwise & (\ref{REQLAFlag_F_I})\\ \hline RCP\_G\_I(i) & \$/MW & G & I & & Interval Reserve Capacity Price for Trading Interval i & (\ref{RCP_G_I})\\ \hline RCP\_F\_I(f, i) & \$/MW & F & I & & Interval Reserve Capacity Price for Facility f in Trading Interval i & (\ref{RCP_F_I})\\ \hline RCP\_F\_M(f, m) & \$/MW & F & M & 11 & Facility Monthly Reserve Capacity Price for Facility f in Trading Month m & (\ref{RCP_F_M})\\ \hline RCP\_F\_CY(f, cy) & \$/MW & F & CY & 11 & Annual Reserve Capacity Price for Facility f in Capacity Year cy & I\\ \hline COP\_F\_D(f, d) & Flag & F & D & 4.13.10B & Flag that is 1 if Facility f is in Commercial Operations in Trading Day d, and 0 otherwise & I\\ \hline MAX2\_F\_M(f, m) & MWh & F & M & 4.26.1A (a)(ii).3 & 2nd highest Sent Out Metered Schedule of Facility f up to and including Trading Month m & (\ref{MAX2_F_M})\\ \hline ESTSOC\_F\_D(f, d) & MW & F & D & 4.13.10C & Independent expert's estimate of the sent out capacity of Facility f applicable for Trading Day d & I\\ \hline REQLA\_F\_D(f, d) & MW & F & D & & Required Level adjusted to current level of Capacity Credits for Facility f for Trading Day d & I\\ \hline RF\_F\_I(f, i) & & F & I & 4.26.1(c), 4.28A.1(a) & Refund factor for Facility f in Trading Interval i & (\ref{RF_F_I})\\ \hline RFdyn\_G\_I(i) & & G & I & 4.26.1(d) & Dynamic refund factor for in Trading Interval i & (\ref{RFdyn_G_I})\\ \hline RFfloor\_F\_I(f, i) & & F & I & 4.26.1(f), 4.26.1(g) & Minimum refund factor for Facility f in Trading Interval i & (\ref{RFfloor_F_I})\\ \hline SPARE\_G\_I(i) & MW & G & I & 4.26.1(d) & Available capacity (related to Capacity Credits) which is not dispatched in Trading Interval i & (\ref{SPARE_G_I})\\ \hline SPARE\_F\_I(f, i) & MW & F & I & 4.26.1(e) & Available capacity (related to Capacity Credits) which is not dispatched for Facility f in Trading Interval i & (\ref{SPARE_F_I})\\ \hline CC\_F\_D(f, d) & MW & F & D & 11 & Capacity Credits associated with Facility f on Trading Day d & I\\ \hline SOMS\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline EXPPO\_F\_I(f, i) & MW & F & I & 7.13.1A(b) & Ex-post Planned Outage for Facility f in Trading Interval i & I\\ \hline EXPFO\_F\_I(f, i) & MW & F & I & 7.13.1A(b) & Ex-post Forced Outage for Facility f in Trading Interval i & I\\ \hline EXPCO\_F\_I(f, i) & MW & F & I & 7.13.1A(b) & Ex-post Consequential Outage for Facility f in Trading Interval i & I\\ \hline RCOQ\_F\_I(f, i) & MW & F & I & 11 & Reserve Capacity Obligation Quantity of Facility f in Trading Interval i & I\\ \hline DSPL\_F\_I(f, i) & MWh & F & I & 6.16.2 & Demand Side Programme Load for Facility f in Trading Interval i & (\ref{DSPL_F_I})\\ \hline MINL\_F\_D(f, d) & MW & F & D & 4.26.1(e)iii.4 & Minimum load of Facility f for Trading Day d & (\ref{MINL_F_D})\\ \hline DISP\_F\_I(f, i) & & F & I & 4.26.1(f)i & Portion of capacity which is not subject to a Forced Outage for Facility f over the previous 4320 Trading Intervals up to and including Trading Interval i & (\ref{DISP_F_I})\\ \hline TITM\_G\_M(m) & & G & M & & Number of Trading Intervals in Trading Month m & (\ref{TITM_G_M})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline NSG(d) & \{\} & G & D & 11 & Set of Non-Scheduled Generators in Trading Day d & (\ref{NSG})\\ \hline IG(d) & \{\} & G & D & 11 & Set of Intermittent Generators in Trading Day d & (\ref{IG})\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline CCF(d) & \{\} & G & D & & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Intermittent Load Refunds} \begin{equation} \label{IMLR_P_D} IMLR\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} IMLR\_P\_I(p, i) \end{equation} \begin{equation} \label{IMLR_P_I} IMLR\_P\_I(p, i) = \displaystyle \sum_{f \in IML(p, i)} IMLR\_F\_I(f, i) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead IMLR\_P\_D(p, d) & \$ & P & D & 4.28A.1 & Intermittent Load Refunds for Market Participant p in Trading Day d & (\ref{IMLR_P_D})\\ \hline IMLR\_P\_I(p, i) & \$ & P & I & 4.28A.1 & Intermittent Load Refunds for Market Participant p in Trading Interval i & (\ref{IMLR_P_I})\\ \hline IMLR\_F\_I(f, i) & \$ & F & I & 4.28A.1 & Intermittent Load Refunds for Facility f in Trading Interval i & (\ref{IMLR_F_I})\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Capacity Rebate} \begin{equation} \label{CAPREBSA_P_D} CAPREBSA\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} CAPREBSA\_P\_I(p, i) \end{equation} \begin{equation} \label{CAPREBSA_P_I} CAPREBSA\_P\_I(p, i) = \displaystyle \sum_{f \in SG(p, i) \cup DSP(p, i)} CAPREBSA\_F\_I(f, i) \end{equation} \begin{equation} \label{CAPREBSA_F_I} CAPREBSA\_F\_I(f, i) = CAPREBS\_F\_I(f, i) \times CCR\_G\_I(i) \end{equation} \begin{equation} \label{CAPREBS_F_I} CAPREBS\_F\_I(f, i) = \frac{CAPREBCQ\_F\_I(f, i)}{CAPREBCQ\_G\_I(i)} \end{equation} \begin{equation} \label{CAPREBCQ_F_I} CAPREBCQ\_F\_I(f, i) = CCNSO\_F\_I(f, i) \times E\_F\_I(f, i) \end{equation} \begin{equation} \label{CAPREBCQ_G_I} CAPREBCQ\_G\_I(i) = \displaystyle \sum_{f \in SG(i) \cup DSP(i)} CAPREBCQ\_F\_I(f, i) \end{equation} \begin{equation} \label{CCR_G_I} CCR\_G\_I(i) = \displaystyle \sum_{p \in P\_M(i)} CCR\_P\_I(p, i) \end{equation} \begin{equation} \label{E_F_I} E\_F\_I(f, i) = \begin{dcases} 1 & \text{$f \in SG(i)$ and $DISP1440Flag\_F\_I(f, i) = 1$ and $MAXREFFlag\_F\_I(f, i)=0$}\\ & \ \text{and $MAXREFFlag\_P\_I(p, i)=0$} \\ 1 & \text{$f \in DSP(i)$ and $DISP1440Flag\_F\_I(f, i) = 1$ and $RCOQ\_F\_I(f, i) \neq 0$}\\ & \ \text{and $MAXREFFlag\_F\_I(f, i)=0$} \\ 0 & \text{otherwise} \\ \end{dcases} \end{equation} \begin{equation} \label{MAXREFFlag_F_I} MAXREFFlag\_F\_I(f, i) = \begin{dcases} 1 & \text{$f \in DSP(i)$ and $CDSPCCR\_F\_I(f, i) + DSPCCR\_F\_I(f, i) = MAXFR\_F\_CY(f, i)$} \\ 1 & \text{$f \notin DSP(i)$ and $CFRCDR\_F\_I(f, i) + FRCDR\_F\_I(f, i) = MAXFR\_F\_CY(f, i)$} \\ 0 & \text{otherwise} \\ \end{dcases} \end{equation} \begin{equation} \label{MAXREFFlag_P_I} MAXREFFlag\_P\_I(p, i) = \begin{dcases} 1 & \text{for $CGRCDR\_P\_I(p, i) + GRCDR\_P\_I(p, i) = MAXPGR\_P\_CY(p, i)$} \\ 0 & \text{otherwise} \\ \end{dcases} \end{equation} \begin{dmath} \label{CGRCDR_P_I} CGRCDR\_P\_I(p, i) = CGRCDRstart\_P\_D(p, i) + \displaystyle \sum_{j \in PITD(i)} GRCDR\_P\_I(p, j) \end{dmath} \begin{equation} \label{CCNSO_F_I} CCNSO\_F\_I(f, i) = \begin{dcases} min \left(RCOQ\_F\_I(f, i), \frac{DSPL\_F\_I(f, i)}{0.5h} - MINL\_F\_D(f, i)\right) & \text{for $f \in DSP(i)$} \\ CC\_F\_D(f, i) - (EXPPO\_F\_I(f, i) + EXPFO\_F\_I(f, i) + EXPCO\_F\_I(f, i)) & \text{for $f \in SG(i)$} \\ 0 & \text{otherwise} \\ \end{dcases} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead CAPREBSA\_P\_D(p, d) & \$ & P & D & 4.26.4 & Participant Capacity Rebate (whereby Capacity Cost Refunds are redistributed) for Market Participant p in Trading Day d & (\ref{CAPREBSA_P_D})\\ \hline CAPREBSA\_P\_I(p, i) & \$ & P & I & 4.26.4 & Participant Capacity Rebate (whereby Capacity Cost Refunds are redistributed) for Market Participant p in Trading Interval i & (\ref{CAPREBSA_P_I})\\ \hline CAPREBSA\_F\_I(f, i) & \$ & F & I & 4.26.6 & Facility Capacity Rebate for Facility f in Trading Interval i & (\ref{CAPREBSA_F_I})\\ \hline CAPREBS\_F\_I(f, i) & & F & I & & Share of Capacity Rebates for Facility f in Trading Interval i & (\ref{CAPREBS_F_I})\\ \hline CAPREBCQ\_F\_I(f, i) & & F & I & & Capacity Rebate contributing quantity for Facility f in Trading Interval i & (\ref{CAPREBCQ_F_I})\\ \hline CAPREBCQ\_G\_I(i) & & G & I & & Total Capacity Rebate contributing quantity in Trading Interval i & (\ref{CAPREBCQ_G_I})\\ \hline CCR\_G\_I(i) & \$ & G & I & 4.26.6(b) & Capacity Cost Refunds charged in Trading Interval i & (\ref{CCR_G_I})\\ \hline CCR\_P\_I(p, i) & \$ & P & I & 4.26.2E & Capacity Cost Refund charged to Market Participant p in Trading Interval i & (\ref{CCR_P_I})\\ \hline CCNSO\_F\_I(f, i) & MW & F & I & 4.26.6(d) & Capacity Credits not subject to an Outage for Facility f in Trading Interval i & (\ref{CCNSO_F_I})\\ \hline DSPL\_F\_I(f, i) & MWh & F & I & 6.16.2 & Demand Side Programme Load for Facility f in Trading Interval i & (\ref{DSPL_F_I})\\ \hline MINL\_F\_D(f, d) & MW & F & D & 4.26.1(e)iii.4 & Minimum load of Facility f for Trading Day d & (\ref{MINL_F_D})\\ \hline RCOQ\_F\_I(f, i) & MW & F & I & 11 & Reserve Capacity Obligation Quantity of Facility f in Trading Interval i & I\\ \hline CC\_F\_D(f, d) & MW & F & D & 11 & Capacity Credits associated with Facility f on Trading Day d & I\\ \hline EXPPO\_F\_I(f, i) & MW & F & I & 7.13.1A(b) & Ex-post Planned Outage for Facility f in Trading Interval i & I\\ \hline EXPFO\_F\_I(f, i) & MW & F & I & 7.13.1A(b) & Ex-post Forced Outage for Facility f in Trading Interval i & I\\ \hline EXPCO\_F\_I(f, i) & MW & F & I & 7.13.1A(b) & Ex-post Consequential Outage for Facility f in Trading Interval i & I\\ \hline E\_F\_I(f, i) & Flag & F & I & 4.26.6(e) & Flag representing whether Facility f is eligible to receive a Facility Capacity Rebate in Trading Interval i & (\ref{E_F_I})\\ \hline FRCDR\_F\_I(f, i) & \$ & F & I & 4.26.1A & Facility Reserve Capacity Deficit Refund for Facility f in Trading Interval i & (\ref{FRCDR_F_I})\\ \hline CFRCDR\_F\_I(f, i) & \$ & F & I & 4.26.1A(b) & Sum of Facility Reserve Capacity Deficit Refunds for Facility f in Trading Intervals in the same Capacity Year as, but prior to, Trading Interval i & (\ref{CFRCDR_F_I})\\ \hline MAXFR\_F\_CY(f, cy) & \$ & F & CY & 11 & Maximum Facility Refund for Facility f in Capacity Year cy & (\ref{MAXFR_F_CY})\\ \hline MAXPGR\_P\_CY(p, cy) & \$ & P & CY & 11 & Maximum Participant Generation Refund for Market Participant p in Capacity Year cy & (\ref{MAXPGR_P_CY})\\ \hline DISP1440Flag\_F\_I(f, i) & Flag & F & I & 4.26.6(e)i.1, 4.26.6(e)ii.1 & Flag that is 1 when Facility f has been dispatched in the previous 1440 intervals prior to and including Trading Interval i and 0 otherwise & (\ref{DISP1440Flag_F_I})\\ \hline MAXREFFlag\_F\_I(f, i) & Flag & F & I & 4.26.6(e)i.2, 4.26.6(e)ii.3 & Flag that is 1 when Facility f has accrued the maximum Facility Reserve Capacity Deficit Refunds as at Trading Interval i and 0 otherwise & (\ref{MAXREFFlag_F_I})\\ \hline MAXREFFlag\_P\_I(p, i) & Flag & P & I & 4.26.6(e)i.3 & Flag that is 1 when Market Participant p has accrued the maximum Generation Reserve Capacity Deficit Refunds as at Trading Interval i and 0 otherwise & (\ref{MAXREFFlag_P_I})\\ \hline CGRCDR\_P\_I(p, i) & \$ & P & I & 4.26.1B & Sum of Generation Reserve Capacity Deficit Refund for Market Participant p in Trading Intervals in the same Capacity Year as, but prior to, Trading Interval i & (\ref{CGRCDR_P_I})\\ \hline CGRCDRstart\_P\_D(p, d) & \$ & P & D & 4.26.1B & Sum of Generation Reserve Capacity Deficit Refund for Market Participant p in the same Capacity Year as, but prior to, Trading Day d & I\\ \hline GRCDR\_P\_I(p, i) & \$ & P & I & 4.26.1B & Generation Reserve Capacity Deficit Refund for Market Participant p in Trading Interval i & (\ref{GRCDR_P_I})\\ \hline RCOQ\_F\_I(f, i) & MW & F & I & 11 & Reserve Capacity Obligation Quantity of Facility f in Trading Interval i & I\\ \hline DSPCCR\_F\_I(f, i) & \$ & F & I & 4.26.3A & DSP Capacity Cost Refund for Facility f in Trading Interval i & (\ref{DSPCCR_F_I})\\ \hline CDSPCCR\_F\_I(f, i) & \$ & F & I & 4.26.3A & Sum of DSP Capacity Cost Refund for Facility f in Trading Intervals in the same Capacity Year as, but prior to, Trading Interval i & (\ref{CDSPCCR_F_I})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline PITD(i) & \{\} & G & I & & Set of Trading Intervals in the same Trading Day as, but prior to, Trading Interval i & I\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Load Following Capacity Rebate} \begin{equation} \label{LFREBATE_P_D} LFREBATE\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} LFREBATE\_P\_I(p, i) \end{equation} \begin{equation} \label{LFREBATE_P_I} LFREBATE\_P\_I(p, i) = IRCRS\_P\_M(p, i) \times LFCC\_G\_I(i) \end{equation} \begin{equation} \label{IRCRS_P_M} IRCRS\_P\_M(p, m) = \frac{IRCR\_P\_M(p, m)}{IRCR\_G\_M(m)} \end{equation} \begin{equation} \label{IRCR_G_M} IRCR\_G\_M(m) = \displaystyle \sum_{p \in P\_M(m)} IRCR\_P\_M(p, m) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead LFREBATE\_P\_D(p, d) & \$ & P & D & 9.7.1B & Payment returning cost of Capacity associated with Load Following, for Market Participant p in Trading Day d & (\ref{LFREBATE_P_D})\\ \hline LFREBATE\_P\_I(p, i) & \$ & P & I & 9.7.1B & Payment returning cost of Capacity associated with Load Following, for Market Participant p in Trading Interval i & (\ref{LFREBATE_P_I})\\ \hline IRCRS\_P\_M(p, m) & & P & M & 9.7.1B & Capacity share for Market Participant p for Trading Month m & (\ref{IRCRS_P_M})\\ \hline IRCR\_P\_M(p, m) & MW & P & M & 4.28.7, 4.28.11A & Individual Reserve Capacity Requirement for Market Participant p for Trading Month m & (\ref{IRCR_P_M})\\ \hline IRCR\_G\_M(m) & MW & G & M & & Sum of the all Individual Reserve Capacity Requirement for Trading Month m & (\ref{IRCR_G_M})\\ \hline LFCC\_G\_I(i) & \$ & G & I & 9.9.2(p) & Amount charged to recover the cost of capacity associated with Load Following in Trading Interval i & (\ref{LFCC_G_I})\\ \hline P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsection{Market Participant Fees} Fees are split into the following parts: \begin{itemize} \item Market Fees \item System Management Fees \item Regulator Fees \item Coordinator Fees \end{itemize} The corresponding payment made to AEMO, AEMO (acting as System Management), ERA and the Coordinator are included in a separate chapter titled Service Fees.