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warrants or represents that the content of this report is complete or current or that it is 
suitable for particular purposes. You should verify and check the accuracy, completeness, 
reliability and suitability of any content from this report for any use to which you intend to 
put it and seek independent expert advice before using it. 
Limitation of Liability 
To the extent permitted by law, AEMO and the University of Adelaide and their advisers, 
consultants and other contributors to this report (or their respective associated companies, 
businesses, partners, directors, officers or employees) shall not be liable for any errors, 
omissions, defects or misrepresentations in the content of this report, or for any loss or 
damage suffered by persons who use or rely on such content (including by reason of 
negligence, negligent misstatement or otherwise). If any law prohibits the exclusion of such 
liability, AEMO’s and the University of Adelaide’s liability is limited, at their option, to the re-
supply of the content, provided that this limitation is permitted by law and is fair and 
reasonable. 
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Executive Summary 
The Australian Energy Market Operator (AEMO) produces forecasts of annual electricity 
consumption and of minimum/maximum half-hourly demand, and must report at least annually on 
the accuracy of these forecasts. The University of Adelaide, School of Mathematical Sciences 
team were engaged to provide expert advice on the metrics used to assess forecast accuracy, as 
presented in the 2018 Forecast Accuracy Report (FAR) and in the internal performance monitoring 
dashboard (PD). 

Broadly, current AEMO practices are appropriate and well-supported. We provide 14 
recommendations, which are summarised on the following page, including both 
recommendations to continue current practice, and for improvements to forecast accuracy 
reporting and monitoring. 

Forecasts of annual consumption consist of a point forecast of annual operational consumption 
(sent out) accompanied by point forecasts of various input drivers. AEMO’s forecast assessments 
follow best practice and should continue in its current form (Rec. 1). Our two subsequent 
recommendations here (Rec. 2, 3) pertain only to communication of results, to provide additional 
context around the impact of input drivers. 
Forecasts of seasonal minimum/maximum half-hourly demand are probabilistic, summarised in the 
FAR by reporting 10%, 50%, and 90% Probability of Exceedance (POE) forecasts. Forecast 
assessment is difficult as only one seasonal minimum/maximum demand observation occurs each 
year. This challenge is further exacerbated by the need to communicate forecast accuracy results 
across non-technical audiences. AEMO currently produces qualitative analyses and summaries of 
the drivers of minimum/maximum demand for the 2018 FAR and the Summer 2019 Forecast 
Accuracy Update; these should be continued (Rec. 4), with one recommendation on the 
communication of these results (Rec. 5).  
Internally AEMO uses a range of more technical metrics to assess the accuracy of 
minimum/maximum probabilistic demand forecasts. Broadly, these are standard techniques for 
probabilistic forecast assessment, and are applied appropriately by AEMO. Specifically, for 
assessing probabilistic minimum/maximum demand forecasts AEMO consider both standard 
metrics for comparing distributions (the Mean Absolute Exceedance Probability and the 
Kolmogorov-Smirnov statistic) and for comparing competing forecasts (scores based on pinball 
loss). However, given the sparsity of available data, to construct these metrics it is necessary to 
produce more observations; one possible approach to this is to assess minimum/maximum 
demand forecasts over smaller time intervals (e.g., monthly). We recommend that the assumptions 
underlying this approach be carefully analysed to avoid introducing bias to the forecast 
assessment process (Rec. 6), and propose continued use with small modifications to these existing 
metrics (Rec. 7, 11). A backcasting approach was used in the 2018 FAR. We recommend that this 
be discontinued (Rec. 8); it appears that AEMO has independently done so, as this approach is not 
present in the 2019 summer FAR update. We also recommend that backcasting be replaced with 
a full-season hindcasting approach (Rec. 9), and that historical simulations also continue to be 
used as part of forecast assessment (Rec. 10).  

Furthermore, we recommend that the distributions of residuals, currently used and assessed as part 
of the forecast development process, be incorporated more formally into the forecast assessment 
process through the PD (Rec. 12, 13), or similar dashboard. If the methodology used to produce 
probabilistic forecasts changes, these metrics should be assessed for relevance and replaced if 
required (Rec. 14).  
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List of Recommendations 
This section contains a brief list of all (14) recommendations; further detail, justification and 
examples supporting each recommendation are presented throughout the report. 

 

Annual consumption forecasts 
Recommendation 1. Percentage error is a standard, useful and easily understood metric for 
comparing a point forecast to a point observation. It should continue to be used as the primary 
mechanism for assessing point forecast accuracy. 
Recommendation 2. Wherever percentage error is reported for an input quantity, also indicate 
how the error of that input impacts the headline figure, annual operational consumption (sent out). 

Recommendation 3. Present the overall error in annual operational consumption (sent out) 
graphically as the sum of errors in input components, in a waterfall-plot. 