\\ These equations are based on the equations stated in MR 9.13. They have been modified to aggregate to a Trading Day and separate out the components of the fees. \begin{equation} \label{MPFSA_P_D} MPFSA\_P\_D(p, d) = -(MFSAD\_P\_D(p, d) + SFSAD\_P\_D(p, d) + RFSAD\_P\_D(p, d) + CFSAD\_P\_D(p, d)) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead MPFSA\_P\_D(p, d) & \$ & P & D & 9.13.1 & Market Participant Fee Settlement Amount charged to Market Participant p for Trading Day d & (\ref{MPFSA_P_D})\\ \hline MFSAD\_P\_D(p, d) & \$ & P & D & & Market Fee settlement amount charged to Market Participant p for Trading Day d & (\ref{MFSAD_P_D})\\ \hline SFSAD\_P\_D(p, d) & \$ & P & D & & System Management Fee settlement amount charged to Market Participant p for Trading Day d & (\ref{SFSAD_P_D})\\ \hline RFSAD\_P\_D(p, d) & \$ & P & D & & Regulator Fee settlement amount charged to Market Participant p for Trading Day d & (\ref{RFSAD_P_D})\\ \hline CFSAD\_p\_d(p,d) & \$ & P & D & & Coordinator Fee settlement amount charged to Market Participant p for Trading Day d & (\ref{CFSAD_P_D})\\ \hline \end{longtabu} \subsubsection{Market Fees} \begin{equation} \label{MFSAD_P_D} MFSAD\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} MFSAD\_P\_I(p, i) \end{equation} \begin{equation} \label{MFSAD_P_I} MFSAD\_P\_I(p, i) = MFRATE\_G\_FY(i) \times (ABSGEN\_P\_I(p, i) + ABSLOAD\_P\_I(p, i)) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead MFSAD\_P\_D(p, d) & \$ & P & D & & Market Fee settlement amount charged to Market Participant p for Trading Day d & (\ref{MFSAD_P_D})\\ \hline MFSAD\_P\_I(p, i) & \$ & P & I & & Market Fee settlement amount charged to Market Participant p for Trading Interval i & (\ref{MFSAD_P_I})\\ \hline MFRATE\_G\_FY(fy) & \$/MWh & G & FY & 2.24.2 & Market Fee rate applicable in Financial Year fy & I\\ \hline ABSGEN\_P\_I(p, i) & MWh & P & I & 9.13.1 & Metered Generation for Market Participant p in Trading Interval i & (\ref{ABSGEN_P_I})\\ \hline ABSLOAD\_P\_I(p, i) & MWh & P & I & 9.13.1 & Metered Load for Market Participant p in Trading Interval i & (\ref{ABSLOAD_P_I})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{System Management Fees} \begin{equation} \label{SFSAD_P_D} SFSAD\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} SFSAD\_P\_I(p, i) \end{equation} \begin{equation} \label{SFSAD_P_I} SFSAD\_P\_I(p, i) = SFRATE\_G\_FY(i) \times (ABSGEN\_P\_I(p, i) + ABSLOAD\_P\_I(p, i)) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SFSAD\_P\_D(p, d) & \$ & P & D & & System Management Fee settlement amount charged to Market Participant p for Trading Day d & (\ref{SFSAD_P_D})\\ \hline SFSAD\_P\_I(p, i) & \$ & P & I & & System Management Fee settlement amount charged to Market Participant p for Trading Interval i & (\ref{SFSAD_P_I})\\ \hline SFRATE\_G\_FY(fy) & \$/MWh & G & FY & 2.24.2 & System Management Fee rate applicable in Financial Year fy & I\\ \hline ABSGEN\_P\_I(p, i) & MWh & P & I & 9.13.1 & Metered Generation for Market Participant p in Trading Interval i & (\ref{ABSGEN_P_I})\\ \hline ABSLOAD\_P\_I(p, i) & MWh & P & I & 9.13.1 & Metered Load for Market Participant p in Trading Interval i & (\ref{ABSLOAD_P_I})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Regulator Fees} \begin{equation} \label{RFSAD_P_D} RFSAD\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} RFSAD\_P\_I(p, i) \end{equation} \begin{equation} \label{RFSAD_P_I} RFSAD\_P\_I(p, i) = RFRATE\_G\_FY(i) \times (ABSGEN\_P\_I(p, i) + ABSLOAD\_P\_I(p, i)) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead RFSAD\_P\_D(p, d) & \$ & P & D & & Regulator Fee settlement amount charged to Market Participant p for Trading Day d & (\ref{RFSAD_P_D})\\ \hline RFSAD\_P\_I(p, i) & \$ & P & I & & Regulator Fee settlement amount charged to Market Participant p for Trading Interval i & (\ref{RFSAD_P_I})\\ \hline RFRATE\_G\_FY(fy) & \$/MWh & G & FY & 2.24.2 & Regulator Fee rate applicable in Financial Year fy & I\\ \hline ABSGEN\_P\_I(p, i) & MWh & P & I & 9.13.1 & Metered Generation for Market Participant p in Trading Interval i & (\ref{ABSGEN_P_I})\\ \hline ABSLOAD\_P\_I(p, i) & MWh & P & I & 9.13.1 & Metered Load for Market Participant p in Trading Interval i & (\ref{ABSLOAD_P_I})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Coordinator Fees} \begin{equation} \label{CFSAD_P_D} CFSAD\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} CFSAD\_P\_I(p, i) \end{equation} \begin{equation} \label{CFSAD_P_I} CFSAD\_P\_I(p, i) = CFRATE\_G\_FY(i) \times (ABSGEN\_P\_I(p, i) + ABSLOAD\_P\_I(p, i)) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead CFSAD\_P\_D(p, d) & \$ & P & D & & Coordinator Fee settlement amount charged to Market Participant p for Trading Day d & (\ref{CFSAD_P_D})\\ \hline CFSAD\_P\_I(p, i) & \$ & P & I & & Coordinator Fee settlement amount charged to Market Participant p for Trading Interval i & (\ref{CFSAD_P_I})\\ \hline CFRATE\_G\_FY(fy) & \$/MWh & G & FY & 2.24.2 & Coordinator Fee rate applicable in Financial Year fy & I\\ \hline ABSGEN\_P\_I(p, i) & MWh & P & I & 9.13.1 & Metered Generation for Market Participant p in Trading Interval i & (\ref{ABSGEN_P_I})\\ \hline ABSLOAD\_P\_I(p, i) & MWh & P & I & 9.13.1 & Metered Load for Market Participant p in Trading Interval i & (\ref{ABSLOAD_P_I})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsection{Service Fees} Fees are split into the following parts: \begin{itemize} \item Market Fees \item System Management Fees \item Regulator Fees \item Coordinator Fees \end{itemize} The corresponding charges to Market Participants are included in a separate section titled Market Participant Fees.\\ These equations are based on the equations stated in MR 9.15. They have been modified to aggregate to a Trading Day, and avoid the concept of a proportionality factor. \begin{equation} \label{RRSA_P_D} RRSA\_P\_D(p, d) = MFSAS\_P\_D(p, d) + SFSAS\_P\_D(p, d) + RFSAS\_P\_D(p, d) + CFSAS\_P\_D(p, d) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead RRSA\_P\_D(p, d) & \$ & P & D & 9.15.1 & Service Fee Settlement Amount paid to Rule Participant p for Trading Day d & (\ref{RRSA_P_D})\\ \hline MFSAS\_P\_D(p, d) & \$ & P & D & & Service Fee Settlement Amount paid for the provision of market operations to Rule Participant p for Trading Day d & (\ref{MFSAS_P_D})\\ \hline SFSAS\_P\_D(p, d) & \$ & P & D & & Service Fee Settlement Amount paid for the provision of System Management functions to Rule Participant p for Trading Day d & (\ref{SFSAS_P_D})\\ \hline RFSAS\_P\_D(p, d) & \$ & P & D & & Service Fee Settlement Amount paid for the provision of regulation functions to Rule Participant p for Trading Day d & (\ref{RFSAS_P_D})\\ \hline CFSAS\_P\_D(p, d) & \$ & P & D & & Service Fee Settlement Amount paid for the provision of coordinator functions to Rule Participant p for Trading Day d & (\ref{CFSAS_P_D})\\ \hline \end{longtabu} \subsubsection{Market Fee Payments} \begin{equation} \label{MFSAS_P_D} MFSAS\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} MFSAS\_P\_I(p, i) \end{equation} \begin{equation} \label{MFSAS_P_I} MFSAS\_P\_I(p, i) = \begin{dcases} MFRATE\_G\_FY(i) \times (ABSGEN\_G\_I(i) + ABSLOAD\_G\_I(i)) & \text{for $p \in AEMO(i)$} \\ 0 & \text{for $p \notin AEMO(i)$} \end{dcases} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead MFSAS\_P\_D(p, d) & \$ & P & D & & Service Fee Settlement Amount paid for the provision of market operations to Rule Participant p for Trading Day d & (\ref{MFSAS_P_D})\\ \hline MFSAS\_P\_I(p, i) & \$ & P & I & & Service Fee Settlement Amount paid for the provision of market operations to Rule Participant p for Trading Interval i & (\ref{MFSAS_P_I})\\ \hline MFRATE\_G\_FY(fy) & \$/MWh & G & FY & 2.24.2 & Market Fee rate applicable in Financial Year fy & I\\ \hline ABSGEN\_G\_I(i) & MWh & G & I & 9.13.1 & Metered Generation in Trading Interval i & (\ref{ABSGEN_G_I})\\ \hline ABSLOAD\_G\_I(i) & MWh & G & I & 9.13.1 & Metered Load in Trading Interval i & (\ref{ABSLOAD_G_I})\\ \hline AEMO(d) & \{\} & G & D & 11 & Set containing the AEMO & (\ref{AEMO})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{System Management Fee Payments} \begin{equation} \label{SFSAS_P_D} SFSAS\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} SFSAS\_P\_I(p, i) \end{equation} \begin{equation} \label{SFSAS_P_I} SFSAS\_P\_I(p, i) = \begin{dcases} SFRATE\_G\_FY(i) \times (ABSGEN\_G\_I(i) + ABSLOAD\_G\_I(i)) & \text{for $p \in SM(i)$} \\ 0 & \text{for $p \notin SM(i)$} \end{dcases} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SFSAS\_P\_D(p, d) & \$ & P & D & & Service Fee Settlement Amount paid for the provision of System Management functions to Rule Participant p for Trading Day d & (\ref{SFSAS_P_D})\\ \hline SFSAS\_P\_I(p, i) & \$ & P & I & & Service Fee Settlement Amount paid for the provision of System Management functions to Rule Participant p for Trading Interval i & (\ref{SFSAS_P_I})\\ \hline SFRATE\_G\_FY(fy) & \$/MWh & G & FY & 2.24.2 & System Management Fee rate applicable in Financial Year fy & I\\ \hline ABSGEN\_G\_I(i) & MWh & G & I & 9.13.1 & Metered Generation in Trading Interval i & (\ref{ABSGEN_G_I})\\ \hline ABSLOAD\_G\_I(i) & MWh & G & I & 9.13.1 & Metered Load in Trading Interval i & (\ref{ABSLOAD_G_I})\\ \hline SM(d) & \{\} & G & D & 11 & Set containing System Management & (\ref{SM})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Regulator Fee Payments} \begin{equation} \label{RFSAS_P_D} RFSAS\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} RFSAS\_P\_I(p, i) \end{equation} \begin{equation} \label{RFSAS_P_I} RFSAS\_P\_I(p, i) = \begin{dcases} RFRATE\_G\_FY(i) \times (ABSGEN\_G\_I(i) + ABSLOAD\_G\_I(i)) & \text{for $p \in ERA(i)$} \\ 0 & \text{for $p \notin ERA(i)$} \end{dcases} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead RFSAS\_P\_D(p, d) & \$ & P & D & & Service Fee Settlement Amount paid for the provision of regulation functions to Rule Participant p for Trading Day d & (\ref{RFSAS_P_D})\\ \hline RFSAS\_P\_I(p, i) & \$ & P & I & & Service Fee Settlement Amount paid for the provision of regulation functions to Rule Participant p for Trading Interval i & (\ref{RFSAS_P_I})\\ \hline RFRATE\_G\_FY(fy) & \$/MWh & G & FY & 2.24.2 & Regulator Fee rate applicable in Financial Year fy & I\\ \hline ABSGEN\_G\_I(i) & MWh & G & I & 9.13.1 & Metered Generation in Trading Interval i & (\ref{ABSGEN_G_I})\\ \hline ABSLOAD\_G\_I(i) & MWh & G & I & 9.13.1 & Metered Load in Trading Interval i & (\ref{ABSLOAD_G_I})\\ \hline ERA(d) & \{\} & G & D & 11 & Set containing the ERA & (\ref{ERA})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Coordinator Fee Payments} \begin{equation} \label{CFSAS_P_D} CFSAS\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} CFSAS\_P\_I(p, i) \end{equation} \begin{equation} \label{CFSAS_P_I} CFSAS\_P\_I(p, i) = \begin{dcases} CFRATE\_G\_FY(i) \times (ABSGEN\_G\_I(i) + ABSLOAD\_G\_I(i)) & \text{for $p \in COORDINATOR(i)$} \\ 0 & \text{for $p \notin COORDINATOR(i)$} \end{dcases} \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead CFSAS\_P\_D(p, d) & \$ & P & D & & Coordinator Fee Settlement Amount paid for the provision of coordinator functions to Rule Participant p for Trading Day d & (\ref{CFSAS_P_D})\\ \hline CFSAS\_P\_I(p, i) & \$ & P & I & & Coordinator Fee Settlement Amount paid for the provision of coordinator functions to Rule Participant p for Trading Interval i & (\ref{CFSAS_P_I})\\ \hline CFRATE\_G\_FY(fy) & \$/MWh & G & FY & 2.24.2 & Coordinator Fee rate applicable in Financial Year fy & I\\ \hline ABSGEN\_G\_I(i) & MWh & G & I & 9.13.1 & Metered Generation in Trading Interval i & (\ref{ABSGEN_G_I})\\ \hline ABSLOAD\_G\_I(i) & MWh & G & I & 9.13.1 & Metered Load in Trading Interval i & (\ref{ABSLOAD_G_I})\\ \hline COORDINATOR(d) & \{\} & G & D & 11 & Set containing the Coordinator & (\ref{COORDINATOR})\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsection{Default Levy Adjustment} By the end of the second month following the end of a Financial Year, AEMO must re-allocate any Default Levies raised during that Financial Year.\\ Default Levy Adjustment is split into two parts: \begin{itemize} \item Payment to a Participant for re-allocation of Default Levies raised during the most recently ended Financial Year. \item Charge to a Participant for re-allocation of Default Levies raised during the most recently ended Financial Year. \end{itemize} \begin{equation} \label{DLASA_P_D} DLASA\_P\_D(p, d) = DLAP\_P\_D(p, d) - DLAC\_P\_D(p, d) \\ \end{equation} \begin{equation} \label{DLAP_P_D} DLAP\_P\_D(p, d) = \frac{max(0, DLA\_P\_M(p, m))}{TDTM\_G\_M(m)} \\ \end{equation} \begin{equation} \label{DLAC_P_D} DLAC\_P\_D(p, d) = \frac{-min(0, DLA\_P\_M(p, m))}{TDTM\_G\_M(m)} \\ \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead DLASA\_P\_D(p, d) & \$ & P & D & 9.24.9(e) & Default Levy Adjustment settlement amount for Participant p in Trading Day d & (\ref{DLASA_P_D}) \\ \hline DLAP\_P\_D(p, d) & \$ & P & D & 9.24.9(e) & The amount Participant p is paid in Trading Day d for re-allocation of Default Levies raised during the most recently ended Financial Year & (\ref{DLAP_P_D}) \\ \hline DLAC\_P\_D(p, d) & \$ & P & D & 9.24.9(e) & The amount Participant p is charged in Trading Day d for re-allocation of Default Levies raised during the most recently ended Financial Year & (\ref{DLAC_P_D}) \\ \hline DLA\_P\_M(p, m) & \$ & P & M & 9.24.9(d) & The Default Levy adjustment (including GST) to put Participant p in the position it would have been in had it paid the amount determined under clause 9.24.9(b) instead of the amounts actually paid under clause 9.24.7 & I \\ \hline TDTM\_G\_M(m) & & G & M & & Number of Trading Days in Trading Month m & (\ref{TDTM_G_M})\\ \hline \end{longtabu} \subsection{GST} GST is charged for the provision of eligible goods and services. The Variable Categorisation section outlines which statement summary variables (of day granularity) have GST applied and which are exempt. The interval-equivalent variables are identified in the sets used in the equations below.\\ \subsubsection{STEM GST} \begin{equation} \label{GSTSTEM_P_D} GSTSTEM\_P\_D(p, d) = GSTSTEMP\_P\_D(p, d) - GSTSTEMC\_P\_D(p, d) \end{equation} \begin{equation} \label{GSTSTEMP_P_D} GSTSTEMP\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} GSTSTEMP\_P\_I(p, i) \end{equation} \begin{equation} \label{GSTSTEMP_P_I} GSTSTEMP\_P\_I(p, i) = GST\_G\_D(i) \times \displaystyle \sum_{py \in PGSTSTEM(p, i)} py \end{equation} \begin{equation} \label{GSTSTEMC_P_D} GSTSTEMC\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} GSTSTEMC\_P\_I(p, i) \end{equation} \begin{equation} \label{GSTSTEMC_P_I} GSTSTEMC\_P\_I(p, i) = GST\_G\_D(i) \times \displaystyle \sum_{cg \in CGSTSTEM(p, i)} cg \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead GSTSTEM\_P\_D(p, d) & \$ & P & D & & Net GST associated with STEM paid to participant p for Trading Day d & (\ref{GSTSTEM_P_D})\\ \hline GSTSTEMP\_P\_D(p, d) & \$ & P & D & 9.1.2 & GST associated with STEM paid to participant p in Trading Day d & (\ref{GSTSTEMP_P_D})\\ \hline GSTSTEMC\_P\_D(p, d) & \$ & P & D & 9.1.2 & GST associated with STEM charged to Market Participant p in Trading Day d & (\ref{GSTSTEMC_P_D})\\ \hline GSTSTEMP\_P\_I(p, i) & \$ & P & I & 9.1.2 & GST associated with STEM paid to Market Participant p in Trading Interval i & (\ref{GSTSTEMP_P_I})\\ \hline GSTSTEMC\_P\_I(p, i) & \$ & P & I & 9.1.2 & GST associated with STEM charged to Market Participant p in Trading Interval i & (\ref{GSTSTEMC_P_I})\\ \hline GST\_G\_D(d) & & G & D & & GST rate for Trading Day d & I\\ \hline PGSTSTEM(d) & \{\} & G & D & & Set of all STEM variables which are payments to which GST applies in Trading Day d & I\\ \hline CGSTSTEM(d) & \{\} & G & D & & Set of all STEM variables which are charges to which GST applies in Trading Day d & I\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{NSTEM GST} \begin{equation} \label{GSTNSTEM_P_D} GSTNSTEM\_P\_D(p, d) = GSTNSTEMP\_P\_D(p, d) - GSTNSTEMC\_P\_D(p, d) \end{equation} \begin{equation} \label{GSTNSTEMP_P_D} GSTNSTEMP\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} GSTNSTEMP\_P\_I(p, i) \end{equation} \begin{equation} \label{GSTNSTEMP_P_I} GSTNSTEMP\_P\_I(p, i) = GST\_G\_D(i) \times \displaystyle \sum_{py \in PGSTNSTEM(p, i)} py \end{equation} \begin{equation} \label{GSTNSTEMC_P_D} GSTNSTEMC\_P\_D(p, d) = \displaystyle \sum_{i \in I(d)} GSTNSTEMC\_P\_I(p, i) \end{equation} \begin{equation} \label{GSTNSTEMC_P_I} GSTNSTEMC\_P\_I(p, i) = GST\_G\_D(i) \times \displaystyle \sum_{cg \in CGSTNSTEM(p, i)} cg \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead GSTNSTEM\_P\_D(p, d) & \$ & P & D & & Net GST associated with NSTEM paid to participant p for Trading Day d & (\ref{GSTNSTEM_P_D})\\ \hline GSTNSTEMP\_P\_D(p, d) & \$ & P & D & 9.1.2 & GST associated with NSTEM paid to participant p in Trading Day d & (\ref{GSTNSTEMP_P_D})\\ \hline GSTNSTEMC\_P\_D(p, d) & \$ & P & D & 9.1.2 & GST associated with NSTEM charged to Market Participant p in Trading Day d & (\ref{GSTNSTEMC_P_D})\\ \hline GSTNSTEMP\_P\_I(p, i) & \$ & P & I & 9.1.2 & GST associated with NSTEM paid to Market Participant p in Trading Interval i & (\ref{GSTNSTEMP_P_I})\\ \hline GSTNSTEMC\_P\_I(p, i) & \$ & P & I & 9.1.2 & GST associated with NSTEM charged to Market Participant p in Trading Interval i & (\ref{GSTNSTEMC_P_I})\\ \hline GST\_G\_D(d) & & G & D & & GST rate for Trading Day d & I\\ \hline PGSTNSTEM(d) & \{\} & G & D & & Set of all NSTEM variables which are payments to which GST applies in Trading Day d & I\\ \hline CGSTNSTEM(d) & \{\} & G & D & & Set of all NSTEM variables which are charges to which GST applies in Trading Day d & I\\ \hline I(d) & \{\} & G & D & & Set of Trading Intervals in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Variable Categorisation} The table below outlines the variables that are payments from AEMO to the Market Participant or charges to be paid by the Market Participant to AEMO and whether GST is applicable. The use of the character 'X' is to denote any granularity. The daily granularity variables are presented in the statement summary. \begin{longtabu}{|m{0.20\linewidth}|m{0.07\linewidth}|m{0.07\linewidth}|m{0.07\linewidth}|m{0.1\linewidth}|m{0.35\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Market & P or C & GST & Rule & Description\\ \hline \endhead STEMSAS\_P\_X(p, x) & STEM & P & Y & 9.6.1 & Settlement amount for energy sold in STEM for Market Participant p in trading period x\\ \hline STEMSAD\_P\_X(p, x) & STEM & C & Y & 9.6.1 & Settlement amount for energy purchased in STEM for Market Participant p in trading period x\\ \hline GSTSTEMP\_P\_X(p, x) & STEM & P & N & & GST associated with STEM paid to Market Participant p in trading period x\\ \hline GSTSTEMC\_P\_X(p, x) & STEM & C & N & & GST associated with STEM charged to Market Participant p in trading period x\\ \hline MFSAD\_P\_X(p, x) & NSTEM & C & N & & Market Fee settlement amount charged to Market Participant p for trading period x\\ \hline SFSAD\_P\_X(p, x) & NSTEM & C & N & & System Management Fee settlement amount charged to Market Participant p for trading period x\\ \hline RFSAD\_P\_X(p, x) & NSTEM & C & N & & Regulator Fee settlement amount charged to Market Participant p for trading period x\\ \hline CFSAD\_P\_X(p, x) & NSTEM & C & N & & Coordinator Fee settlement amount charged to Market Participant p for trading period x\\ \hline BSAS\_P\_X(p, x) & NSTEM & P & Y & 9.8.1 & Settlement amount for energy sold in the Balancing Market for Market Participant p in trading period x\\ \hline BSAD\_P\_X(p, x) & NSTEM & C & Y & 9.8.1 & Settlement amount for energy purchased in the Balancing Market for Market Participant p in trading period x\\ \hline CONC\_P\_X(p, x) & NSTEM & P & Y & 9.8.1 & Constrained On Compensation for Market Participant p in trading period x\\ \hline COFFC\_P\_X(p, x) & NSTEM & P & Y & 9.8.1 & Constrained Off Compensation for Market Participant p in trading period x\\ \hline DIP\_P\_X(p, x) & NSTEM & P & Y & 6.17.6C(c) & DSM Dispatch Instruction Payments for Market Participant p in trading period x\\ \hline ARA\_P\_X(p, x) & NSTEM & P & Y & 9.24.2(b) & Repaid Amount that AEMO disgorges in addition to returning Credit Support for Market Participant p for Trading period x\\ \hline LRSF\_P\_X(p, x) & NSTEM & C & Y & & Charges to cover any shortfall in Load Rejection and System Restart costs for Market Participant p in trading period x\\ \hline CCDSMT3C\_P\_X(p, x) & NSTEM & C & Y & & Charges to cover the cost of constrained compensation and DSM Dispatch for Market Participant p in trading period x\\ \hline COCP\_P\_X(p, x) & NSTEM & P & Y & 9.10.1 & Outage compensation payment for Market Participant p in trading period x\\ \hline COCC\_P\_X(p, x) & NSTEM & C & Y & 9.10.1 & Charge to fund outage compensation, for Market Participant p in trading period x\\ \hline UASSR\_P\_X(p, x) & NSTEM & P & Y & 9.9.1 & Amount paid for Synergy's provision of un-contracted Spinning Reserve Services for Market Participant p in trading period x\\ \hline UASLR\_P\_X(p, x) & NSTEM & P & Y & 9.9.1 & Amount paid for Synergy's provision of un-contracted Load Rejection and System Restart Services for Market Participant p in trading period x\\ \hline CASSR\_P\_X(p, x) & NSTEM & P & Y & & Payment for the provision of contracted Spinning Reserve Services for Rule Participant p for trading period x\\ \hline CASL\_P\_X(p, x) & NSTEM & P & Y & & Payment for the provision of contracted Load Rejection Services for Rule Participant p for trading period x\\ \hline CASR\_P\_X(p, x) & NSTEM & P & Y & & Payment for the provision of contracted System Restart Services for Rule Participant p for trading period x\\ \hline CASD\_P\_X(p, x) & NSTEM & P & Y & & Payment for the provision of contracted Dispatch Support Services for Rule Participant p for trading period x\\ \hline LFSA\_P\_X(p, x) & NSTEM & P & Y & 9.9.2(c) & Amount paid for the provision of Load Following (Upwards LFAS, Downwards LFAS, Backup Upwards LFAS and Backup Downwards LFAS) to Market Participant p in trading period x\\ \hline LFCC\_P\_X(p, x) & NSTEM & C & Y & 9.9.2(p) & Amount charged to recover the cost of capacity associated with Load Following for Market Participant p in trading period x\\ \hline LFMC\_P\_X(p, x) & NSTEM & C & Y & 9.9.2(n) & Amount charged to recover the cost of Load Following (Upwards LFAS, Downwards LFAS, Backup Upwards LFAS and Backup Downwards LFAS) for Market Participant p in trading period x\\ \hline SRAC\_P\_X(p, x) & NSTEM & C & Y & 9.9.2(l) & Amount charged to recover the cost of Spinning Reserve Services for Market Participant p in trading period x\\ \hline COSTLR\_P\_X(p, x) & NSTEM & C & Y & 9.9.1 & Amount charged to recover the cost of Load Rejection Service and System Restart Service for Market Participant p in trading period x\\ \hline COSTD\_P\_X(p, x) & NSTEM & C & Y & 9.9.1 & Amount charged to recover the cost of Dispatch Support Services for Market Participant p in trading period x\\ \hline CCSA\_P\_X(p, x) & NSTEM & P & Y & 9.7.1A & Payment for non-allocated Capacity Credits for Market Participant p in trading period x\\ \hline CCAOASA\_P\_X(p, x) & NSTEM & P & Y & 9.7.1A & Capacity Credit Allocation over-allocation Payment (when Capacity Credit Allocations exceed IRCR) for Market Participant p in trading period x\\ \hline SUPCAPSA\_P\_X(p, x) & NSTEM & P & Y & 9.7.1 & Payment to be made under Supplementary Capacity Contracts to Market Participant p in trading period x\\ \hline TRCC\_P\_X(p, x) & NSTEM & C & Y & 9.7.1B & Charge to cover the Targeted Reserve Capacity Cost for Market Participant p in trading period x\\ \hline SRCC\_P\_X(p, x) & NSTEM & C & Y & 9.7.1B & Charge to cover the Shared Reserve Capacity Cost for Market Participant p in trading period x\\ \hline CCR\_P\_X(p, x) & NSTEM & C & Y & 4.26.2E & Capacity Cost Refund charged to Market Participant p in trading period x\\ \hline IMLR\_P\_X(p, x) & NSTEM & C & Y & 4.28A.1 & Intermittent Load Refunds for Market Participant p in trading period x\\ \hline CAPREBSA\_P\_X(p, x) & NSTEM & P & Y & 4.26.4 & Participant Capacity Rebate (whereby Capacity Cost Refunds are redistributed) for Market Participant p in trading period x\\ \hline LFREBATE\_P\_X(p, x) & NSTEM & P & Y & 9.7.1B & Payment returning cost of Capacity associated with Load Following, for Market Participant p in trading period x\\ \hline MFSAS\_P\_X(p, x) & NSTEM & P & N & & Service Fee Settlement Amount paid to AEMO for trading period x\\ \hline SFSAS\_P\_X(p, x) & NSTEM & P & N & & Service Fee Settlement Amount paid to AEMO (in its capacity as System Management) for trading period x\\ \hline RFSAS\_P\_X(p, x) & NSTEM & P & N & & Service Fee Settlement Amount paid to the Economic Regulation Authority in trading period x\\ \hline CFSAS\_P\_X(p, x) & NSTEM & P & N & & Service Fee Settlement Amount paid to the Coordinator in trading period x\\ \hline DLAC\_P\_X(p, x) & NSTEM & C & N & 9.24.9 & Amount charged to Participant p for re-allocation of Default Levies raised during the most recently ended Financial Year \\ \hline DLAP\_P\_X(p, x) & NSTEM & P & N & 9.24.9 & Amount paid to Participant p for re-allocation of Default Levies raised during the most recently ended Financial Year \\ \hline GSTNSTEMP\_P\_X(p, x) & NSTEM & P & N & & GST associated with NSTEM paid to Market Participant p in trading period x\\ \hline GSTNSTEMC\_P\_X(p, x) & NSTEM & C & N & & GST associated with NSTEM charged to Market Participant p in trading period x\\ \hline INTNSTEMP\_P\_X(p, x) & NSTEM & P & N & & Interest associated with NSTEM paid to Market Participant p in trading period x\\ \hline INTNSTEMC\_P\_X(p, x) & NSTEM & C & N & & Interest associated with NSTEM charged to Market Participant p in trading period x\\ \hline \end{longtabu} The table below assists in understanding how the payments and charges are related. The only non-zero sum component within the settlement summary variables is when AEMO is required to draw down on Reserve Capacity security or DSM Reserve Capacity Security, which is represented by $RCSD\_G\_X(x)$ and $DSMRCSD\_G\_X(x)$, respectively. \begin{longtabu}{|m{0.3\linewidth}|m{0.35\linewidth}|m{0.02\linewidth}|m{0.2\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Category & Payments & = & Charges\\ \hline \endhead STEM & STEMSAS\_G\_X(x) & = & STEMSAD\_G\_X(x)\\ \hline Market Fees & MFSAS\_G\_X(x) & = & MFSAD\_G\_X(x)\\ \hline System Management Fees & SFSAS\_G\_X(x) & = & SFSAD\_G\_X(x)\\ \hline Regulation Fees & RFSAS\_G\_X(x) & = & RFSAD\_G\_X(x)\\ \hline Coordinator Fees & CFSAS\_G\_X(x) & = & CFSAD\_G\_X(x)\\ \hline Balancing Market & BSAS\_G\_X(x) & = & BSAD\_G\_X(x)\\ \hline Constrained Compensation and DSP Dispatch & CONC\_G\_X(x) + COFFC\_G\_X(x) + DIP\_G\_X(x) + ARA\_G\_X(x) & = & CCDSMT3C\_G\_X(x)\\ \hline Changed Outage Compensation & COCP\_G\_X(x) & = & COCC\_G\_X(x)\\ \hline Spinning Reserve and Load Following (ex. Capacity) & UASSR\_G\_X(x) + CASSR\_G\_X(x) + LFSA\_G\_X(x) & = & SRAC\_G\_X(x) + LFMC\_G\_X(x)\\ \hline Load Rejection and System Restart & UASLR\_G\_X(x) + CASL\_G\_X(x) + CASR\_G\_X(x) & = & COSTLR\_G\_X(x) + LRSF\_G\_X(x)\\ \hline Dispatch Support Services & CASD\_G\_X(x) & = & COSTD\_G\_X(x)\\ \hline Capacity & CCSA\_G\_X(x) + CCAOASA\_G\_X(x) + SUPCAPSA\_G\_X(x) & = & TRCC\_G\_X(x) + SRCC\_G\_X(x) + IMLR\_G\_X(x) + RCSD\_G\_X(x) + DSMRCSD\_G\_X(x)\\ \hline Capacity Cost Refunds & CAPREBSA\_G\_X(x) & = & CCR\_G\_X(x)\\ \hline Load Following Capacity adjustment & LFREBATE\_G\_X(x) & = & LFCC\_G\_X(x)\\ \hline Default Levy Adjustment & DLAP\_G\_X(x) & = & DLAC\_G\_X(x)\\ \hline GST STEM & GSTSTEMP\_G\_X(x) & = & GSTSTEMC\_G\_X(x)\\ \hline GST NSTEM & GSTNSTEMP\_G\_X(x) & = & GSTNSTEMC\_G\_X(x)\\ \hline Interest & INTNSTEMP\_G\_X(x) & = & INTNSTEMC\_G\_X(x)\\ \hline \end{longtabu} \subsection{Interest} Interest is paid/charged in the WEM for two reasons: \begin{itemize} \item Interest paid/charged as part of the Adjustment Process [MR 9.1.3] \item Interest paid on security deposits [MR 2.38.5, 4.13.6, 4.13.14, 4.13A.13, and 4.13A.19] \end{itemize} The payment of interest on security deposits is handled separate to that outlined in this formulation. \begin{dmath} \label{INTNSTEMP_P_D} INTNSTEMP\_P\_D(p, d) = max(0, INTNSTEM\_P\_D(p, d)) \end{dmath} \begin{dmath} \label{INTNSTEMC_P_D} INTNSTEMC\_P\_D(p, d) = -min(0, INTNSTEM\_P\_D(p, d)) \end{dmath} \begin{dmath} \label{INTNSTEM_P_D} INTNSTEM\_P\_D(p, d) = INTNSTEM1\_P\_D(p, d) + INTNSTEM2\_P\_D(p, d) + INTNSTEM3\_P\_D(p, d) \end{dmath} \begin{dmath} \label{INTNSTEM1_P_D} INTNSTEM1\_P\_D(p, d) = \begin{dcases} (NOINTNSTEM\_P\_D(p, d) - NOINTNSTEM0\_P\_D(p, d)) & \text{for $NSTEM1NULLFlag\_G\_M(d) = 1$}\\ &\ \text{and $NSTEM0NULLFlag\_G\_M(d) = 0$}\\ \times \displaystyle \sum_{j \in INTDAYS1(d)}\frac{BBR\_G\_D(j)}{365} & \\ \\ (NOINTNSTEM1\_P\_D(p, d) - NOINTNSTEM0\_P\_D(p, d)) & \text{otherwise}\\ \times \displaystyle \sum_{j \in INTDAYS1(d)}\frac{BBR\_G\_D(j)}{365} & \\ \end{dcases} \end{dmath} \begin{dmath} \label{INTNSTEM2_P_D} INTNSTEM2\_P\_D(p, d) = \begin{dcases} (NOINTNSTEM\_P\_D(p, d) - NOINTNSTEM1\_P\_D(p, d)) & \text{for $NSTEM2NULLFlag\_G\_M(d) = 1$}\\ &\ \text {and $NSTEM1NULLFlag\_G\_M(d) = 0$}\\ \times \displaystyle \sum_{j \in INTDAYS2(d)}\frac{BBR\_G\_D(j)}{365} & \\ \\ (NOINTNSTEM2\_P\_D(p, d) - NOINTNSTEM1\_P\_D(p, d)) & \text{otherwise}\\ \times \displaystyle \sum_{j \in INTDAYS2(d)}\frac{BBR\_G\_D(j)}{365} & \\ \end{dcases} \end{dmath} \begin{dmath} \label{INTNSTEM3_P_D} INTNSTEM3\_P\_D(p, d) = \begin{dcases} (NOINTNSTEM\_P\_D(p, d) - NOINTNSTEM2\_P\_D(p, d)) & \text{for $NSTEM3NULLFlag\_G\_M(d) = 1$}\\ &\ \text{and $NSTEM2NULLFlag\_G\_M(d) = 0$}\\ \times \displaystyle \sum_{j \in INTDAYS3(d)}\frac{BBR\_G\_D(j)}{365} & \\ \\ (NOINTNSTEM3\_P\_D(p, d) - NOINTNSTEM2\_P\_D(p, d)) & \text{otherwise}\\ \times \displaystyle \sum_{j \in INTDAYS3(d)}\frac{BBR\_G\_D(j)}{365} & \\ \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead INTNSTEMP\_P\_D(p, d) & \$ & P & D & & Net interest paid to participant p for Trading Day d & (\ref{INTNSTEMP_P_D})\\ \hline INTNSTEMC\_P\_D(p, d) & \$ & P & D & & Net interest charged to participant p for Trading Day d & (\ref{INTNSTEMC_P_D})\\ \hline INTNSTEM\_P\_D(p, d) & \$ & P & D & & Net interest paid/charged to participant p for Trading Day d & (\ref{INTNSTEM_P_D})\\ \hline INTNSTEM1\_P\_D(p, d) & \$ & P & D & & Interest accrued due to variations between the adjustment 1 Non-STEM Settlement Statement and the initial Non-STEM Settlement Statement for participant p for Trading Day d & (\ref{INTNSTEM1_P_D})\\ \hline INTNSTEM2\_P\_D(p, d) & \$ & P & D & & Interest accrued due to variations between the adjustment 2 Non-STEM Settlement Statement and the adjustment 1 Non-STEM Settlement Statement for participant p for Trading Day d & (\ref{INTNSTEM2_P_D})\\ \hline INTNSTEM3\_P\_D(p, d) & \$ & P & D & & Interest accrued due to variations between the adjustment 3 Non-STEM Settlement Statement and the adjustment 2 Non-STEM Settlement Statement for participant p for Trading Day d & (\ref{INTNSTEM3_P_D})\\ \hline BBR\_G\_D(d) & & G & D & & Annual Bank Bill Rate applicable to Trading Day d & I\\ \hline NOINTNSTEM\_P\_D(p, d) & \$ & P & D & & Total settlement amount for NSTEM (including GST, excluding interest) for Market Participant p in Trading Day d & (\ref{NOINTNSTEM_P_D})\\ \hline NOINTNSTEM0\_P\_D(p, d) & \$ & P & D & & Total settlement amount for NSTEM (including GST, excluding interest) for Market Participant p in Trading Day d as published in initial Non-STEM Settlement Statement & I\\ \hline NOINTNSTEM1\_P\_D(p, d) & \$ & P & D & & Total settlement amount for NSTEM (including GST, excluding interest) for Market Participant p in Trading Day d as published in adjustment 1 Non-STEM Settlement Statement & I\\ \hline NOINTNSTEM2\_P\_D(p, d) & \$ & P & D & & Total settlement amount for NSTEM (including GST, excluding interest) for Market Participant p in Trading Day d as published in adjustment 2 Non-STEM Settlement Statement & I\\ \hline NOINTNSTEM3\_P\_D(p, d) & \$ & P & D & & Total settlement amount for NSTEM (including GST, excluding interest) for Market Participant p in