 

Minimum and maximum probabilistic demand forecasts 
Recommendation 4. The qualitative comparison provides clear and useful context around forecast 
accuracy. It should continue to be reported in the FAR. 
Recommendation 5. Report probabilistic drivers of minimum/maximum demand graphically, 
overlaid with the actual value of the driver at the minimum/maximum demand interval. 
Recommendation 6. Assess data aggregation processes to ensure that distributional assumptions 
are met. In particular, ensure that aggregation occurs on a scale that is relevant to business needs 
(i.e., seasonal minimum/maximum demand). 

Recommendation 7. Empirical forecast distribution fit should continue to be assessed, using metrics 
such as the MAEP and Kolmogorov-Smirnov statistic. Care should be taken to ensure all 
distributional assumptions are met (following Rec. 6). 

Recommendation 8. Normalise relative score by dividing the loss function by the true (observed) 
value, rather than the forecast quantile, so that the relative score is unbiased. The relative score 
should then be interpreted by taking the average of the loss function over all quantiles, with smaller 
values indicating better forecasts. 
Recommendation 9. Discontinue backcasting as presented in the 2018 FAR. Replace with full 
season hindcasting (see Rec. 10 for details). 

Recommendation 10. Perform full-season hindcasting: compare the forecast distribution that was 
made prior to a season (e.g., ESOO 2018 forecast), to the forecast distribution that would be made 
now using known inputs. This is to assess the impact of actual inputs on the forecast distribution 
produced. 

Recommendation 11. Employ the simulated history approach: apply the current forecasting 
method to historical seasons, and compare against the observed minimum/maximum demand in 
those seasons. This provides more data with which to assess model accuracy and construct 
statistics such as the MAEP and KS statistic. 

Recommendation 12. Analyse the observed residuals near the extremes of fitted demand, to 
ensure distributional assumptions made when forecasting are met. 
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Recommendation 13. Compare the residuals that produced the simulated seasonal 
minimum/maximum demands, to the observed residuals from the actual minimum/maximum 
demand intervals. This is to assess the plausibility of forecasting that observed minimum/maximum 
demands. 
Recommendation 14. The strategies proposed in Rec. 12 and 13 are appropriate for the existing 
regression-simulation forecasting framework; if or when the forecasting methodology changes, 
these methods should be assessed for relevance and replaced with other (model-specific) 
diagnostics if necessary. 
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1. Introduction 
AEMO produces forecasts of annual consumption and of minimum/maximum half-hourly demand. 
These forecasts are subject to high levels of scrutiny by various stakeholders, due to their 
importance in assessing supply adequacy, and the recent Retailer Reliability Obligation (RRO). 
Forecast accuracy is reported no less than annually (as per clause 3.13.3A (h) of the National 
Electricity Rules) in the Forecast Accuracy Report (FAR). The purpose of the FAR is to build 
confidence in AEMO forecasts and to help inform the continuous improvement of those forecasts. 
The FAR has a wide audience including federal and state governments, industry forecasting 
practitioners, and the general public; as such it must present metrics that are appropriate and 
accessible. In addition, AEMO operates an internal Performance Monitoring Dashboard (PD), 
comprising more detailed and technical metrics of forecast accuracy and is directed towards a 
narrower, statistically-literate audience. 
This report assesses the forecast accuracy metrics that are presented both in the FAR and in the 
PD. Note that this assessment applies to the final version of the 2018 FAR; subsequent modifications 
are outside the scope of this review, although some changes in the 2019 update are reported for 
context. 
The report is organised as follows. Forecast assessment metrics for annual consumption are 
evaluated first, with associated recommendations provided. Then, forecast assessment for 
probabilistic minimum/maximum demand is evaluated, with each metric analysed and 
recommendations made in turn. Finally, additional forecast assessment methods for probabilistic 
demand are recommended.  
The recommendations presented herein were developed based on publicly available reports, and 
some information around current PD presentation made available to the University of Adelaide 
team. As such, these recommendations are conceptual in nature and will require internal AEMO 
assessment for technical feasibility, based on internal expertise around the forecasting process, 
data availability and timeliness, etc. Specific details around data to be presented or prioritised 
should be decided internally, in collaboration with relevant stakeholders. 

Note that examples presented herein are illustrative only, using synthetic data and simplified 
forecasting methods; they do not reflect actual AEMO data or forecast accuracy. 

 
2. Annual Consumption 

AEMO produces point forecasts of annual consumption, including both the headline forecast (i.e., 
annual operational consumption (sent out)) and a range of inputs that contribute to this headline 
forecast. Annual consumption consists of residential consumption and business/industrial 
consumption. The forecast of residential consumption is driven by consumer behaviour and 
normalised for annual variation in weather. The forecast of business/industrial consumption is based 
on a combination of surveys and econometric modelling. Input forecasts may comprise of a range 
of alternative scenarios. 

 

2.1 Review of current approach to forecast assessment 
Annual consumption forecasts are assessed on annual percentage error (PE), alongside 
visualisations of historical trends in PE and in overall annual consumption: 

PE = $%&'$()*+,-%$.&
$%&'$(

	× 100 %. 
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The raw magnitude of the error is also reported.  