Trading Day d as published in adjustment 3 Non-STEM Settlement Statement & I\\ \hline INTDAYS1(m) & \{\} & G & M & 9.1.3 & Set of days from (and including) the settlement day associated with the original NSTEM Settlement Statement up to (but excluding) settlement day for adjustment 1 Non-STEM Settlement Statement for Trading Month m & I\\ \hline INTDAYS2(m) & \{\} & G & M & 9.1.3 & Set of days from (and including) the settlement day associated with the original NSTEM Settlement Statement up to (but excluding) settlement day for adjustment 2 Non-STEM Settlement Statement for Trading Month m & I\\ \hline INTDAYS3(m) & \{\} & G & M & 9.1.3 & Set of days from (and including) the settlement day associated with the original NSTEM Settlement Statement up to (but excluding) settlement day for adjustment 3 Non-STEM Settlement Statement for Trading Month m & I\\ \hline NSTEM0NULLFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when Non-STEM settlement amounts (as published in the initial Non-STEM Settlement Statements) are unavailable for Trading Month m, and 0 otherwise & I\\ \hline NSTEM1NULLFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when Non-STEM settlement amounts (as published in adjustment 1 Non-STEM Settlement Statements) are unavailable for Trading Month m, and 0 otherwise & I\\ \hline NSTEM2NULLFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when Non-STEM settlement amounts (as published in adjustment 2 Non-STEM Settlement Statements) are unavailable for Trading Month m, and 0 otherwise & I\\ \hline NSTEM3NULLFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when Non-STEM settlement amounts (as published in adjustment 3 Non-STEM Settlement Statements) are unavailable for Trading Month m, and 0 otherwise & I\\ \hline \end{longtabu} \section{Settlements} Daily outputs from the common calculation engine are aggregated to achieve the required settlement outputs. \subsection{High-Level Settlement Variables} For the purposes of certification, the following three equations make use of the common calculation engine to determine the high-level settlement variables defined in the rules. \begin{equation} \label{STEMSA_P_W} STEMSA\_P\_W(p, w) = \displaystyle \sum_{d \in D\_W(w)} STEMSA\_P\_D(p, d) \end{equation} \begin{dmath} \label{NSTEMSA_P_M} NSTEMSA\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} NSTEMSA\_P\_D(p, d) \end{dmath} \begin{equation} \label{RRSA_P_M} RRSA\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} RRSA\_P\_D(p, d) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead STEMSA\_P\_W(p, w) & \$ & P & W & 9.6.1 & Settlement amount for energy cleared in STEM for Market Participant p in Trading Week w & (\ref{STEMSA_P_W})\\ \hline STEMSA\_P\_D(p, d) & \$ & P & D & 9.6.1 & Settlement amount for energy cleared in STEM for Market Participant p in Trading Day d & (\ref{STEMSA_P_D})\\ \hline NSTEMSA\_P\_M(p, m) & \$ & P & M & 9.14.1 & Net NSTEM Settlement amount for Market Participant p in Trading Month m & (\ref{NSTEMSA_P_M})\\ \hline NSTEMSA\_P\_D(p, d) & \$ & P & D & 9.14.1 & Net NSTEM Settlement amount for Market Participant p in Trading Day d & (\ref{NSTEMSA_P_D})\\ \hline RRSA\_P\_M(p, m) & \$ & P & M & 9.15.1 & Service Fee Settlement Amount paid to Rule Participant p for Trading Month m & (\ref{RRSA_P_M})\\ \hline RRSA\_P\_D(p, d) & \$ & P & D & 9.15.1 & Service Fee Settlement Amount paid to Rule Participant p for Trading Day d & (\ref{RRSA_P_D})\\ \hline D\_W(w) & \{\} & G & W & & Set of Trading Days in Trading Week w & I\\ \hline D(m) & \{\} & G & M & & Set of Trading Days in Trading Month m & I\\ \hline \end{longtabu} \subsection{Other Settlement Variables} There are other settlement variables (of Trading Month granularity) that participants can determine from the variables used in the common calculation engine. \subsubsection{Reconciliation} \begin{equation} \label{RSA_P_M} RSA\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} RSA\_P\_D(p, d) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead RSA\_P\_M(p, m) & \$ & P & M & 9.11.1 & Reconciliation Settlement amount for Market Participant p in Trading Month m & (\ref{RSA_P_M})\\ \hline RSA\_P\_D(p, d) & \$ & P & D & 9.11.1 & Reconciliation Settlement amount for Market Participant p in Trading Day d & (\ref{RSA_P_D})\\ \hline D(m) & \{\} & G & M & & Set of Trading Days in Trading Month m & I\\ \hline \end{longtabu} \subsubsection{Changed Outage Compensation} \begin{equation} \label{COCSA_P_M} COCSA\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} COCSA\_P\_D(p, d) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead COCSA\_P\_M(p, m) & \$ & P & M & 9.10.1 & Outage compensation settlement amount for Market Participant p in Trading Month m & (\ref{COCSA_P_M})\\ \hline COCSA\_P\_D(p, d) & \$ & P & D & 9.10.1 & Outage compensation settlement amount for Market Participant p in Trading Day d & (\ref{COCSA_P_D})\\ \hline D(m) & \{\} & G & M & & Set of Trading Days in Trading Month m & I\\ \hline \end{longtabu} \subsubsection{Ancillary Services} \begin{equation} \label{ASSA_P_M} ASSA\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} ASSA\_P\_D(p, d) \end{equation} \begin{equation} \label{SynergyASPP_P_M} SynergyASPP\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} SynergyASPP\_P\_D(p, d) \end{equation} \begin{equation} \label{ASPP_P_M} ASPP\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} ASPP\_P\_D(p, d) \end{equation} \begin{equation} \label{LFSA_P_M} LFSA\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} LFSA\_P\_D(p, d) \end{equation} \begin{equation} \label{LFCC_P_M} LFCC\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} LFCC\_P\_D(p, d) \end{equation} \begin{equation} \label{LFMC_P_M} LFMC\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} LFMC\_P\_D(p, d) \end{equation} \begin{equation} \label{SRAC_P_M} SRAC\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} SRAC\_P\_D(p, d) \end{equation} \begin{equation} \label{COSTLRD_G_M} COSTLRD\_G\_M(m) = COSTLR\_G\_M(m) + CASD\_G\_M(m) \end{equation} \begin{equation} \label{SRAC_G_M} SRAC\_G\_M(m) = \displaystyle \sum_{i \in I\_M(m)} SRAC\_G\_I(i) \end{equation} \begin{dmath} \label{ASPBP_G_M} ASPBP\_G\_M(m) = CASSR\_G\_M(m) + min \left( COSTLR\_G\_M(m), CASL\_G\_M(m) + CASR\_G\_M(m) \right) + CASD\_G\_M(m) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead ASSA\_P\_M(p, m) & \$ & P & M & 9.9.1 & Ancillary Services settlement amount for Market Participant p in Trading Month m & (\ref{ASSA_P_M})\\ \hline ASSA\_P\_D(p, d) & \$ & P & D & 9.9.1 & Ancillary Services settlement amount for Market Participant p in Trading Day d & (\ref{ASSA_P_D})\\ \hline SynergyASPP\_P\_M(p, m) & \$ & P & M & 9.9.3 & Payment to Synergy for un-contracted Ancillary Services for Market Participant p in Trading Month m & (\ref{SynergyASPP_P_M})\\ \hline SynergyASPP\_P\_D(p, d) & \$ & P & D & 9.9.3 & Payment to Synergy for un-contracted Ancillary Services for Market Participant p in Trading Day d & (\ref{SynergyASPP_P_D})\\ \hline ASPP\_P\_M(p, m) & \$ & P & M & 9.9.3 & Payment for Contracted Ancillary Services for Market Participant p in Trading Month m & (\ref{ASPP_P_M})\\ \hline ASPP\_P\_D(p, d) & \$ & P & D & 9.9.3 & Payment for Contracted Ancillary Services for Market Participant p in Trading Day d & (\ref{ASPP_P_D})\\ \hline LFSA\_P\_M(p, m) & \$ & P & M & 9.9.2(c) & Amount paid for the provision of Load Following (Upwards LFAS, Downwards LFAS, Backup Upwards LFAS and Backup Downwards LFAS) to Market Participant p in Trading Month m & (\ref{LFSA_P_M})\\ \hline LFSA\_P\_D(p, d) & \$ & P & D & 9.9.2(c) & Amount paid for the provision of Load Following (Upwards LFAS, Downwards LFAS, Backup Upwards LFAS and Backup Downwards LFAS) to Market Participant p in Trading Day d & (\ref{LFSA_P_D})\\ \hline LFCC\_P\_M(p, m) & \$ & P & M & 9.9.2(p) & Amount charged to recover the cost of capacity associated with Load Following for Market Participant p in Trading Month m & (\ref{LFCC_P_M})\\ \hline LFCC\_P\_D(p, d) & \$ & P & D & 9.9.2(p) & Amount charged to recover the cost of capacity associated with Load Following for Market Participant p in Trading Day d & (\ref{LFCC_P_D})\\ \hline LFMC\_P\_M(p, m) & \$ & P & M & 9.9.2(n) & Amount charged to recover the cost of Load Following (Upwards LFAS, Downwards LFAS, Backup Upwards LFAS and Backup Downwards LFAS) for Market Participant p in Trading Month m & (\ref{LFMC_P_M})\\ \hline LFMC\_P\_D(p, d) & \$ & P & D & 9.9.2(n) & Amount charged to recover the cost of Load Following (Upwards LFAS, Downwards LFAS, Backup Upwards LFAS and Backup Downwards LFAS) for Market Participant p in Trading Day d & (\ref{LFMC_P_D})\\ \hline SRAC\_P\_M(p, m) & \$ & P & M & 9.9.2(l) & Amount charged to recover the cost of Spinning Reserve Services for Market Participant p in Trading Month m & (\ref{SRAC_P_M})\\ \hline SRAC\_P\_D(p, d) & \$ & P & D & 9.9.2(l) & Amount charged to recover the cost of Spinning Reserve Services for Market Participant p in Trading Day d & (\ref{SRAC_P_D})\\ \hline COSTLRD\_G\_M(m) & \$ & G & M & 3.22.1(g) & The total Load Rejection, System Restart and Dispatch Support Services payment cost for Trading Month m & (\ref{COSTLRD_G_M})\\ \hline COSTLR\_G\_M(m) & \$ & G & M & 3.22.1(g)i & The monthly equivalent of the amount determined by the ERA to cover the costs of Load Rejection and System Restart Services, and un-contracted Dispatch Support Services for Trading Month m & (\ref{COSTLR_G_M})\\ \hline CASD\_G\_M(m) & \$ & G & M & 3.22.1(g)ii & The monthly amount for Dispatch Support Services for Trading Month m & (\ref{CASD_G_M})\\ \hline SRAC\_G\_M(m) & \$ & G & M & 9.9.2(l) & Total Spinning Reserve availability cost for Trading Month m & (\ref{SRAC_G_M})\\ \hline SRAC\_G\_I(i) & \$ & G & I & 9.9.2(l) & Amount charged to recover the cost of Spinning Reserve Services for Trading Interval i & (\ref{SRAC_G_I})\\ \hline ASPBP\_G\_M(m) & \$ & G & M & 9.9.3A & Ancillary Service Provider balance payment for Trading Month m & (\ref{ASPBP_G_M})\\ \hline CASSR\_G\_M(m) & \$ & G & M & 9.9.3(a) & Payment for the provision of contracted Spinning Reserve Services for Trading Month m & (\ref{CASSR_G_M})\\ \hline CASL\_G\_M(m) & \$ & G & M & & Sum of amounts paid for the provision of contracted Load Rejection Services for Trading Month m & (\ref{CASL_G_M})\\ \hline CASR\_G\_M(m) & \$ & G & M & & Sum of amounts paid for the provision of contracted System Restart Services for Trading Month m & (\ref{CASR_G_M})\\ \hline D(m) & \{\} & G & M & & Set of Trading Days in Trading Month m & I\\ \hline I\_M(m) & \{\} & G & M & & Set of Trading Intervals in Trading Month m & I\\ \hline \end{longtabu} \subsubsection{Reserve Capacity} \begin{equation} \label{RCSA_P_M} RCSA\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} RCSA\_P\_D(p, d) \end{equation} \begin{equation} \label{CPP_P_M} CPP\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} CPP\_P\_D(p, d) \end{equation} \begin{equation} \label{CPC_P_M} CPC\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} CPC\_P\_D(p, d) \end{equation} \begin{equation} \label{CAPREBSA_P_M} CAPREBSA\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} CAPREBSA\_P\_D(p, d) \end{equation} \begin{equation} \label{CCSA_P_M} CCSA\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} CCSA\_P\_D(p, d) \end{equation} \begin{equation} \label{IMLR_P_M} IMLR\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} IMLR\_P\_D(p, d) \end{equation} \begin{equation} \label{SUPCAPSA_P_M} SUPCAPSA\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} SUPCAPSA\_P\_D(p, d) \end{equation} \begin{equation} \label{CCR_P_M} CCR\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} CCR\_P\_D(p, d) \end{equation} \begin{equation} \label{CCAOASA_P_M} CCAOASA\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} CCAOASA\_P\_D(p, d) \end{equation} \begin{equation} \label{TRCC_P_M} TRCC\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} TRCC\_P\_D(p, d) \end{equation} \begin{equation} \label{SRCC_P_M} SRCC\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} SRCC\_P\_D(p, d) \end{equation} \begin{equation} \label{SRCC_G_M} SRCC\_G\_M(m) = \displaystyle \sum_{i \in I\_M(m)} SRCC\_G\_I(i) \end{equation} \begin{equation} \label{LFREBATE_P_M} LFREBATE\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} LFREBATE\_P\_D(p, d) \end{equation} \begin{equation} \label{LFCC_G_M} LFCC\_G\_M(m) = \displaystyle \sum_{i \in I\_M(m)} LFCC\_G\_I(i) \end{equation} \begin{equation} \label{SUPCAPSA_G_M} SUPCAPSA\_G\_M(m) = \displaystyle \sum_{i \in I\_M(m)} SUPCAPSA\_G\_I(i) \end{equation} \begin{equation} \label{IMLR_G_M} IMLR\_G\_M(m) = \displaystyle \sum_{i \in I\_M(m)} IMLR\_G\_I(i) \end{equation} \begin{equation} \label{CCSA_G_M} CCSA\_G\_M(m) = \displaystyle \sum_{i \in I\_M(m)} CCSA\_G\_I(i) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead RCSA\_P\_M(p, m) & \$ & P & M & 9.7.1 & Reserve Capacity settlement amount for Market Participant p in Trading Month m & (\ref{RCSA_P_M})\\ \hline RCSA\_P\_D(p, d) & \$ & P & D & 9.7.1 & Reserve Capacity settlement amount for Market Participant p in Trading Day d & (\ref{RCSA_P_D})\\ \hline CPP\_P\_M(p, m) & \$ & P & M & 9.7.1A & Capacity Provider Payment for Market Participant p in Trading Month m & (\ref{CPP_P_M})\\ \hline CPP\_P\_D(p, d) & \$ & P & D & 9.7.1A & Capacity Provider Payment for Market Participant p in Trading Day d & (\ref{CPP_P_D})\\ \hline CPC\_P\_M(p, m) & \$ & P & M & 9.7.1B & Capacity Purchaser Charge for Market Participant p in Trading Month m & (\ref{CPC_P_M})\\ \hline CPC\_P\_D(p, d) & \$ & P & D & 9.7.1B & Capacity Purchaser Charge for Market Participant p in Trading Day d & (\ref{CPC_P_D})\\ \hline CAPREBSA\_P\_M(p, m) & \$ & P & M & 4.26.4 & Participant Capacity Rebate (whereby Capacity Cost Refunds are redistributed) for Market Participant p in Trading Month m & (\ref{CAPREBSA_P_M})\\ \hline CAPREBSA\_P\_D(p, d) & \$ & P & D & 4.26.4 & Participant Capacity Rebate (whereby Capacity Cost Refunds are redistributed) for Market Participant p in Trading Day d & (\ref{CAPREBSA_P_D})\\ \hline CCSA\_P\_M(p, m) & \$ & P & M & 9.7.1A & Payment for non-allocated Capacity Credits for Market Participant p in Trading Month m & (\ref{CCSA_P_M})\\ \hline CCSA\_P\_D(p, d) & \$ & P & D & 9.7.1A & Payment for non-allocated Capacity Credits for Market Participant p in Trading Day d & (\ref{CCSA_P_D})\\ \hline IMLR\_P\_M(p, m) & \$ & P & M & 4.28A.1 & Intermittent Load Refunds for Market Participant p in Trading Month m & (\ref{IMLR_P_M})\\ \hline IMLR\_P\_D(p, d) & \$ & P & D & 4.28A.1 & Intermittent Load Refunds for Market Participant p in Trading Day d & (\ref{IMLR_P_D})\\ \hline SUPCAPSA\_P\_M(p, m) & \$ & P & M & 9.7.1 & Payment to be made under Supplementary Capacity Contracts to Market Participant p in Trading Month m & (\ref{SUPCAPSA_P_M})\\ \hline SUPCAPSA\_P\_D(p, d) & \$ & P & D & 9.7.1 & Payment to be made under Supplementary Capacity Contracts to Market Participant p in Trading Day d & (\ref{SUPCAPSA_P_D})\\ \hline CCR\_P\_M(p, m) & \$ & P & M & 4.26.2E & Capacity Cost Refund charged to Market Participant p in Trading Month m & (\ref{CCR_P_M})\\ \hline CCR\_P\_D(p, d) & \$ & P & D & 4.26.2E & Capacity Cost Refund charged to Market Participant p in Trading Day d & (\ref{CCR_P_D})\\ \hline CCAOASA\_P\_M(p, m) & \$ & P & M & 9.7.1A & Capacity Credit Allocation over-allocation Payment (when Capacity Credit Allocations exceed IRCR) for Market Participant p in Trading Month m & (\ref{CCAOASA_P_M})\\ \hline CCAOASA\_P\_D(p, d) & \$ & P & D & 9.7.1A & Capacity Credit Allocation over-allocation Payment (when Capacity Credit Allocations exceed IRCR) for Market Participant p in Trading Day d & (\ref{CCAOASA_P_D})\\ \hline TRCC\_P\_M(p, m) & \$ & P & M & 9.7.1B & Charge to cover the Targeted Reserve Capacity Cost for Market Participant p in Trading Month m & (\ref{TRCC_P_M})\\ \hline TRCC\_P\_D(p, d) & \$ & P & D & 9.7.1B & Charge to cover the Targeted Reserve Capacity Cost for Market Participant p in Trading Day d & (\ref{TRCC_P_D})\\ \hline SRCC\_P\_M(p, m) & \$ & P & M & 9.7.1B & Charge to cover the Shared Reserve Capacity Cost for Market Participant p in Trading Month m & (\ref{SRCC_P_M})\\ \hline SRCC\_P\_D(p, d) & \$ & P & D & 9.7.1B & Charge to cover the Shared Reserve Capacity Cost for Market Participant p in Trading Day d & (\ref{SRCC_P_D})\\ \hline SRCC\_G\_M(m) & \$ & G & M & 4.28.4 & Shared Reserve Capacity Cost for Trading Month m & (\ref{SRCC_G_M})\\ \hline SRCC\_G\_I(i) & \$ & G & I & 4.28.4 & Shared Reserve Capacity Cost for Trading Interval i & (\ref{SRCC_G_I})\\ \hline LFREBATE\_P\_M(p, m) & \$ & P & M & 9.7.1B & Payment returning cost of Capacity associated with Load Following, for Market Participant p in Trading Month m & (\ref{LFREBATE_P_M})\\ \hline LFREBATE\_P\_D(p, d) & \$ & P & D & 9.7.1B & Payment returning cost of Capacity associated with Load Following, for Market Participant p in Trading Day d & (\ref{LFREBATE_P_D})\\ \hline LFCC\_G\_M(m) & \$ & G & M & 9.9.2(p) & Amount charged to recover the cost of capacity associated with Load Following in Trading Month m & (\ref{LFCC_G_M})\\ \hline LFCC\_G\_I(i) & \$ & G & I & 9.9.2(p) & Amount charged to recover the cost of capacity associated with Load Following in Trading Interval i & (\ref{LFCC_G_I})\\ \hline CC\_F\_D(f, d) & MW & F & D & 11 & Capacity Credits associated with Facility f on Trading Day d & I\\ \hline SUPCAPSA\_G\_M(m) & \$ & G & M & 4.28.4(b) & Payment to be made under Supplementary Capacity Contracts in Trading Month m & (\ref{SUPCAPSA_G_M})\\ \hline SUPCAPSA\_G\_I(i) & \$ & G & I & 4.28.4(b) & Payment to be made under Supplementary Capacity Contracts in Trading Interval i & (\ref{SUPCAPSA_G_I})\\ \hline IMLR\_G\_M(m) & \$ & G & M & 4.28.4(c) & Intermittent Load Refunds for Trading Month m & (\ref{IMLR_G_M})\\ \hline IMLR\_G\_I(i) & \$ & G & I & 4.28.4(c) & Intermittent Load Refunds for Trading Interval i & (\ref{IMLR_G_I})\\ \hline CCSA\_G\_M(m) & \$ & G & M & & Payment for non-allocated Capacity Credits in Trading Month m & (\ref{CCSA_G_M})\\ \hline TDTM\_G\_M(m) & & G & M & & Number of Trading Days in Trading Month m & (\ref{TDTM_G_M})\\ \hline D(m) & \{\} & G & M & & Set of Trading Days in Trading Month m & I\\ \hline I\_M(m) & \{\} & G & M & & Set of Trading Intervals in Trading Month m & I\\ \hline \end{longtabu} \subsubsection{Market Participant Fees} \begin{equation} \label{MPFSA_P_M} MPFSA\_P\_M(p, m) = \displaystyle \sum_{d \in D(m)} MPFSA\_P\_D(p, d) \end{equation} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead MPFSA\_P\_M(p, m) & \$ & P & M & 9.13.1 & Market Participant Fee Settlement Amount charged to Market Participant p for Trading Month m & (\ref{MPFSA_P_M})\\ \hline MPFSA\_P\_D(p, d) & \$ & P & D & 9.13.1 & Market Participant Fee Settlement Amount charged to Market Participant p for Trading Day d & (\ref{MPFSA_P_D})\\ \hline D(m) & \{\} & G & M & & Set of Trading Days in Trading Month m & I\\ \hline \end{longtabu} \section{Prudentials} Prudential calculations require the estimation of exposure before all inputs are known. This section is separated into the estimation of metering inputs and settlement inputs, as a different approach is taken. When estimating meter data, AEMO uses more general metering equations to incorporate estimation methodology. When actual data is available, the equations simplify to the previously outlined metering equations. The more general metering equations are detailed in the subsequent subsections. When estimating settlement data, AEMO does not modify settlement equations, but instead estimates inputs which are not known at the time of calculation. The methodology for estimating settlement inputs when they are unknown is detailed in the subsequent subsections. \subsection{Estimating Metering Variables} Metered Schedules are required to be estimated for the purposes of determining a Market Participant's Outstanding Amount. When a Metered Schedule does not exist because data is yet to be provided by the Meter Data Agent, an estimation methodology is used to scale data from a similar period, depending on what data is available. The following sections outline: \begin{itemize} \item how data statuses are used to indicate if data exists; \item how a similar interval is determined using a 'Like Day, Like Period' methodology; \item how scaling factors are used; and \item the estimation methodology consistent with the requirements in Market Procedure: Prudential Requirements. \end{itemize} \subsubsection{Data Statuses} Statuses are set up to distinguish between NULL values and 0 values in AEMO's generic settlement calculation engine. Although these statuses are defined as equations in this section, they are treated as inputs in the metering calculations. \begin{dmath} \label{DataStatus_F_I} DataStatus\_F\_I(f, i) = \begin{dcases} 1 & \text{for $f \in NOINTMETER(i)$ and $ScadaStatus\_F\_I(f, i) > 0$}\\ FacilityDataStatus\_F\_I(f, i) & \text{for $f \notin NOINTMETER(i)$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{FacilityDataStatus_F_I} FacilityDataStatus\_F\_I(f, i) = \begin{dcases} 1 & \text{if $\exists n \in NMI(f, i) : NMIStatus\_N\_I(n, i) = 1$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{NMIStatus_N_I} NMIStatus\_N\_I(n, i) = \begin{dcases} ScadaStatus\_F\_I(n, i) & \text{for $n \in NOINTMETER(i)$}\\ 1 & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or (for $n \notin NOINTMETER(i)$}\\ &\ \text{and $\exists ch \in B(n, i) \cup E(n, i) : MQ\_CH\_I(ch, i) \neq NULL$)}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{ScadaStatus_F_I} ScadaStatus\_F\_I(f, i) = \begin{dcases} 1 & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $SCADA\_F\_I(f, i) \neq NULL$}\\ 2 & \text{elseif $SCADAEOI\_F\_I(f, i) \neq NULL$}\\ 3 & \text{elseif $SCADAEOIprov\_F\_I(f, i) \neq NULL$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead DataStatus\_F\_I(f, i) & & F & I & & Status that indicates if a Facility has energy data and 0 otherwise & (\ref{DataStatus_F_I})\\ \hline ESTIMATIONFlag\_G\_M(m) & Flag & G & M & &Flag that is 1 when estimation is permitted for Trading Month m, and 0 otherwise & I\\ \hline FacilityDataStatus\_F\_I(f, i) & & F & I & & Status that indicates if a Facility has energy data & (\ref{FacilityDataStatus_F_I})\\ \hline NMIStatus\_N\_I(n, i) & & N & I & & Status that indicates if a connection point has energy data & (\ref{NMIStatus_N_I})\\ \hline ScadaStatus\_F\_I(f, i) & & F & I & & Status that indicates the most accurate SCADA data available for a Facility & (\ref{ScadaStatus_F_I})\\ \hline SCADAEOI\_F\_I(f, i) & MW & F & I & & EOI Quantity of Facility f for Trading Interval i & I\\ \hline SCADAEOIprov\_F\_I(f, i) & MW & F & I & & Provisional EOI Quantity of Facility f for Trading Interval i & I\\ \hline SCADA\_F\_I(f, i) & MWh & F & I & & Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & I\\ \hline MQ\_CH\_I(ch, i) & MWh & CH & I & & Energy measured by metering channel ch in Trading Interval i, non-loss adjusted & I\\ \hline B(d) & \{\} & G & D & & Set of all generation metering channels associated with NMIs in Trading Day d & I\\ \hline E(d) & \{\} & G & D & & Set of all consumption metering channels associated with NMIs in Trading Day d & I\\ \hline NOINTMETER(d) & \{\} & G & D & & Set of Facilities in WEMS for which no Interval meter exists in Trading Day d & I\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline \end{longtabu} \subsubsection{Like Day, Like Period (LDLP)} A 'Like Day' of Trading Interval i is defined as follows: \begin{itemize} \item If i falls on a Trading Day d that is a Public Holiday, then a 'Like Day' is any Trading Day that is a Sunday. \item If i falls on a Trading Day d that is not a public holiday, then a 'Like Day' is any Trading Day that is not a Public Holiday and is the same day of the week as d. \end{itemize} The set of Trading Days that are a 'Like Day' of Trading Interval i is infinitely large. For the purposes of estimation, the set of Like Days we will use will be defined as the union of: \begin{itemize} \item the set of Like Days that occur after the last Trading Day for which the relevant Interval Meter Deadline has passed; and \item the set containing the most recent Like Day for which the relevant Interval Meter Deadline has passed. \end{itemize} A 'Like Period' of Trading Interval i is defined as any Trading Interval that is the same time of day as i.\\ A 'Like Day, Like Period' of i, is defined as a Trading Interval that both falls on a 'Like Day' of i and is a 'Like Period' of i.\\ The set of 'Like Day, Like Periods' of i is represented as LDLP(i). This set is ordered from most recent interval to least recent interval. LDLP(i)[1] refers to the most recent interval in the set and LDLP(i)[j] refers to the least recent interval in the set.\\ Refer to the table below for examples illustrating LDLP(i) for estimating Trading Interval i when the calculation is performed at time j. \begin{longtabu}{|m{0.02\linewidth}|m{0.19\linewidth}|m{0.40\linewidth}|m{0.3\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} \# & i @ j & LDLP(i) @ j & Purpose of example\\ \hline 1 & 20:30 Fri 03 May 2019 calculated @ \newline 23:59 01 May 2019 & \{20:30 Fri 26 Apr 2019, \sout{20:30 Fri 19 Apr 2019}, 20:30 Fri 12 Apr 2019, 20:30 Fri 05 Apr 2019, 20:30 Fri 29 Mar 2019, 20:30 Fri 22 Mar 2019, 20:30 Fri 15 Mar 2019, 20:30 Fri 08 Mar 2019, 20:30 Fri 01 Mar 2019, 20:30 Fri 22 Feb 2019\} & Shows omission of Public Holidays (Good Friday) when i is not a Public Holiday.\\ \hline 2 & 20:30 Fri 03 May 2019 calculated @ \newline 00:00 02 May 2019 & \{20:30 Fri 26 Apr 2019, \sout{20:30 Fri 19 Apr 2019}, 20:30 Fri 12 Apr 2019, 20:30 Fri 05 Apr 2019, 20:30 Fri 29 Mar 2019\} & Compare with example 1 to show effect of calculating after the Interval Meter Deadline for Trading Month March 2019 on 8 May 2019.\\ \hline 3 & 08:00 Thu 25 Apr 2019 calculated @ \newline 13:00 27 Apr 2019 & \{08:00 Sun 21 Apr 2019, 08:00 Sun 14 Apr 2019, 08:00 Sun 07 Apr 2019, 08:00 Sun 31 Mar 2019, 08:00 Sun 24 Mar 2019, 08:00 Sun 17 Mar 2019, 08:00 Sun 10 Mar 2019, 08:00 Sun 03 Mar 2019, 08:00 Sun 24 Feb 2019\} & Shows example when i falls on a Trading Day that is a Public Holiday (ANZAC Day).\\ \hline 4 & 07:30 Thu 25 Apr 2019 calculated @ \newline 13:00 27 Apr 2019 & \{07:30 Thu 18 Apr 2019, 07:30 Thu 11 Apr 2019, 07:30 Thu 04 Apr 2019, 07:30 Thu 28 Mar 2019, 07:30 Thu 21 Mar 2019, 07:30 Thu 14 Mar 2019, 07:30 Thu 07 Mar 2019, 07:30 Thu 28 Feb 2019\} & Compare with example 3 to show distinction between a Trading Day that is a Public Holiday and a calendar day that is a Public Holiday.\\ \hline \end{longtabu} In subsequent sections, $LDLP\_N\_I(n, i)$ and $LDLP\_F\_I(f, i)$ will be used as the inputs to functions that expect a single Trading Interval (and not a set of Trading Intervals). The purpose of this variable is to return the interval itself, if data is available, otherwise to return the most recent interval in the set LDLP(i), for which data exists. This is defined mathematically in the equations below. \begin{dmath} \label{LDLP_N_I} LDLP\_N\_I(n, i) = \begin{dcases} i & \text{if $NMIstatus\_N\_I(n, i) \neq 0$}\\ LDLP(i)[1] & \text{elseif $NMIstatus\_N\_I(n, LDLP(i)[1]) \neq 0$}\\ LDLP(i)[2] & \text{elseif $NMIstatus\_N\_I(n, LDLP(i)[2]) \neq 0$}\\ \ \ \ \ \ \vdots & \ \ \ \ \ \vdots\\ LDLP(i)[j-1] & \text{elseif $NMIstatus\_N\_I(n, LDLP(i)[j-1]) \neq 0$}\\ LDLP(i)[j] & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{LDLP_F_I} LDLP\_F\_I(f, i) = \begin{dcases} i & \text{if $ScadaStatus\_F\_I(f, i) \neq 0$}\\ LDLP(i)[1] & \text{elseif $ScadaStatus\_F\_I(f, LDLP(i)[1]) \neq 0$}\\ LDLP(i)[2] & \text{elseif $ScadaStatus\_F\_I(f, LDLP(i)[2]) \neq 0$}\\ \ \ \ \ \ \vdots & \ \ \ \ \ \vdots\\ LDLP(i)[j-1] & \text{elseif $ScadaStatus\_F\_I(f, LDLP(i)[j-1]) \neq 0$}\\ LDLP(i)[j] & \text{otherwise} \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead LDLP\_N\_I(n, i) & & N & I & & The interval used to determine scaled meter data for connection point n in Trading Interval i & (\ref{LDLP_N_I})\\ \hline LDLP\_F\_I(f, i) & & F & I & & The interval used to determine scaled SCADA data for Facility f in Trading Interval i & (\ref{LDLP_F_I})\\ \hline NMIStatus\_N\_I(n, i) & & N & I & & Status that indicates if a connection point has energy data & (\ref{NMIStatus_N_I})\\ \hline ScadaStatus\_F\_I(f, i) & & F & I & & Status that indicates the most accurate SCADA data available for a Facility & (\ref{ScadaStatus_F_I})\\ \hline LDLP(i) & \{\} & G & I & & A set of Like Day, Like Periods of Trading Interval i. $LDLP(i)[1]$ represents the most recent Like Day, Like Period of Trading Interval i and $LDLP(i)[j]$ represents the least recent Like Day, Like Period of Trading Interval i. & I\\ \hline \end{longtabu} \subsubsection{Scaling Factors} The previous section introduces the concept of identifying LDLP for a Trading Interval i. This concept is now used to estimate data for Trading Interval i by scaling data from the most recent LDLP of Trading Interval i for which data is available. To scale the data a scaling factor (SF) is used. Scaling Factors apply to a facility (or NMI) for a specific Trading Interval. \begin{dmath} \label{SF_N_I} SF\_N\_I(n, i) = \begin{dcases} ACTIVE\_N\_D(n, i) \times \frac{RDQ\_G\_I(i)}{RDQ\_G\_I(LDLP\_N\_I(n, i))} & \text{if $RDQ\_G\_I(i) \neq NULL$}\\ & \ \text{and $RDQ\_G\_I(LDLP\_N\_I(n, i)) \neq NULL$}\\ ACTIVE\_N\_D(n, i) \times \frac{LOADFCST\_G\_I(i)}{LOADFCST\_G\_I(LDLP\_N\_I(n, i))} & \text{elseif $LOADFCST\_G\_I(LDLP\_N\_I(n, i)) \neq 0$}\\ ACTIVE\_N\_D(n, i) & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{SF_F_I} SF\_F\_I(f, i) = \begin{dcases} ACTIVE\_F\_D(f, i) \times \frac{RDQ\_G\_I(i)}{RDQ\_G\_I(LDLP\_F\_I(f, i))} & \text{if $RDQ\_G\_I(i) \neq NULL$}\\ & \ \text{and $RDQ\_G\_I(LDLP\_F\_I(f, i)) \neq NULL$}\\ ACTIVE\_F\_D(f, i) \times \frac{LOADFCST\_G\_I(i)}{LOADFCST\_G\_I(LDLP\_F\_I(f, i))} & \text{elseif $LOADFCST\_G\_I(LDLP\_F\_I(f, i)) \neq 0$}\\ ACTIVE\_F\_D(f, i) & \text{otherwise} \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SF\_N\_I(n, i) & & N & I & & Scaling Factor for NMI n in Trading Interval i & (\ref{SF_N_I})\\ \hline SF\_F\_I(f, i) & & F & I & & Scaling Factor for Facility f in Trading Interval i & (\ref{SF_F_I})\\ \hline ACTIVE\_F\_D(f, d) & Flag & F & D & & 1 if the Facility f is registered to a Market Participant in Trading Day d and 0 otherwise & I\\ \hline ACTIVE\_N\_D(n, d) & Flag & N & D & & 1 if the NMI n is active and associated with a Market Participant in