A perfect forecast would produce a PE of 0%. Historical values of PE for annual operational 
consumption (sent out) have generally been low (e.g., within ±10%). Individual input forecasts 
often have higher errors.  

Communication: In the 2018 FAR, annual consumption forecast accuracy is reported first as an 
overall summary of PE by state and aggregate (Table 4 2018 FAR; including brief context 
explaining the possible sources of error in each state). This is accompanied by summaries of three 
key drivers. Subsequently, each state is detailed individually (e.g., Table 8 2018 FAR, NSW). This 
included a range of related generation/consumption metrics, some significant input forecasts, and 
weather factors (i.e., the number of heating and cooling degree days that occurred). The 
significant input forecasts reported in the 2018 FAR are transmission losses and rooftop PV 
generation offset in every state, with the addition of coal seam gas in Queensland. 

In addition, the PD includes figures of trends of PE over time for each scenario, when inputs are 
scenario-based. This provides additional context around how effectively the different scenarios 
have reflected the actual driving inputs over time. 

 

2.2. Recommendations 
Recommendation 1. Percentage error is a standard, useful and easily understood metric for 
comparing a point forecast to a point observation. It should continue to be used as the primary 
mechanism for assessing point forecast accuracy. 
As this forecast accuracy metric for annual consumption is appropriate in its current state, the 
following two recommendations pertain solely to the presentation of results in the FAR. 

Recommendation 2. Wherever percentage error is reported for an input quantity, also indicate how 
the error of that input impacts the headline figure, annual operational consumption (sent out). 
For example, consider reporting of the key input Gross State Product (GSP). Compute the 
difference between: (i) the annual operational consumption (sent out) with the actual value of 
GSP (and all other known inputs), and (ii) the annual operational consumption (sent out) with the 
forecast value of GSP (with all other known inputs). Report this difference as a percentage of 
(actual) annual operational consumption (sent out). 

This approach is of value as some inputs have relatively large PE, but those errors may have a 
relatively small impact on overall error in annual operational consumption (sent out). Quantifying 
their indicative impact provides additional context and may provide guidance as to which inputs 
should be prioritised to improve future forecasts. 

This approach should be applied to all possible inputs, including weather. It is applicable to both 
the key input drivers reported at the national level (Section 2.2, Tables 5-7 2018 FAR), and to the 
detailed state-by-state analyses of annual consumption. An example of the proposed 
modification to the state-by-state results appears in Fig. 1. Note that some actuals are model 
estimates, which may change year-on-year. Further, some components may not be observed or 
reported immediately. The information presented should be selected to ensure feasibility, guided 
by AEMO expertise on how each component is observed/estimated, data availability, and with 
stakeholder input. 

 

 

 



10 The University of Adelaide 

Annual consumption  2017 ESOO 
forecast  

Actual  Difference  Difference 
(%)  

Indicative impact on 
`sent out` consumption % 

Operational consumption – sent out (GWh)  67,819 67,899 80 0.1% 0.12% 

Generation forecasts 
     

Auxiliary load (GWh)  3,996 3,105 -891 -28.7% -1.31% 

Operational consumption – as generated (GWh)  71,815 71,004 -811 -1.1% -1.19% 

Non-scheduled generation (GWh)  1,652 2,070 418 20.2% 0.62% 

Native consumption – as generated (GWh)  73,467 73,074 -393 -0.5% -0.58% 

Significant input forecasts  
     

Transmission losses (GWh)  872 1,556 684 44.0% 1.01% 

Rooftop PV generation offset (GWh)  -1,991 -2,068 -77 3.7% -0.11% 

Weather factors – annual  
     

Heating degree days (HDD)  618 640 22 3.4% 0.32% 

Cooling degree days (CDD)  449 577 128 22.2% 1.09% 

Figure 1. Example recommended modification of state-based annual consumption reporting. Proposed additional 
column is bordered in red. Modified from Table 8, (NSW) 2018 FAR. Note that indicative impact for weather factors 

presented here are not actual values. 

Recommendation 3. Present overall error in annual operational consumption (sent out) graphically 
as the sum of errors in input components, in a waterfall-plot. 
The error in annual operational consumption (sent out) is driven by the errors in the various input 
forecasts; understanding the contribution of each of those inputs to the overall consumption would 
be of value. A waterfall plot is ideal for visualising cumulative errors. Inputs should be organised in 
an informative way, as appropriate, e.g., by grouping errors in Transmission, Residential, Industrial, 
and Business consumption. Fig. 2 presents an example of this type of visualisation. The grouping 
and presentation of components should be determined based on internal AEMO expertise and in 
collaboration with stakeholders. 

 
Figure 2. Example waterfall plot showing the contribution of individual input errors to the overall error in annual 

operational consumption (sent out). The inputs to be presented should be selected in collaboration with stakeholders. 
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3. Minimum and maximum probabilistic demand 
AEMO produces forecasts of the distributions of seasonal minimum and maximum half-hourly 
demand. These forecasts have historically been calculated through a computationally-intensive 
simulation process1:  

• building synthetic temperature-years by bootstrapping two-week intervals of historical 
temperature data (modified to account for climate change);   

• projecting (half-hourly) regression models relating demand to temperature onto synthetic 
temperature data, including stochastic volatility (Gaussian errors); and,  

• extracting the seasonal minimum/maximum demand.  
However, AEMO may develop new methods for forecasting minimum and maximum probabilistic 
demand going forward, and so any forecasting accuracy metric that depends on the forecasting 
process might need revision at that point. 
The distributions of possible seasonal minimum or maximum demand are summarised in the FAR by 
reporting 10%, 50%, and 90% Probability of Exceedance (POE) forecasts (see e.g. Fig. 3). The 2018 
FAR (p.10-16) presents substantial detail on how these forecasts were produced.  

 
Figure 3. Visualisation of a probabilistic forecast of maximum demand, the reported POE levels, and a hypothetical 
observation of maximum demand from that season. This illustrates the difficulty of forecast assessment with only one 
observation: an observation above the 10% POE should be rare, but is still consistent with the forecast. 

Note that the simulations that generate these forecast distributions are not recorded for further 
analysis. We produce example data from a similar process (with fewer inputs) for illustrative 
purposes.  

 

                                                
1 See Electricity Demand Forecasting Methodology Information Paper (Draft updates for 2019 Electricity 
Statement of Opportunities), April 2019, AEMO. 
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Overview of current approaches to probabilistic forecast assessment 
It is challenging to retrospectively assess the accuracy of a probabilistic forecast against a single 
point observation. Communicating forecast accuracy across a range of stakeholders provides a 
further challenge, given the highly technical nature of probabilistic forecast assessment. No single 
forecast assessment method is sufficient for assessing these probabilistic forecasts; as such, AEMO 
produces a range of different methods, each of which provides different insights. 
Each current probabilistic forecast assessment metric is assessed in detail below. The 2018 FAR 
presented: 

• a qualitative comparison of the observed minimum/maximum demand to the forecast 
distribution;  

• a distribution for individual key drivers (e.g., temperature, time of day); and,  

• a backcast of the top 15 observed demand intervals. 

The PD includes more technical approaches, such as:  
• use of the Kolmogorov-Smirnov statistic and the Mean Absolute Excess Probability to 

compare forecast and observed distributions; 

• relative scores based on the pinball loss function; and, 

• simulated histories. 
Some of these more technical approaches appeared in the 2015 FAR but were removed from 
subsequent reports due to stakeholder feedback. The 2019 summer FAR update excluded the 
backcast of the top 15 observed demand intervals, and presented further qualitative analysis of 
the assessment of maximum demand. 

 

3.1 Qualitative comparison [FAR] 
The primary method of reporting accuracy of minimum/maximum demand forecasts in the FAR is 
qualitative comparison: specifying where on the forecast distribution the observed 
minimum/maximum demand lies, and providing contextual factors that may explain this.  

An example from the 2017 FAR is: 

“In NSW 2017, Maximum demand occurred on 10 February 2017, when the temperature 
reached 43.7°C. The actual MD may have been higher if it hadn’t been for a general call 
for reduced consumption and engage DSP. Accounting for an estimated combined 490 
MW of load reductions, the adjusted MD would have exceeded the forecast of 10% POE 
demand.” 

Recommendation 4. The qualitative comparison provides clear and useful context around forecast 
accuracy. It should continue to be reported in the FAR. 
 

3.2 Probabilistic distribution of drivers of minimum/maximum demand [FAR] 
Alongside the forecast distribution of minimum/maximum demand, the distribution of key drivers at 
the (simulated) minimum/maximum demand(s) are also reported. Specifically, in the 2019 Summer 
FAR update a range for each driver corresponding to each reported POE level is included in a 
table, e.g., as in Fig. 4. In the 2018 FAR these were reported as single values rather than ranges. 
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Figure 4. Example of current presentation of probabilistic distribution of drivers. From Table 5, Summer 2019 FAR Update. 

Reporting these quantities at the observed minimum/maximum demand interval, compared to the 
distribution that produced the forecast, provides valuable context. However, the clarity of these 
results could be improved by displaying histograms of these drivers rather than as summary values 
or ranges in a table.  

Recommendation 5. Report probabilistic drivers of minimum/maximum demand graphically, 
overlaid with the actual value of the input at the minimum/maximum demand interval. 
Fig. 5 provides an example of this approach. Visualising the full distribution, instead of providing a 
three-point summary, provides a more concrete understanding of the distribution of drivers. For 
space efficiency, it may be necessary to present some of these figures in an appendix or in an 
online supplement rather than the main report. The PD could also be used to explore bivariate 
distributions of input drivers. 