Trading Day d and 0 otherwise & I\\ \hline RDQ\_G\_I(i) & MW & G & I & & Relevant Dispatch Quantity in Trading Interval i & I\\ \hline LOADFCST\_G\_I(i) & MW & G & I & & Load Forecast in Trading Interval i & I\\ \hline LDLP\_F\_I(f, i) & & F & I & & The interval used to determine scaled SCADA data for Facility f in Trading Interval i & (\ref{LDLP_F_I})\\ \hline LDLP\_N\_I(n, i) & & N & I & & The interval used to determine scaled meter data for connection point n in Trading Interval i & (\ref{LDLP_N_I})\\ \hline \end{longtabu} \subsubsection{Estimation} Meter Schedules are determined or estimated based on what data is available. The general philosophy for what data to use is based on the following heirarchy as dictated by the Market Procedure: Prudential Requirements: \begin{enumerate} \item Use $SOMS\_N\_I$ data for the entire Facility, if $SOMS\_N\_I$ data exists for any NMI associated with Facility f, for Trading Interval i \item Use SCADA energy data if it exists for Facility f, for Trading Interval i \item Use EOI Quantity if it exists for Facility f, for Trading Interval i \item Scale $SOMS\_N\_I$ data for Facility f in the most recent similar interval of Trading Interval i \end{enumerate} The general equations below (\ref{SOMS_N_I}) to (\ref{AMQnoRG_F_I}) are used in the calculation engine. When metering data is available (i.e. $NMIStatus\_N\_I = 1$ for Facilities with interval meters and $ScadaStatus\_F\_I = 1$ for Facilities without interval meters) the generic equations simplify to those previously stated in the document (equations (\ref{SettlementSOMS_N_I}), (\ref{SOMS_F_I}), (\ref{SOMSRG_F_I}), (\ref{AMQnoRG_F_I})). \begin{dmath} \label{SOMSinit_N_I} SOMSinit\_N\_I(n, i) = \begin{dcases} mtrSCADA\_F\_I(n, i) & \text{for $n \in NOINTMETER(i)$}\\ \displaystyle \sum_{ch \in B(n, i)}MQ\_CH\_I(ch, i) - \sum_{ch \in E(n, i)}MQ\_CH\_I(ch, i) & \text{for $n \notin NOINTMETER(i)$}\\ \end{dcases} \end{dmath} \begin{dmath} \label{SOMS_N_I} SOMS\_N\_I(n, i) = SOMSinit\_N\_I(n, LDLP\_N\_I(n, i)) \times SF\_N\_I(n, i) \end{dmath} \begin{dmath} \label{NOINTmtrSCADA_F_I} NOINTmtrSCADA\_F\_I(f, i) = mtrSCADA\_F\_I(f, LDLP\_F\_I(f, i)) \times SF\_F\_I(f, i) \end{dmath} \begin{dmath} \label{mtrSCADA_F_I} mtrSCADA\_F\_I(f, i) = \begin{dcases} SCADA\_F\_I(f, i) & \text{for $ScadaStatus\_F\_I(f, i) = 1$}\\ 0.5h \times SCADAEOI\_F\_I(f, i) & \text{for $ScadaStatus\_F\_I(f, i) = 2$}\\ 0.5h \times SCADAEOIprov\_F\_I(f, i) & \text{for $ScadaStatus\_F\_I(f, i) = 3$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SOMSinit\_N\_I(n, i) & MWh & N & I & & Initial calculation of Sent Out Metered Schedule for NMI n in Trading Interval i & (\ref{SOMSinit_N_I})\\ \hline SOMS\_N\_I(n, i) & MWh & N & I & & Sent Out Metered Schedule for NMI n in Trading Interval i & (\ref{SOMS_N_I})\\ \hline MQ\_CH\_I(ch, i) & MWh & CH & I & & Energy measured by metering channel ch in Trading Interval i, non-loss adjusted & I\\ \hline NMIStatus\_N\_I(n, i) & & N & I & & Status that indicates if a connection point has energy data & (\ref{NMIStatus_N_I})\\ \hline mtrSCADA\_F\_I(f, i) & MWh & F & I & & (Metering) estimate of Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & (\ref{mtrSCADA_F_I})\\ \hline NOINTmtrSCADA\_F\_I(f, i) & MWh & F & I & & (Metering) estimate of Net generation measured by a Facility f which has no interval meters in Trading Interval i, non-loss adjusted & (\ref{NOINTmtrSCADA_F_I})\\ \hline SCADA\_F\_I(f, i) & MWh & F & I & & Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & I\\ \hline SCADAEOI\_F\_I(f, i) & MW & F & I & & EOI Quantity of Facility f for Trading Interval i & I\\ \hline SCADAEOIprov\_F\_I(f, i) & MW & F & I & & Provisional EOI Quantity of Facility f for Trading Interval i & I\\ \hline SF\_F\_I(f, i) & & F & I & & Scaling Factor for Facility f in Trading Interval i & (\ref{SF_F_I})\\ \hline SF\_N\_I(n, i) & & N & I & & Scaling Factor for NMI n in Trading Interval i & (\ref{SF_N_I})\\ \hline LDLP\_F\_I(f, i) & & F & I & & The interval used to determine scaled SCADA data for Facility f in Trading Interval i & (\ref{LDLP_F_I})\\ \hline LDLP\_N\_I(n, i) & & N & I & & The interval used to determine scaled meter data for connection point n in Trading Interval i & (\ref{LDLP_N_I})\\ \hline ScadaStatus\_F\_I(f, i) & & F & I & & Status that indicates the most accurate SCADA data available for a Facility & (\ref{ScadaStatus_F_I})\\ \hline B(d) & \{\} & G & D & & Set of all generation metering channels associated with NMIs in Trading Day d & I\\ \hline E(d) & \{\} & G & D & & Set of all consumption metering channels associated with NMIs in Trading Day d & I\\ \hline NOINTMETER(d) & \{\} & G & D & & Set of Facilities in WEMS for which no Interval meter exists in Trading Day d & I\\ \hline \end{longtabu} \begin{dmath} \label{SOMS_F_I} SOMS\_F\_I(f, i) = \begin{dcases} & \text{for $f \in NDL\_WEMS(i) \cup IRL(i) \cup SG(i) \cup NSG(i)$}\\ & \ \text{and $f \notin IML(i) \cup EG(i) \cup RG(i)$}\\ & \ \text{and $f \in NOINTMETER(i)$}\\ NOINTmtrSCADA\_F\_I(f, i) & \ \text{and $DataStatus\_F\_I(f, i) = 0$}\\ & \\ & \text{for $f \in NDL\_WEMS(i) \cup IRL(i) \cup SG(i) \cup NSG(i)$}\\ & \ \text{and $f \notin IML(i) \cup EG(i) \cup RG(i)$}\\ & \ \text{and $f \notin NOINTMETER(i)$}\\ mtrSCADA\_F\_I(f, i) & \ \text{and $DataStatus\_F\_I(f, i) = 0$ and $ScadaStatus\_F\_I \neq 0$}\\ & \\ & \text{for $f \in NDL\_WEMS(i) \cup IRL(i) \cup SG(i) \cup NSG(i)$}\\ & \ \text{and $f \notin IML(i) \cup EG(i) \cup RG(i)$}\\ & \ \text{and ($f \in NOINTMETER(i)$ and $DataStatus\_F\_I(f, i) \neq 0$}\\ & \ \ \ \ \text{or ($f \notin NOINTMETER(i)$}\\ \displaystyle \sum_{n \in NMI(f, i)} SOMS\_N\_I(n, i) & \ \ \ \ \ \ \ \text{and not ($DataStatus\_F\_I(f, i) = 0$ and $ScadaStatus\_F\_I \neq 0$)))}\\ & \\ SOMS\_N\_I(f, i) & \text{for $f \in NDL\_MTR(i)$}\\ SOMSIL\_F\_I(f, i) + SOMSEL\_F\_I(f, i) & \text{for $f \in IML(i)$}\\ SOMSEG\_F\_I(EG2IML(f, i), i) & \text{for $f \in EG(i)$}\\ 0 & \text{for $f \in RG(i)$}\\ \frac{MS\_F\_I(f, i)}{TLF\_F\_D(f, i) \times DLF\_F\_D(f, i)} & \text{for $f \in NOTIONAL(i)$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SOMS\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline SOMS\_N\_I(n, i) & MWh & N & I & & Sent Out Metered Schedule for NMI n in Trading Interval i & (\ref{SOMS_N_I})\\ \hline SOMSIL\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the intermittent load associated with Facility f in Trading Interval i & (\ref{SOMSIL_F_I})\\ \hline SOMSEL\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the embedded load associated with Facility f in Trading Interval i & (\ref{SOMSEL_F_I})\\ \hline SOMSEG\_F\_I(f, i) & MWh & F & I & & Sent Out Metered Schedule for the embedded generator associated with Intermittent Load Facility f in Trading Interval i & (\ref{SOMSEG_F_I})\\ \hline mtrSCADA\_F\_I(f, i) & MWh & F & I & & (Metering) estimate of Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & (\ref{mtrSCADA_F_I})\\ \hline NOINTmtrSCADA\_F\_I(f, i) & MWh & F & I & & (Metering) estimate of Net generation measured by a Facility f which has no interval meters in Trading Interval i, non-loss adjusted & (\ref{NOINTmtrSCADA_F_I})\\ \hline DataStatus\_F\_I(f, i) & & F & I & & Status that indicates if a Facility has energy data and 0 otherwise & (\ref{DataStatus_F_I})\\ \hline ScadaStatus\_F\_I(f, i) & & F & I & & Status that indicates the most accurate SCADA data available for a Facility & (\ref{ScadaStatus_F_I})\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline NDL\_WEMS(d) & \{\} & G & D & & Set of Non-Dispatchable Loads in WEMS registration in Trading Day d & (\ref{NDL_WEMS})\\ \hline NDL\_MTR(d) & \{\} & G & D & & Set of Non-Dispatchable Loads with interval meters that are not in WEMS in Trading Day d & I\\ \hline IRL(d) & \{\} & G & D & 11 & Set of Interruptible Loads in Trading Day d & (\ref{IRL})\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline NSG(d) & \{\} & G & D & 11 & Set of Non-Scheduled Generators in Trading Day d & (\ref{NSG})\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline EG(d) & \{\} & G & D & 2.30B.2(a) & Set of Scheduled Generators that serve an Intermittent Load locally in Trading Day d & (\ref{EG})\\ \hline RG(d) & \{\} & G & D & 2.30B.2(a) & Set of Scheduled Generators that serve an Intermittent Load remotely in Trading Day d & (\ref{RG})\\ \hline NOTIONAL(d) & \{\} & G & D & 11 & Set containing the Notional Wholesale Meter & (\ref{NOTIONAL})\\ \hline \end{longtabu} \begin{dmath} \label{SOMSRG_F_I} SOMSRG\_F\_I(f, i) = \begin{dcases} & \text{for $IML2RG(f, i) \in NOINTMETER(i)$}\\ NOINTmtrSCADA\_F\_I(IML2RG(f, i), i) & \ \text{and $DataStatus\_F\_I(IML2RG(f, i), i) = 0$}\\ & \\ & \text{for $IML2RG(f, i) \notin NOINTMETER(i)$}\\ & \ \text{and $DataStatus\_F\_I(IML2RG(f, i), i) = 0$}\\ mtrSCADA\_F\_I(IML2RG(f, i), i) & \ \text{and $ScadaStatus\_F\_I(IML2RG(f, i), i) \neq 0$}\\ & \\ \displaystyle \sum_{n \in NMI(IML2RG(f, i), i)}SOMS\_N\_I(n, i) & \text{otherwise} \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead SOMSRG\_F\_I(f, i) & MWh & F & I & & Non-loss adjusted energy output of remote generators associated with Intermittent Load Facility f in Trading Interval i & (\ref{SOMSRG_F_I})\\ \hline SOMS\_N\_I(n, i) & MWh & N & I & & Sent Out Metered Schedule for NMI n in Trading Interval i & (\ref{SOMS_N_I})\\ \hline mtrSCADA\_F\_I(f, i) & MWh & F & I & & (Metering) estimate of Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & (\ref{mtrSCADA_F_I})\\ \hline NOINTmtrSCADA\_F\_I(f, i) & MWh & F & I & & (Metering) estimate of Net generation measured by a Facility f which has no interval meters in Trading Interval i, non-loss adjusted & (\ref{NOINTmtrSCADA_F_I})\\ \hline DataStatus\_F\_I(f, i) & & F & I & & Status that indicates if a Facility has energy data and 0 otherwise & (\ref{DataStatus_F_I})\\ \hline ScadaStatus\_F\_I(f, i) & & F & I & & Status that indicates the most accurate SCADA data available for a Facility & (\ref{ScadaStatus_F_I})\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline \end{longtabu} \begin{dmath} \label{AMQnoRG_F_I} AMQnoRG\_F\_I(f, i) = \begin{dcases} & \text{for $f \in NOINTMETER(i)$}\\ NOINTmtrSCADA\_F\_I(f, i) \times TLF\_F\_D(f, i) \times DLF\_F\_D(f, i) & \ \text{and $DataStatus\_F\_I(f, i) = 0$}\\ & \\ & \text{for $f \notin NOINTMETER(i)$}\\ & \text{and $DataStatus\_F\_I(f, i) = 0$}\\ mtrSCADA\_F\_I(f, i) \times TLF\_F\_D(f, i) \times DLF\_F\_D(f, i) & \ \text{and $ScadaStatus\_F\_I(f, i) \neq 0$}\\ & \\ NMQ\_F\_I(f, i) - NS\_F\_I(f, i) & \text{otherwise} \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead AMQnoRG\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)vi & Adjusted meter quantity (except Remote Generators) for Facility f in Trading Interval i & (\ref{AMQnoRG_F_I})\\ \hline NMQ\_F\_I(f, i) & MWh & F & I & 2.30B.10 (a)i & Loss adjusted net metered energy measured by the connection point for Facility f in Trading Interval i & (\ref{NMQ_F_I})\\ \hline NS\_F\_I(f, i) & MWh & F & I & 2.30B.10(a)ii & Net supply that is separately metered associated with Facility f for Trading Interval i & (\ref{NS_F_I})\\ \hline mtrSCADA\_F\_I(f, i) & MWh & F & I & & (Metering) estimate of Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & (\ref{mtrSCADA_F_I})\\ \hline NOINTmtrSCADA\_F\_I(f, i) & MWh & F & I & & (Metering) estimate of Net generation measured by a Facility f which has no interval meters in Trading Interval i, non-loss adjusted & (\ref{NOINTmtrSCADA_F_I})\\ \hline DataStatus\_F\_I(f, i) & & F & I & & Status that indicates if a Facility has energy data and 0 otherwise & (\ref{DataStatus_F_I})\\ \hline ScadaStatus\_F\_I(f, i) & & F & I & & Status that indicates the most accurate SCADA data available for a Facility & (\ref{ScadaStatus_F_I})\\ \hline TLF\_F\_D(f, d) & & F & D & & Transmission Loss Factor for Facility f for Trading Day d & I\\ \hline DLF\_F\_D(f, d) & & F & D & & Distribution Loss Factor for Facility f for Trading Day d & I\\ \hline \end{longtabu} \subsection{Estimating Settlement Inputs} Settlement inputs will be required to be estimated for the purposes of determining a Market Participant's Outstanding Amount. \subsubsection{Invocation} The following table outlines the invocation for estimating settlement inputs. \begin{longtabu}{|m{0.25\linewidth}|m{0.70\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Scope Set\\ \hline \endhead $\widehat{I\_M}(m)$ & N/A\\ \hline $\widehat{LFPDNQ\_F\_I}(f, i)$ & $\forall f \in LFASF(i)$\\ \hline $\widehat{LFPUPQ\_F\_I}(f, i)$ & $\forall f \in LFASF(i)$\\ \hline $\widehat{CASD\_P\_M}(p, m)$ & $\forall p \in P\_M(m)$\\ \hline $\widehat{CASL\_P\_M}(p, m)$ & $\forall p \in P\_M(m)$\\ \hline $\widehat{CASR\_P\_M}(p, m)$ & $\forall p \in P\_M(m)$\\ \hline $\widehat{CASSRQmwh\_P\_I}(p, i)$ & $\forall p \in SR(i)$\\ \hline $\widehat{CASSR\_P\_M}(p, m)$ & $\forall p \in P\_M(m)$\\ \hline $\widehat{EXPCO\_F\_I}(f, i)$ & $\forall f \in CCF(i) \cap \overline{DSP(i)}$\\ \hline $\widehat{EXPFO\_F\_I}(f, i)$ & $\forall f \in CCF(i) \cap \overline{DSP(i)}$\\ \hline $\widehat{EXPPO\_F\_I}(f, i)$ & $\forall f \in CCF(i) \cap \overline{DSP(i)}$\\ \hline $\widehat{IMLPOFlag\_F\_I(f, i)}$ & $\forall f \in IML(d)$\\ \hline $\widehat{IMLFOFlag\_F\_I(f, i)}$ & $\forall f \in IML(d)$\\ \hline $\widehat{IMLCOFlag\_F\_I(f, i)}$ & $\forall f \in IML(d)$\\ \hline $\widehat{NOINTNSTEM0\_P\_D}(p, d)$ & $\forall p \in P\_M(d)$\\ \hline $\widehat{NOINTNSTEM1\_P\_D}(p, d)$ & $\forall p \in P\_M(d)$\\ \hline $\widehat{NOINTNSTEM2\_P\_D}(p, d)$ & $\forall p \in P\_M(d)$\\ \hline $\widehat{NOINTNSTEM3\_P\_D}(p, d)$ & $\forall p \in P\_M(d)$\\ \hline $\widehat{MAXTEMP\_F\_D}(f, d)$ & $\forall f \in IML(d)$\\ \hline $\widehat{BP\_G\_I}(i)$ & N/A\\ \hline $\widehat{IRCR0\_P\_M}(p, m)$ & $\forall p \in P\_M(m)$\\ \hline $\widehat{MAXTES\_F\_I}(f, i)$ & $\forall f \in BALF(i) \cup PORTFOLIO(i)$\\ \hline $\widehat{MINTES\_F\_I}(f, i)$ & $\forall f \in BALF(i) \cup PORTFOLIO(i)$\\ \hline $\widehat{SCADAEOI\_F\_I}(f, i)$ & $\forall f \in BALF(i) \cup PORTFOLIO(i)$\\ \hline $\widehat{SCADA\_F\_I}(f, i)$ & $\forall f \in EG(i) \cup GEN\_UREG\_L(i)$\\ \hline $\widehat{REGTITM\_F\_M}(f, m)$ & $\forall f \in IG\_M(m)$\\ \hline \end{longtabu} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead $\widehat{I\_M}(m)$ & \{\} & G & M & & Estimate of Set of Trading Intervals in Trading Month m & (\ref{estI_M})\\ \hline $\widehat{LFPDNQ\_F\_I}(f, i)$ & MW & F & I & 11 & Estimate of Ex-post Downwards LFAS Enablement quantity for Facility f in Trading Interval i & (\ref{estLFPDNQ_F_I})\\ \hline $\widehat{LFPUPQ\_F\_I}(f, i)$ & MW & F & I & 11 & Estimate of Ex-post Upwards LFAS Enablement quantity for Facility f in Trading Interval i & (\ref{estLFPUPQ_F_I})\\ \hline $\widehat{CASD\_P\_M}(p, m)$ & \$ & P & M & 9.9.3(e) & Estimate of Payment for the provision of contracted Dispatch Support Services for Rule Participant p for Trading Month m & (\ref{estCASD_P_M})\\ \hline $\widehat{CASL\_P\_M}(p, m)$ & \$ & P & M & 9.9.3(c) & Estimate of Payment for the provision of contracted Load Rejection Services for Rule Participant p for Trading Month m & (\ref{estCASL_P_M})\\ \hline $\widehat{CASR\_P\_M}(p, m)$ & \$ & P & M & 9.9.3(d) & Estimate of Payment for the provision of contracted System Restart Services for Rule