 

 
Figure 5. Example visualisation of probabilistic drivers of demand. The histogram shows the distribution of the driver at the 

forecast, the red vertical line the value of that driver at the true minimum/maximum demand interval. Note: not an 
actual AEMO forecast. 
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3.3 Data aggregation 
To effectively assess a probabilistic forecast, many (independent) observations from that 
distribution are required. For example, a 10% POE forecast for maximum demand means that the 
seasonal maximum should exceed that POE 10% of the time; to test this, if one could produce 
forecasts of the seasonal maximum over many years, 10% of the observed values should exceed 
that POE. This is the Law of Large Numbers. If, instead, the proportion exceeding the POE differed 
substantially from 10%, that may be statistical evidence that the forecast is inaccurate. How strong 
that statistical evidence is, depends on both the number of observations and the accuracy of the 
forecast (highly inaccurate forecasts will be easier to detect). Appendix B provides an example of 
this relationship. 

Consequently, effectively producing more data on which to assess forecasts is critical to forecast 
accuracy assessment. Possible approaches include aggregating across states, or disaggregating 
over time. For example, producing forecasts of monthly or weekly minimum/maximum demand, 
and using the assessment of those disaggregated forecasts to assess seasonal forecast accuracy. 
However, this approach may violate the distributional assumptions necessary to assess forecast 
accuracy. First, weekly or monthly forecasts in the same location are unlikely to be independent. 
For example, a heatwave at the end of one month may continue to the start of the subsequent 
month; more broadly, months within the same season will be subject to the same model conditions 
(e.g., El Niño or La Niña), giving the impression of systematic bias in forecasts. Second, the 
minimum/maximum demand over shorter time intervals (weeks or months) might not have the 
same distribution as the seasonal minimum/maximum demand. Inappropriate use of aggregated 
data could bias estimates of accuracy for the actual quantities of business need (i.e., seasonal 
minimum/maximum demand). 

Recommendation 6. Assess data aggregation processes to ensure that distributional assumptions 
are met. In particular, ensure that aggregation occurs on a scale that is relevant to business needs 
(i.e., seasonal minimum/maximum demand). 
 

3.4 Mean Absolute Excess Probability & Kolmogorov-Smirnov statistic [PD] 
As the forecast of maximum or minimum demand is a distribution, standard tools for assessing 
observed empirical distributions against expected (i.e., forecast) distributions may be applied. If 
multiple observations are available (following Recommendation 6), these approaches can assess 
the degree to which the forecast distribution and the observed distribution correspond (across the 
full distribution). This approach was presented in the 2015 FAR, and is currently used in the PD. 

Given a percentile 𝑝, 𝐺(𝑝) is the proportion of the empirical observations that exceeds the 𝑝th 
percentile of their forecast minimum/maximum demand distribution. A perfect forecast would 
approach 𝑝	 = 	𝐺(𝑝), for all 𝑝, with sufficiently many observations, i.e., 90% of observations exceed 
the 90% POE, 50% exceed the 50% POE, 10% exceed the 10% POE, and so on. Fig. 6 demonstrates 
this relationship. 

From this, two metrics of forecast accuracy are computed:  

• the Kolmogorov-Smirnov (KS) statistic, KS = max
>
|𝐺(𝑝) − 𝑝| ; 		and, 

• the Mean Absolute Excess Probability (MAEP), MAEP = 	∫ |𝐺(𝑝) − 𝑝|𝑑𝑝I
J . 
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These are standard metrics used to assess density forecasts2, requiring no assumptions on the 
distribution of the extreme values. AEMO currently uses them as raw metrics of forecast accuracy --
- to make comparisons between reports or across regions (e.g. Fig. 7) --- rather than as part of a 
statistical test. A perfect forecast would have both KS and MAEP approach 0 as the number of 
observations increases (i.e., to infinity). A standard test for the KS statistic exists and is available in 
any statistical computing package; however, this test requires a relatively large sample size, which 
is unlikely to be available to AEMO in the foreseeable future.  

 

 
Figure 6. Visualisation of the KS Statistic and Mean Absolute Excess Probability (MAEP). Adapted from Fig. 2, 2015 FAR. 

These two related metrics, and more generally visualisations comparing the distribution of 
observed POEs against the expected distribution, are key tools for forecast evaluation3. 
Specifically, they describe the overall consistency between the forecast distribution and the 
observations, penalising forecasts with consistently too little or too much variance. Moreover, they 
are on an easily interpretable scale which does not depend on the magnitude of the observations 
or the forecasts (MAEP is always between 0 and 0.5; the KS statistic is always between 0 and 1). This 
feature makes it possible to compare forecast accuracy between different regions, different years, 
and different seasons. The limitation of KS and MAEP is the need for many observations, and that it 
does not assess forecast sharpness (i.e., how concentrated the forecast probability mass is around 
the observed minimum/maximum demand) as effectively as other methods4. These metrics are 
suitable for the PD (as currently used), as the interactive nature of the dashboard allows for 
exploration of how variations on the data included in the empirical distribution impact the statistics. 

Recommendation 7. Empirical forecast distribution fit should continue to be assessed, using metrics 
such as the MAEP and Kolmogorov-Smirnov statistic. Care should be taken to ensure all 
distributional assumptions are met (following Recommendation 6). 
                                                
2 Mitchell, J., & Wallis, K. F. (2011). Evaluating density forecasts: Forecast combinations, model mixtures, 
calibration and sharpness. Journal of Applied Econometrics, 26(6), 1023-1040. 
 
3 Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. Journal 
of the Royal Statistical Society: Series B (Statistical Methodology), 69(2), 243-268. 
 
4 Hong, T., & Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review. International Journal of 
Forecasting, 32(3), 914-938. 
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Figure 7. Example of how the metric MAEP is used to compare forecast accuracy across regions, and reported in the PD. 

 

3.5 Score and Relative Score [PD] 
The score is a metric that encapsulates both how close a probabilistic forecast distribution is to the 
target quantity, and how confidently it makes that prediction. It is the metric used to compare 
forecasts in a range of contexts, including the global energy forecasting competitions in 20145 and 
20176. However, the scale of the score is dependent on the data being forecast, and thus cannot 
be directly compared, e.g., across states or seasons. AEMO has modified the metric to produce 
the relative score, which is on a similar scale regardless of the data used. Broadly, we support the 
use of this metric, but suggest an alternative modification to produce a new relative score; details 
follow. 
Given an observed maximum demand 𝑦, a quantile 𝑝, and corresponding forecast at that 
quantile 𝑞>, the pinball loss function is 

𝐿N𝑦, 𝑝, 𝑞>O = 	 P
(1 − 𝑝)N𝑞> − 𝑦O			𝑦 < 𝑞>,
			𝑝	N𝑦 − 𝑞>O												𝑦 ≥ 	 𝑞>.

 

Intuitively, it represents the distance between the observation and the forecast at a quantile, 
weighted by the tail probability at that quantile. The average of this loss function is taken over all 
quantiles 𝑝 to produce the percentile score. When multiple forecasts occur on the same scale, 
these scores may be meaningfully compared: smaller values indicate better forecasts. 

This is an excellent metric for comparing forecasting methods given few observations of the target 
quantity, as it favours forecasts that are accurate, and sharp (i.e., the majority of forecast 
probability mass is near the observation). 

However, the scale of the score depends upon the scale of the observations, and it does not have 
an intuitive interpretation. Consequently, the score is only meaningful when comparing between 

                                                
5 Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., & Hyndman, R. J. (2016). Probabilistic energy 
forecasting: Global energy forecasting competition 2014 and beyond. International Journal of Forecasting. 
 
6 Hong, T., Xie, J., & Black, J. (2019). Global energy forecasting competition 2017: Hierarchical probabilistic 
load forecasting. International Journal of Forecasting. 
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forecasting methods on the same data. To address this issue, AEMO have developed the relative 
score, by normalising the pinball loss function by the forecast quantile: 

RLN𝑦, 𝑝, 𝑞>O = 	

⎩
⎪
⎨

⎪
⎧ 𝑝N𝑦 − 𝑞>O

𝑞>
														𝑦 > 	 𝑞>,

(1 − 𝑝)N𝑞> − 𝑦O
𝑞>

				𝑦 ≤ 	𝑞>.		
 

The relative loss function is averaged to obtain the relative score, used to produce comparisons 
between reports and locations (Fig. 8), and a comparison across percentiles. 

The relative score provides a way to compare years, locations, and models on a similar scale. For 
example, Fig. 8 indicates that Draft 20 forecast accuracy was consistently worse than other 
forecasts shown, and that the Draft 16 and Draft 17 forecasts are consistently very similar. This 
approach is particularly useful when it is necessary to assess accuracy of multiple years of forecasts 
simultaneously. This is due to it being straightforward to evaluate which data were generally easier, 
or more difficult, to forecast across candidate methods, or which methods were consistently able 
to produce the best forecasts. 

 

 
Figure 8. Example of current usage of relative score (by region and report, i.e., averaged over quantiles). From the PD. 

 
However, scaling the score by the forecast at each percentile (𝑞>), rather than the actual value 
(𝑦), produces a score that is not symmetric around the true value. Consequently, the relative score 
is biased: when the forecast underestimates the value, the relative score is higher than when the 
forecast overestimates the value by the same amount (see Appendix A).  

Recommendation 8. Normalise relative score by dividing the loss function by the true (observed) 
value, rather than the forecast quantile, so that the relative score is unbiased. The relative score 
should then be interpreted by taking the average of the loss function over all quantiles, with smaller 
values indicating better forecasts. 
The appropriate relative loss function is then: 

RL\,+\+.-]N𝑦, 𝑝, 𝑞>O = 	

⎩
⎪
⎨

⎪
⎧ 𝑝N𝑦 − 𝑞>O

𝑦 															𝑦 > 	𝑞>,

(1 − 𝑝)N𝑞> − 𝑦O
𝑦 				𝑦 ≤ 	𝑞>. 		
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This is now symmetric and therefore unbiased, as illustrated in Fig. 9. 