Participant p for Trading Month m & (\ref{estCASR_P_M})\\ \hline $\widehat{CASSRQmwh\_P\_I}(p, i)$ & MWh & P & I & & Estimate of MWh quantity of Contracted Spinning Reserve Service for Rule Participant p in Trading Interval i & (\ref{estCASSRQmwh_P_I})\\ \hline $\widehat{CASSR\_P\_M}(p, m)$ & \$ & P & M & 9.9.3(a) & Estimate of Payment for the provision of contracted Spinning Reserve Services for Rule Participant p for Trading Month m & (\ref{estCASSR_P_M})\\ \hline $\widehat{EXPCO\_F\_I}(f, i)$ & MW & F & I & 7.13.1A(b) & Estimate of Ex-post Consequential Outage for Facility f in Trading Interval i & (\ref{estEXPCO_F_I})\\ \hline $\widehat{EXPFO\_F\_I}(f, i)$ & MW & F & I & 7.13.1A(b) & Estimate of Ex-post Forced Outage for Facility f in Trading Interval i & (\ref{estEXPFO_F_I})\\ \hline $\widehat{EXPPO\_F\_I}(f, i)$ & MW & F & I & 7.13.1A(b) & Estimate of Ex-post Planned Outage for Facility f in Trading Interval i & (\ref{estEXPPO_F_I})\\ \hline $\widehat{IMLPOFlag\_F\_I(f, i)}$ & Flag & F & I & 7.13.1A(b) & Estimate of Flag indicating if the embedded generator associated with Facility f is on a Planned Outage in Trading Interval i & (\ref{estIMLPOFlag_F_I})\\ \hline $\widehat{IMLFOFlag\_F\_I(f, i)}$ & Flag & F & I & 7.13.1A(b) & Estimate of Flag indicating if the embedded generator associated with Facility f is on a Forced Outage in Trading Interval i & (\ref{estIMLFOFlag_F_I})\\ \hline $\widehat{IMLCOFlag\_F\_I(f, i)}$ & Flag & F & I & 7.13.1A(b) & Estimate of Flag indicating if the embedded generator associated with Facility f is on a Consequential Outage in Trading Interval i & (\ref{estIMLCOFlag_F_I})\\ \hline $\widehat{MAXTEMP\_F\_D}(f, d)$ & \degree C & F & D & 2.30B.3(b)ii & Estimate of Daily maximum temperature associated with Facility f for Trading Day d & (\ref{estMAXTEMP_F_D})\\ \hline $\widehat{BP\_G\_I}(i)$ & \$/MWh & G & I & 7A.3.10 & Estimate of Balancing Price for Trading Interval i & (\ref{estBP_G_I})\\ \hline $\widehat{IRCR0\_P\_M}(p, m)$ & MW & P & M & & Estimate of Individual Reserve Capacity Requirement (prior to any adjustments) for Market Participant p for Trading Month m & (\ref{estIRCR0_P_M})\\ \hline $\widehat{MAXTES\_F\_I}(f, i)$ & MWh & F & I & & Estimate of Maximum Theoretical Energy Schedule for Facility f in Trading Interval i & (\ref{estMAXTES_F_I})\\ \hline $\widehat{MINTES\_F\_I}(f, i)$ & MWh & F & I & & Estimate of Minimum Theoretical Energy Schedule for Facility f in Trading Interval i & (\ref{estMINTES_F_I})\\ \hline $\widehat{SCADAEOI\_F\_I}(f, i)$ & MW & F & I & & Estimate of The end of interval output of Facility f for Trading Interval i & (\ref{estSCADAEOI_F_I})\\ \hline $\widehat{SCADA\_F\_I}(f, i)$ & MWh & F & I & & Estimate of Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & (\ref{estSCADA_F_I})\\ \hline $\widehat{REGTITM\_F\_M}(f, m)$ & & F & M & & Estimate of number of Trading Intervals for which Facility f is registered in Trading Month m & I\\ \hline F(d) & \{\} & G & D & & Set of Registered Facilities, unregistered generation systems and unregistered interruptible loads in Trading Day d & (\ref{F})\\ \hline REG\_F(d) & \{\} & G & D & 11 & Set of Registered Facilities in Trading Day d & (\ref{F_REG})\\ \hline NDL(d) & \{\} & G & D & 11 & Set of Non-Dispatchable Loads in Trading Day d & (\ref{NDL})\\ \hline IML(d) & \{\} & G & D & 2.30B.1 & Set of Loads which have an Intermittent Load component in Trading Day d & (\ref{IML})\\ \hline LFASF(d) & \{\} & G & D & 11 & Set of LFAS Facilities in Trading Day d & (\ref{LFASF})\\ \hline PORTFOLIO(d) & \{\} & G & D & 11 & Set containing the Balancing Portfolio & (\ref{PORTFOLIO})\\ \hline NMI(d) & \{\} & G & D & & Set of all connection points in Trading Day d & I\\ \hline SG(d) & \{\} & G & D & 11 & Set of Scheduled Generators in Trading Day d & (\ref{SG})\\ \hline NSG(d) & \{\} & G & D & 11 & Set of Non-Scheduled Generators in Trading Day d & (\ref{NSG})\\ \hline IRL(d) & \{\} & G & D & 11 & Set of Interruptible Loads in Trading Day d & (\ref{IRL})\\ \hline IG\_M(m) & \{\} & G & M & 11 & Set of Intermittent Generators in Trading Month m & (\ref{IG_M})\\ \hline CCF(d) & \{\} & G & D & & Set of Facilities with Capacity Credits on Trading Day d & I\\ \hline DSP(d) & \{\} & G & D & 11 & Set of Demand Side Programmes in Trading Day d & (\ref{DSP})\\ \hline P\_M(m) & \{\} & G & M & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Month m & (\ref{P_M})\\ \hline P(d) & \{\} & G & D & & Set of participants (Rule Participants, ERA and the Coordinator) in Trading Day d & (\ref{P})\\ \hline SR(d) & \{\} & G & D & & Set of participants to estimate Spinning Reserve Service quantities in Trading Day d & (\ref{SR})\\ \hline \end{longtabu} \subsubsection{Estimation} Settlement inputs are estimated based on what data is available. The table below specifies the different methodologies for estimating various settlement inputs. If an input is not defined in the table below a zero value is used when the actual data is unavailable. \paragraph{Sets} \begin{dmath} \label{estI_M} \widehat{I\_M}(m) = \displaystyle \bigcup_{i \in I\_M(m)} \text{$\{i : i \leq$ Trading Day on which the calculation is performed\}} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead $\widehat{I\_M}(m)$ & \{\} & G & M & & Estimate of Set of Trading Intervals in Trading Month m & I\\ \hline I\_M(m) & \{\} & G & M & & Set of Trading Intervals in Trading Month m & I\\ \hline \end{longtabu} \paragraph{Load Following Ancillary Services} \begin{dmath} \label{estLFPDNQ_F_I} \widehat{LFPDNQ\_F\_I}(f, i) = \begin{dcases} LFPDNQ\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $LFPQNULLFlag\_G\_D(i) = 0$}\\ LFPDNEQ\_F\_I(f, i) & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{estLFPUPQ_F_I} \widehat{LFPUPQ\_F\_I}(f, i) = \begin{dcases} LFPUPQ\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $LFPQNULLFlag\_G\_D(i) = 0$}\\ LFPUPEQ\_F\_I(f, i) & \text{otherwise} \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead ESTIMATIONFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when estimation is permitted for Trading Month m, and 0 otherwise & I\\ \hline $\widehat{LFPDNQ\_F\_I}(f, i)$ & MW & F & I & 11 & Estimate of Ex-post Downwards LFAS Enablement quantity for Facility f in Trading Interval i & (\ref{estLFPDNQ_F_I})\\ \hline $\widehat{LFPUPQ\_F\_I}(f, i)$ & MW & F & I & 11 & Estimate of Ex-post Upwards LFAS Enablement quantity for Facility f in Trading Interval i & (\ref{estLFPUPQ_F_I})\\ \hline LFPDNQ\_F\_I(f, i) & MW & F & I & 11 & Ex-post Downwards LFAS Enablement quantity for Facility f in Trading Interval i & I\\ \hline LFPUPQ\_F\_I(f, i) & MW & F & I & 11 & Ex-post Upwards LFAS Enablement quantity for Facility f in Trading Interval i & I\\ \hline LFPDNEQ\_F\_I(f, i) & MW & F & I & 11 & Downwards LFAS Enablement quantity for Facility f in Trading Interval i & I\\ \hline LFPUPEQ\_F\_I(f, i) & MW & F & I & 11 & Upwards LFAS Enablement quantity for Facility f in Trading Interval i & I\\ \hline LFPQNULLFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when Ex-post Upwards LFAS Enablement quantities and Ex-post Downwards LFAS Enablement quantities are unavailable for Trading Day d, and 0 otherwise & I\\ \hline \end{longtabu} \paragraph{Contracted Ancillary Services} \begin{dmath} \label{estCASD_P_M} \widehat{CASD\_P\_M}(p, m) = \begin{dcases} CASD\_P\_M(p, m) & \text{if $ESTIMATIONFlag\_G\_M(m) = 0$}\\ &\ \text{or $CASPNULLFlag\_G\_M(m) = 0$}\\ CASD\_P\_M(p, m-1) & \text{elseif $CASPNULLFlag\_G\_M(m-1) = 0$}\\ CASD\_P\_M(p, m-2) & \text{elseif $CASPNULLFlag\_G\_M(m-2) = 0$}\\ \ \ \ \ \ \vdots & \ \ \ \ \ \vdots\\ CASD\_P\_M(p, m - CASoffset\_G\_M(m)) & \text{elseif $CASPNULLFlag\_G\_M(m - CASoffset\_G\_M(m)) = 0$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{estCASL_P_M} \widehat{CASL\_P\_M}(p, m) = \begin{dcases} CASL\_P\_M(p, m) & \text{if $ESTIMATIONFlag\_G\_M(m) = 0$}\\ &\ \text{or $CASPNULLFlag\_G\_M(m) = 0$}\\ CASL\_P\_M(p, m-1) & \text{elseif $CASPNULLFlag\_G\_M(m-1) = 0$}\\ CASL\_P\_M(p, m-2) & \text{elseif $CASPNULLFlag\_G\_M(m-2) = 0$}\\ \ \ \ \ \ \vdots & \ \ \ \ \ \vdots\\ CASL\_P\_M(p, m - CASoffset\_G\_M(m)) & \text{elseif $CASPNULLFlag\_G\_M(m - CASoffset\_G\_M(m)) = 0$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{estCASR_P_M} \widehat{CASR\_P\_M}(p, m) = \begin{dcases} CASR\_P\_M(p, m) & \text{if $ESTIMATIONFlag\_G\_M(m) = 0$}\\ &\ \text{or $CASPNULLFlag\_G\_M(m) = 0$}\\ CASR\_P\_M(p, m-1) & \text{elseif $CASPNULLFlag\_G\_M(m-1) = 0$}\\ CASR\_P\_M(p, m-2) & \text{elseif $CASPNULLFlag\_G\_M(m-2) = 0$}\\ \ \ \ \ \ \vdots & \ \ \ \ \ \vdots\\ CASR\_P\_M(p, m - CASoffset\_G\_M(m)) & \text{elseif $CASPNULLFlag\_G\_M(m - CASoffset\_G\_M(m)) = 0$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{estCASSRQmwh_P_I} \widehat{CASSRQmwh\_P\_I}(p, i) = \begin{dcases} CASSRQmwh\_P\_I(p, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $CASQNULLFlag\_G\_M(i) = 0$}\\ CASSRQmwh\_P\_I(p, i-1\times48) & \text{elseif $CASQNULLFlag\_G\_M(i-1\times48) = 0$}\\ CASSRQmwh\_P\_I(p, i-2\times48) & \text{elseif $CASQNULLFlag\_G\_M(i-2\times48) = 0$}\\ \ \ \ \ \ \vdots & \ \ \ \ \ \vdots\\ CASSRQmwh\_P\_I(p, i - CASoffset\_G\_M(m) \times 30 \times 48) & \text{elseif $0=$}\\ & \ \text{$CASQNULLFlag\_G\_M(i - CASoffset\_G\_M(m) \times 30 \times 48)$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{estCASSR_P_M} \widehat{CASSR\_P\_M}(p, m) = \begin{dcases} & \text{if $ESTIMATIONFlag\_G\_M(m) = 0$}\\ CASSR\_P\_M(p, m) &\ \text{or $CASPNULLFlag\_G\_M(m) = 0$}\\ &\ \text{or $p \notin SR\_M(m)$}\\ \frac{TITM\_G\_M(m)}{estTITM\_G\_M(m)} \times & \text{otherwise}\\ \ \displaystyle \sum_{i \in \widehat{I\_M}(m)} 0.5h \times MV\_G\_I(i) \times max(0, \widehat{BP\_G\_I}(i)) \times \frac{\widehat{CASSRQmwh\_P\_I}(p, i)}{0.5h} & \\ \end{dcases} \end{dmath} \begin{dmath} \label{estTITM_G_M} estTITM\_G\_M(m) = \abs{\widehat{I\_M}(m)} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead ESTIMATIONFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when estimation is permitted for Trading Month m, and 0 otherwise & I\\ \hline $\widehat{CASD\_P\_M}(p, m)$ & \$ & P & M & 9.9.3(e) & Estimate of Payment for the provision of contracted Dispatch Support Services for Rule Participant p for Trading Month m & (\ref{estCASD_P_M})\\ \hline CASD\_P\_M(p, m) & \$ & P & M & 9.9.3(e) & Payment for the provision of contracted Dispatch Support Services for Rule Participant p for Trading Month m & I\\ \hline CASPNULLFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when Ancillary Service Contract settlement amounts are unavailable for Trading Month m, and 0 otherwise & I\\ \hline $\widehat{CASL\_P\_M}(p, m)$ & \$ & P & M & 9.9.3(c) & Estimate of Payment for the provision of contracted Load Rejection Services for Rule Participant p for Trading Month m & (\ref{estCASL_P_M})\\ \hline CASL\_P\_M(p, m) & \$ & P & M & 9.9.3(c) & Payment for the provision of contracted Load Rejection Services for Rule Participant p for Trading Month m & I\\ \hline $\widehat{CASR\_P\_M}(p, m)$ & \$ & P & M & 9.9.3(d) & Estimate of Payment for the provision of contracted System Restart Services for Rule Participant p for Trading Month m & (\ref{estCASR_P_M})\\ \hline CASR\_P\_M(p, m) & \$ & P & M & 9.9.3(d) & Payment for the provision of contracted System Restart Services for Rule Participant p for Trading Month m & I\\ \hline $\widehat{CASSRQmwh\_P\_I}(p, i)$ & MWh & P & I & & Estimate of MWh quantity of Contracted Spinning Reserve Service for Rule Participant p in Trading Interval i & (\ref{estCASSRQmwh_P_I})\\ \hline CASSRQmwh\_P\_I(p, i) & MWh & P & I & & MWh quantity of Contracted Spinning Reserve Service for Rule Participant p in Trading Interval i & I\\ \hline CASQNULLFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when Ancillary Service Contract quantities are unavailable for Trading Month m, and 0 otherwise & I\\ \hline $\widehat{CASSR\_P\_M}(p, m)$ & \$ & P & M & 9.9.3(a) & Estimate of Payment for the provision of contracted Spinning Reserve Services for Rule Participant p for Trading Month m & (\ref{estCASSR_P_M})\\ \hline CASSR\_P\_M(p, m) & \$ & P & M & 9.9.3(a) & Payment for the provision of contracted Spinning Reserve Services for Rule Participant p for Trading Month m & I\\ \hline $\widehat{BP\_G\_I}(i)$ & \$/MWh & G & I & 7A.3.10 & Estimate of Balancing Price for Trading Interval i & (\ref{estBP_G_I})\\ \hline TITM\_G\_M(m) & & G & M & & Number of Trading Intervals in Trading Month m & (\ref{TITM_G_M})\\ \hline estTITM\_G\_M(m) & & G & M & & Number of Trading Intervals in the set $\widehat{I\_M}(m)$ for Trading Month m & (\ref{estTITM_G_M})\\ \hline MV\_G\_I(i) & & G & I & & Margin value applicable to Trading Interval i & (\ref{MV_G_I})\\ \hline CASoffset\_G\_M(m) & & G & M & & Parameter set by AEMO, required to implement the estimation of contracted Ancillary Services, applicable in Trading Month m & I\\ \hline SR\_M(m) & \{\} & G & M & & Set of participants to estimate Spinning Reserve Service quantities in Trading Month m & (\ref{SR_M})\\ \hline $\widehat{I\_M}(m)$ & \{\} & G & M & & Estimate of Set of Trading Intervals in Trading Month m & (\ref{estI_M})\\ \hline \end{longtabu} \paragraph{Ex-post Outages} \begin{dmath} \label{estEXPCO_F_I} \widehat{EXPCO\_F\_I}(f, i) = \begin{dcases} EXPCO\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $EXPONULLFlag\_G\_D(i) = 0$}\\ EXACO\_F\_I(f, i) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{estEXPFO_F_I} \widehat{EXPFO\_F\_I}(f, i) = \begin{dcases} EXPFO\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $EXPONULLFlag\_G\_D(i) = 0$}\\ EXAFO\_F\_I(f, i) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{estEXPPO_F_I} \widehat{EXPPO\_F\_I}(f, i) = \begin{dcases} EXPPO\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $EXPONULLFlag\_G\_D(i) = 0$}\\ EXAPO\_F\_I(f, i) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{estIMLCOFlag_F_I} \widehat{IMLCOFlag\_F\_I}(f, i) = \begin{dcases} IMLCOFlag\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $EXPONULLFlag\_G\_D(i) = 0$}\\ IMLCOEXAFlag\_F\_I(f, i) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{estIMLFOFlag_F_I} \widehat{IMLFOFlag\_F\_I}(f, i) = \begin{dcases} IMLFOFlag\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $EXPONULLFlag\_G\_D(i) = 0$}\\ IMLFOEXAFlag\_F\_I(f, i) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{estIMLPOFlag_F_I} \widehat{IMLPOFlag\_F\_I}(f, i) = \begin{dcases} IMLPOFlag\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $EXPONULLFlag\_G\_D(i) = 0$}\\ IMLPOEXAFlag\_F\_I(f, i) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead ESTIMATIONFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when estimation is permitted, and 0 otherwise & I\\ \hline $\widehat{EXPCO\_F\_I}(f, i)$ & MW & F & I & 7.13.1A(b) & Estimate of Ex-post Consequential Outage for Facility f in Trading Interval i & (\ref{estEXPCO_F_I})\\ \hline EXPCO\_F\_I(f, i) & MW & F & I & 7.13.1A(b) & Ex-post Consequential Outage for Facility f in Trading Interval i & I\\ \hline EXACO\_F\_I(f, i) & MW & F & I & & Ex-ante Consequential Outage for Facility f in Trading Interval i & I\\ \hline EXPONULLFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when ex-post Outages are unavailable for Trading Day d, and 0 otherwise & I\\ \hline $\widehat{EXPFO\_F\_I}(f, i)$ & MW & F & I & 7.13.1A(b) & Estimate of Ex-post Forced Outage for Facility f in Trading Interval i & (\ref{estEXPFO_F_I})\\ \hline EXPFO\_F\_I(f, i) & MW & F & I & 7.13.1A(b) & Ex-post Forced Outage for Facility f in Trading Interval i & I\\ \hline EXAFO\_F\_I(f, i) & MW & F & I & & Ex-ante Forced Outage for Facility f in Trading Interval i & I\\ \hline $\widehat{EXPPO\_F\_I}(f, i)$ & MW & F & I & 7.13.1A(b) & Estimate of Ex-post Planned Outage for Facility f in Trading Interval i & (\ref{estEXPPO_F_I})\\ \hline EXPPO\_F\_I(f, i) & MW & F & I & 7.13.1A(b) & Ex-post Planned Outage for Facility f in Trading Interval i & I\\ \hline EXAPO\_F\_I(f, i) & MW & F & I & & Ex-ante Planned Outage for Facility f in Trading Interval i & I\\ \hline $\widehat{IMLPOFlag\_F\_I(f, i)}$ & Flag & F & I & 7.13.1A(b) & Estimate of Flag indicating if the embedded generator associated with Facility f is on a Planned Outage in Trading Interval i & (\ref{estIMLPOFlag_F_I})\\ \hline $\widehat{IMLFOFlag\_F\_I(f, i)}$ & Flag & F & I & 7.13.1A(b) & Estimate of Flag indicating if the embedded generator associated with Facility f is on a Forced Outage in Trading Interval i & (\ref{estIMLFOFlag_F_I})\\ \hline $\widehat{IMLCOFlag\_F\_I(f, i)}$ & Flag & F & I & 7.13.1A(b) & Estimate of Flag indicating if the embedded generator associated with Facility f is on a Consequential Outage in Trading Interval i & (\ref{estIMLCOFlag_F_I})\\ \hline IMLPOFlag\_F\_I(f, i) & Flag & F & I & 7.13.1A(b) & Flag indicating if the embedded generator associated with Facility f is on a Planned Outage in Trading Interval i & I\\ \hline IMLFOFlag\_F\_I(f, i) & Flag & F & I & 7.13.1A(b) & Flag indicating if the embedded generator associated with Facility f is on a Forced Outage in Trading Interval i & I\\ \hline IMLCOFlag\_F\_I(f, i) & Flag & F & I & 7.13.1A(b) & Flag indicating if the embedded generator associated with Facility f is on a Consequential Outage in Trading Interval i & I\\ \hline IMLPOEXAFlag\_F\_I(f, i) & Flag & F & I & 7.13.1A(b) & Flag indicating if the embedded generator associated with Facility f is on a Planned Outage (based on ex-ante Outages) in Trading Interval i & I\\ \hline IMLFOEXAFlag\_F\_I(f, i) & Flag & F & I & 7.13.1A(b) & Flag indicating if the embedded generator associated with Facility f is on a Forced Outage (based on ex-ante Outages) in Trading Interval i & I\\ \hline IMLCOEXAFlag\_F\_I(f, i) & Flag & F & I & 7.13.1A(b) & Flag indicating if the embedded generator associated with Facility f is on a Consequential Outage (based on ex-ante Outages) in Trading Interval i & I\\ \hline \end{longtabu} \paragraph{Other Inputs} \begin{dmath} \label{estMAXTEMP_F_D} \widehat{MAXTEMP\_F\_D}(f, d) = \begin{dcases} MAXTEMP\_F\_D(f, d) & \text{if $ESTIMATIONFlag\_G\_M(d) = 0$}\\ &\ \text{or $TEMPNULLFlag\_F\_D(f, d) = 0$}\\ 25\degree C & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{estBP_G_I} \widehat{BP\_G\_I}(i) = \begin{dcases} BP\_G\_I(i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $BPNULLFlag\_G\_D(i) = 0$}\\ BPprov\_G\_I(i) & \text{else if $BPprovNULLFlag\_G\_D(i) = 0$}\\ BPfcst\_G\_I(i) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{estIRCR0_P_M} \widehat{IRCR0\_P\_M}(p, m) = \begin{dcases} IRCR0\_P\_M(p, m) & \text{if $ESTIMATIONFlag\_G\_M(m) = 0$}\\ &\ \text{or $IRCR0NULLFlag\_G\_M(m) = 0$}\\ IRCRindicative\_P\_M(p, m) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{estMAXTES_F_I} \widehat{MAXTES\_F\_I}(f, i) = \begin{dcases} MAXTES\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $TESNULLFlag\_G\_D(d) = 0$}\\ MAXTESprov\_F\_I(f, i) & \text{else if $TESprovNULLFlag\_G\_D(d) = 0$}\\ 999999 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{estMINTES_F_I} \widehat{MINTES\_F\_I}(f, i) = \begin{dcases} MINTES\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $TESNULLFlag\_G\_D(d) = 0$}\\ MINTESprov\_F\_I(f, i) & \text{else if $TESprovNULLFlag\_G\_D(d) = 0$}\\ 0 & \text{otherwise} \end{dcases} \end{dmath} \begin{dmath} \label{estSCADAEOI_F_I} \widehat{SCADAEOI\_F\_I}(f, i) = \begin{dcases} SCADAEOI\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $EOINULLFlag\_G\_D(i) = 0$}\\ SCADAEOIprov\_F\_I(f, i) & \text{else if $EOIprovNULLFlag\_G\_I(i) = 0$}\\ \displaystyle \sum_{g \in BALPF(i)} \frac{\widehat{SOMS\_F\_I}(g, i)}{0.5h} & \text{else if $EOIprovNULLFlag\_G\_I(i) = 1$}\\ &\ \text{and $f \in PORTFOLIO(i)$}\\ \frac{\widehat{SOMS\_F\_I}(f, i)}{0.5h} & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{estSCADA_F_I} \widehat{SCADA\_F\_I}(f, i) = \begin{dcases} SCADA\_F\_I(f, i) & \text{if $ESTIMATIONFlag\_G\_M(i) = 0$}\\ &\ \text{or $SCADANULLFlag\_G\_D(i) = 0$}\\ 0.5h \times \widehat{SCADAEOI\_F\_I}(f, i) & \text{otherwise}\\ \end{dcases} \end{dmath} \begin{dmath} \label{estREGTITM_F_M} \widehat{REGTITM\_F\_M}(f, m) \text{ calculated @ $d$} = \begin{dcases} REGTITM\_F\_M(f, m) & \text{if $d$ is after Trading Month $m$}\\ \text{Number of Trading Intervals for which Facility f is registered in} & \text{otherwise}\\ \text{Trading Month $m$ that are on or before $d$} & \\ \end{dcases} \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead ESTIMATIONFlag\_G\_M & Flag & G & M & & Flag that is 1 when estimation is permitted, and 0 otherwise & I\\ \hline $\widehat{MAXTEMP\_F\_D}(f, d)$ & \degree C & F & D & 2.30B.3(b)ii & Estimate of Daily maximum temperature associated with Facility f for Trading Day d & (\ref{estMAXTEMP_F_D})\\ \hline MAXTEMP\_F\_D(f, d) & \degree C & F & D & 2.30B.3(b)ii & Daily maximum temperature associated with Facility f for Trading Day d & I\\ \hline TEMPNULLFlag\_F\_D(f, d) & Flag & F & D & & Flag that is 1 when daily maximum temperatures are unavailable for Facility f for Trading Day d, and 0 otherwise & I\\ \hline $\widehat{BP\_G\_I}(i)$ & \$/MWh & G & I & 7A.3.10 & Estimate of Balancing Price for Trading Interval i & (\ref{estBP_G_I})\\ \hline BP\_G\_I(i) & \$/MWh & G & I & 7A.3.10 & Balancing Price for Trading Interval i & I\\ \hline BPprov\_G\_I(i) & \$/MWh & G & I & & Provisional Balancing Price for Trading Interval i & I\\ \hline BPfcst\_G\_I(i) & \$/MWh & G & I & & Forecast Balancing Price (determined by using the Forecast BMO and Relevant Dispatch Quantity) in Trading Interval i & I\\ \hline BPNULLFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when Balancing Prices are unavailable for Trading Day d, and 0 otherwise & I\\ \hline BPprovNULLFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when Provisional Balancing Prices are unavailable for Trading Day d, and 0 otherwise & I\\ \hline $\widehat{IRCR0\_P\_M}(p, m)$ & MW & P & M & & Estimate of Individual Reserve Capacity Requirement (prior to any adjustments) for Market Participant p for Trading Month m & (\ref{estIRCR0_P_M})\\ \hline IRCR0\_P\_M(p, m) & MW & P & M & 4.28.7 & Individual Reserve Capacity Requirement (prior to any adjustments) for Market Participant p for Trading Month m & I\\ \hline IRCRindicative\_P\_M(p, m) & MW & P & M & & Indicative Individual Reserve Capacity Requirement for Market Participant p in Trading Month m & I\\ \hline IRCR0NULLFlag\_G\_M(m) & Flag & G & M & & Flag that is 1 when Individual Reserve Capacity Requirements are unavailable for Trading Month m, and 0 otherwise & I\\ \hline $\widehat{MAXTES\_F\_I}(f, i)$ & MWh & F & I & & Estimate of Maximum Theoretical Energy Schedule for Facility f in Trading Interval i & (\ref{estMAXTES_F_I})\\ \hline MAXTES\_F\_I(f, i) & MWh & F & I & & Maximum Theoretical Energy Schedule for Facility f in Trading Interval i & I\\ \hline MAXTESprov\_F\_I(f, i) & MWh & F & I & & Provisional Maximum Theoretical Energy Schedule for Facility f in Trading Interval i & I\\ \hline TESNULLFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when Maximum Theoretical Energy Schedules and Minimum Theoretical Schedules are unavailable for Trading Day d, and 0 otherwise & I\\ \hline TESprovNULLFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when provisional Maximum Theoretical Energy Schedules and provisional Minimum Theoretical Energy Schedules are unavailable for Trading Day d, and 0 otherwise & I\\ \hline $\widehat{MINTES\_F\_I}(f, i)$ & MWh & F & I & & Estimate of Minimum Theoretical Energy Schedule for Facility f in Trading Interval i & (\ref{estMINTES_F_I})\\ \hline MINTES\_F\_I(f, i) & MWh & F & I & & Minimum Theoretical Energy Schedule for Facility f in Trading Interval i & I\\ \hline MINTESprov\_F\_I(f, i) & MWh & F & I & & Provisional Minimum Theoretical Energy Schedule for Facility f in Trading Interval i & I\\ \hline MAXTES\_T\_I(t, i) & MWh & T & I & & Maximum energy which could have been dispatched from tranche t in Trading Interval i & (\ref{MAXTES_T_I})\\ \hline MINTES\_T\_I(t, i) & MWh & T & I & & Minimum energy energy which had to be dispatched from tranche t in Trading Interval i & (\ref{MINTES_T_I})\\ \hline MAXTESAC\_T\_I(t, i) & MWh & T & I & & Maximum energy which could have been dispatched (accounting for Available Capacity) from tranche t in Trading Interval i & (\ref{MAXTESAC_T_I})\\ \hline MINTESAC\_T\_I(t, i) & MWh & T & I & & Minimum energy energy which had to be dispatched (accounting for Available Capacity) from tranche t in Trading Interval i & (\ref{MINTESAC_T_I})\\ \hline OPLA\_T\_I(t, i) & \$/MWh & T & I & & Loss Factor Adjusted (offer) Price for tranche t in Trading Interval i & (\ref{OPLA_T_I})\\ \hline DVEST\_F\_I(f, i) & MWh & F & I & 7.13.1(eF) & The maximum sent out energy Facility f would have generated in Trading Interval i, had a Dispatch Instruction not been issued & I\\ \hline $\widehat{SCADAEOI\_F\_I}(f, i)$ & MW & F & I & & Estimate of The end of interval output of Facility f for Trading Interval i & (\ref{estSCADAEOI_F_I})\\ \hline SCADAEOI\_F\_I(f, i) & MW & F & I & & EOI Quantity of Facility f for Trading Interval i & I\\ \hline SCADAEOIprov\_F\_I(f, i) & MW & F & I & & Provisional EOI Quantity of Facility f for Trading Interval i & I\\ \hline $\widehat{SOMS\_F\_I}(f, i)$ & MWh & F & I & & Estimate of Sent Out Metered Schedule for Facility f in Trading Interval i & (\ref{SOMS_F_I})\\ \hline EOINULLFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when EOI Quantities are unavailable for Trading Day d, and 0 otherwise & I\\ \hline EOIprovNULLFlag\_G\_I(i) & Flag & G & I & & Flag that is 1 when provisional EOI Quantities are unavailable for Trading Day d, and 0 otherwise & I\\ \hline $\widehat{SCADA\_F\_I}(f, i)$ & MWh & F & I & & Estimate of Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & (\ref{estSCADA_F_I})\\ \hline SCADA\_F\_I(f, i) & MWh & F & I & & Net generation measured by SCADA for Facility f in Trading Interval i, non-loss adjusted & I\\ \hline SCADANULLFlag\_G\_D(d) & Flag & G & D & & Flag that is 1 when net generation quantities measured by SCADA are unavailable for Trading Day d, and 0 otherwise & I\\ \hline $\widehat{REGTITM\_F\_M}(f, m)$ & & F & M & & Estimate of number of Trading Intervals for which Facility f is registered in Trading Month m & I\\ \hline REGTITM\_F\_M(f, m) & & F & M & & Number of Trading Intervals for which Facility f is registered in Trading Month m & I\\ \hline BALPF(d) & \{\} & G & D & 11 & Set of Facilities in the Balancing Portfolio in Trading Day d & (\ref{BALPF})\\ \hline PORTFOLIO(d) & \{\} & G & D & 11 & Set containing the Balancing Portfolio & (\ref{PORTFOLIO})\\ \hline BPQP(i) & \{\} & G & I & 11 & Set of Balancing Price-Quantity Pairs in Trading Interval i & I\\ \hline NSG(d) & \{\} & G & D & 11 & Set of Non-Scheduled Generators in Trading Day d & (\ref{NSG})\\ \hline BALF(d) & \{\} & G & D & 11 & Set of Balancing Facilities in Trading Day d & (\ref{BALF})\\ \hline \end{longtabu} \subsection{Trading Margin} \begin{equation} \label{TM_P_D} TM\_P\_D(p, d) = TL\_P\_D(p, d) - OA\_P\_D(p, d) \end{equation} \begin{equation} \label{TL_P_D} TL\_P\_D(p, d) = PF\_G\_D(d) \times CREDSUP\_P\_D(p, d) \end{equation} \begin{equation} \label{PF_G_D} PF\_G\_D(d) = 0.87 \end{equation} \begin{equation} \label{OA_P_D} OA\_P\_D(p, d) = CEE\_P\_D(p, d) + INP\_P\_D(p, d) - PP\_P\_D(p, d) \end{equation} \begin{equation} \label{CEE_P_D} CEE\_P\_D(p, d) = \displaystyle \sum_{j \in EXPDAYSNSTEM(d)} EENSTEM\_P\_D(p, j) + \displaystyle \sum_{j \in EXPDAYSSTEM(d)} EESTEM\_P\_D(p, j) \end{equation} \begin{dmath} \label{EENSTEM_P_D} EENSTEM\_P\_D(p, d) = -(TOTNSTEM\_P\_D(p, d) - TOTNSTEMprev\_P\_D(p, d)) \end{dmath} \begin{dmath} \label{EESTEM_P_D} EESTEM\_P\_D(p, d) = -(TOTSTEM\_P\_D(p, d) - TOTSTEMprev\_P\_D(p, d)) \end{dmath} \begin{longtabu}{|m{0.24\linewidth}|m{0.07\linewidth}|m{0.03\linewidth}|m{0.03\linewidth}|m{0.1\linewidth}|m{0.31\linewidth}|m{0.05\linewidth}|} \hline \rowfont{\bfseries\color{white}} \rowcolor{violet} Variable & Units & SC & GR & Rule & Description & Ref\\ \hline \endhead TM\_P\_D(p, d) & \$ & P & D & 2.41.1 & Trading Margin for Market Participant p for Trading Day d & (\ref{TM_P_D})\\ \hline TL\_P\_D(p, d) & \$ & P & D & 2.39.1 & Trading Limit for Market Participant p for Trading Day d & (\ref{TL_P_D})\\ \hline CREDSUP\_P\_D(p, d) & \$ & P & D & 2.38 & Credit Support held by AEMO on behalf of Market Participant p on Trading Day d & I\\ \hline PF\_G\_D(d) & & G & D & 2.39.2 & Prudential factor on Trading Day d & (\ref{PF_G_D})\\ \hline OA\_P\_D(p, d) & \$ & P & D & 2.40.1 & Outstanding Amount for Market Participant p on Trading Day d & (\ref{OA_P_D})\\ \hline INP\_P\_D(p, d) & \$ & P & D & & Amount of money a Rule Participant p owes for which a Settlement Statement has been issued, but payment has not been made, as calculated on Trading Day d & I\\ \hline PP\_P\_D(p, d) & \$ & P & D & 2.40.1(c) & Prepayments held by AEMO on behalf of Market Participant p on Trading Day d & I\\ \hline CEE\_P\_D(p, d) & \$ & P & D & & Cumulative Estimated exposure for Market Participant p as calculated on Trading Day d & (\ref{CEE_P_D})\\ \hline EENSTEM\_P\_D(p, d) & \$ & P & D & & Estimated Non-STEM exposure for Market Participant p relating to Trading Day d & (\ref{EENSTEM_P_D})\\ \hline EESTEM\_P\_D(p, d) & \$ & P & D & & Estimated STEM exposure for Market Participant p relating to Trading Day d & (\ref{EESTEM_P_D})\\ \hline TOTNSTEMprev\_P\_D(p, d) & \$ & P & D & & Total Non-STEM Settlement Statement amount (including GST and interest) for Market Participant p in Trading Day d from most recently published Non-STEM Settlement Statement for Trading Day d & I\\ \hline TOTNSTEM\_P\_D(p, d) & \$ & P & D & & Total settlement amount for NSTEM (including GST and interest) for Market Participant p in Trading Day d & (\ref{TOTNSTEM_P_D})\\ \hline TOTSTEMprev\_P\_D(p, d) & \$ & P & D & & Total STEM Settlement Statement amount (including GST and interest) for Market Participant p in Trading Day d from most recently published STEM Settlement Statement for Trading Day d & I\\ \hline TOTSTEM\_P\_D(p, d) & \$ & P & D & & Total settlement amount for STEM (including GST and interest) for Market Participant p in Trading Day d & (\ref{TOTSTEM_P_D})\\ \hline EXPDAYSNSTEM(d) & \{\} & G & D & & Set of Trading Days that have not yet had a Non-STEM Settlement Statement issued, up to and including Trading Day d-1 & I\\ \hline EXPDAYSSTEM(d) & \{\} & G & D & & Set of Trading Days that have not yet had a STEM Settlement Statement issued, up to and including Trading Day d-1 & I\\ \hline \end{longtabu} \end{document}