 
Figure 9. Relative score as a function of the mean of the forecast, under the existing (black) and proposed (blue) relative 

loss function. 

Note that, normalising by the actual value rather than the forecast is consistent with the 
normalisation applied to annual consumption (i.e., to calculate percentage error).  
Once this is resolved, the relative score metric is suitable for comparisons between methods given 
the same data. The proposed relative score metric effectively puts forecasts on a similar scale for 
assessment. We note that direct comparisons between locations or across different years of data 
should be made with caution; while relative scores are on the same scale, the score is designed to 
compare forecasts given the same data, not forecasts of different quantities. Furthermore, the 
relative score should be considered only when taking the average of the loss function over all 
quantiles; considering the loss function at fixed quantiles and averaged across locations is not 
informative. 

 

3.6 Backcasting minimum/maximum demand events [FAR] 
In the 2018 FAR, backcasting was performed by evaluating the forecasting regression (without 
stochastic volatility) at each of the 15 highest observed demand intervals in each region. Fig. 10 
illustrates how this is presented. 
This method demonstrates that the intervals with highest observed demand were (generally) those 
for which the observed value was greater than the mean of the forecast regression with those 
predictors (i.e., without stochastic volatility). In effect, these high values could be interpreted as 
having positive residuals. The backcasting approach does not provide information regarding the 
accuracy of the forecast. AEMO has clearly recognised this, as the approach is no longer present 
in the most recent summer 2019 FAR update.  

Recommendation 9. Discontinue backcasting as presented in the 2018 FAR. Replace with full 
season hindcasting (see Rec. 10 for details). 
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Figure 10.  Example of current presentation of backcasting. From Fig. 12, 2018 FAR. 

 
3.7 Hindcasting and simulated history 
These two related and complementary methods, detailed below, use historical data and forecasts 
to inform forecast accuracy assessment. 

• Full-season hindcasting involves comparing a forecast that was made historically (e.g., the 
ESOO 2018 forecast) to the forecast that would be made now for that year (i.e., with actuals 
for temperature, growth drivers, etc.). The purpose of this method is to compare the forecast 
distribution from a previous forecast to the forecast distribution that would be made now 
using the actual input drivers. The aim is to elucidate the impact of the forecast drivers 
(synthetic temperature years, growth drivers) on the forecast. 

• Simulated history involves applying the current forecasting method to historical data to 
generate historical distributions of minimum/maximum demand. These are compared 
against the observed minimum/maximum demands in historical years for assessment. That is, 
the current forecasting method is applied to forecast maximum demand in each of 2017, 
2016, and so on, and each is compared against the corresponding observed maximum 
demand in that year. This produces more data points that can be used to test the 
forecasting method itself, rather than the forecast that was produced in a given year.  

Each of these is now expanded upon. 

3.7.1 Full-season hindcasting [new method – FAR or PD] 
To produce the probabilistic forecasts, regression models are fit to historical demand data, and 
then simulated 3,000 times on synthetic weather data (constructed from 20 years of historical 
weather) with stochastic volatility7. The minimum/maximum demand observations from the 3,000 
simulations are extracted, to produce the probabilistic demand forecast distributions.  

To hindcast, the same process is followed, but rather than using synthetic weather years 
(constructed from 20 years of historical data), the actual (full) year of temperature should be used. 
The process is repeated 3,000 times, with the whole year simulated in each case, and the half-
hourly minimum/maximum demand in each simulation is extracted to produce the hindcast 
                                                
7 For more detail please see AEMO’s Electricity Demand Forecasting Methodology Information Paper. 
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distribution. This allows hindcasting to capture the impact of model stochastic volatility, and other 
inputs (e.g., solar). We emphasise that hindcasting is a full-year process, and is not informed by the 
actual day on which minimum/maximum demand occurred. 
Recommendation 10. Perform full-season hindcasting: compare the forecast distribution that was 
made prior to a season (e.g., ESOO 2018 forecast), to the forecast distribution that would be made 
now using known inputs. This is to assess the impact of actual inputs on the forecast distribution 
produced. 
Comparing the forecast distribution with this hindcast distribution identifies the impact of climate, 
represented through the synthetic weather-years, on the process. For example, consider Fig. 11. In 
this scenario, the synthetic weather years impact the forecast substantially: they lead to 
underestimates of the maximum demand.  

 

 
Figure 11. Comparison between forecast and hindcast distribution of maximum demand. Note: not an actual AEMO 

forecast. 

A similar process could be applied with the other inputs, in order to elucidate the marginal impact 
of each input on the forecast distribution. (For example, one could use known (true) values of solar 
generation, but synthetic temperature, in order to quantify the impact of solar generation input on 
the forecast distribution.) A visualisation of this form may be appropriate for inclusion in the FAR. 
Note that we do not expect the hindcast distribution to be identical to the forecast, as they were 
constructed from different data, but differences between the distributions may provide insight into 
possible forecast errors. 
Under this framework, the probabilistic distribution of input drivers between the forecast and the 
hindcast can be compared (e.g., Fig. 12). As weather data correspond to the actual day on 
which they occurred, it is also appropriate to compare the dates on which the hindcast produced 
minimum/maximum demand to the date of the actual minimum/maximum demand interval (Fig. 
13). In this example, using actual weather data (i.e., in the hindcast) we would predict that the 
maximum summer demand would be most likely to have occurred during either the mid-January 
or early-February heatwaves. In fact, peak demand did occur on the most likely hindcast day in 
mid-January. These types of analyses may be appropriate for the PD. We emphasise that 
considering hindcasts of single days is not appropriate; rather the whole year of actual weather 
observations must be simulated to correctly produce the hindcast distribution. 
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Figure 12. Comparison between time of day for maximum demand between forecast and hindcast distributions. Note: 

not an actual AEMO forecast. 

 

Figure 13. Hindcast summer maximum date of occurrence (December 2017—March 2018). Red line indicates the actual 
date of maximum demand. Note: not an actual AEMO forecast. 

 

 

3.7.2 Simulated History [PD] 
Forecast methodology changes each year, and so historical forecast accuracy results do not 
inform current forecast accuracy assessment. However, applying current methods to past seasons 
can provide some indication of how the correspondence between forecasts and actual 
minimum/maximum demand would have varied over time. As such, the simulated history 
approach is to: 

• apply the current forecasting model to historical data from previous years;  

• produce probabilistic forecasts of minimum/maximum demand for these years; and, 

• compare the actual minimum/maximum demand to those historical ‘forecast’ distributions. 
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Fig. 14 shows an example output of this process: for each season, the simulated history forecast 
POE levels are compared to the actual minimum/maximum demand that occurred in that season. 
Then, if the forecast is accurate and we had sufficient data, we expect 10% of seasons to exceed 
the 10% POE, 50% of seasons to exceed the 50% POE, and so on. This approach was presented in 
the FAR in 2015, and is currently used in the PD. 

We note that these must be interpreted in context. That is, conditions around demand might have 
changed over time and so it may not be the case that a forecast designed for 2018 is suited to 
forecasting demand in 2008 (e.g., due to changes in the operational environment); this should be 
assessed. When it is determined that simulated history can be applied effectively, these outputs 
could be used to calculate MAEP/KS statistics that avoid some of the limitations around monthly 
disaggregation, for example. Further, the number of observations available must be considered 
when assessing accuracy with respect to POEs. For example, given sufficiently many years of data 
we would expect 10% of seasonal maximums to exceed the 10% POE; however, with few 
observations (e.g., <10) there is insufficient statistical evidence to detect forecast errors in the 
majority of cases (see Appendix B). 
Recommendation 11. Employ the simulated history approach: apply the current forecasting 
method to historical seasons, and compare against the observed minimum/maximum demand in 
those seasons. This provides more data with which to assess model accuracy and construct 
statistics such as the MAEP and KS statistic. 
 

 
Figure 14. Example of visualisation of simulated history. From Fig. 6, 2015 FAR. 
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4. Proposed methods for probabilistic minimum/maximum demand 
forecast assessment 

Because of the challenges of probabilistic forecast assessment when few data points are 
available, it is appropriate to consider forecast assessment methods which more explicitly test the 
assumptions of the forecasting method itself. Recommendations 12 and 13 are examples that may 
be suitable for this purpose: they focus on testing the model residuals, as these have a substantial 
impact on the minimum/maximum demand in the current forecasting methodology. Discussions 
with AEMO throughout the preparation of this report indicated that these methods are broadly 
similar to ideas currently used internally during forecast model development. If the forecasting 
method itself changes, these specific recommendations may no longer be applicable, and 
instead they should be replaced with metrics relevant to the new forecasting approach 
(Recommendation 14 formalises this). 

 

Recommendation 12. Analyse the observed residuals near the extremes of fitted demand, to 
ensure distributional assumptions made when forecasting are met. 
Each observation, 𝑦, in the year being forecast, has predictors, 𝑥. If the forecast model is 𝑓(𝑥) + 𝜀, 
the observed residual from that forecast is  

𝑒(𝑥, 𝑦) = 𝑦 − 𝑓(𝑥). 

The extreme values of 𝑓(𝑥) should be those that are most likely to produce extreme demands. 
Therefore, the residuals of these observations should be analysed.  

In a good forecasting model, under the regression-simulation framework, the observed residuals 
𝑒(𝑥, 𝑦) should have the same distribution as the errors 𝜀	used in the forecast simulations. To analyse 
the residuals of the extreme values, first, the minimum and maximum 5% of values by 𝑓(𝑥) should 
be extracted. Then, their residuals tested for normality (e.g., by the Shapiro-Wilk test) and for equal 
variance with the distribution of stochastic volatility used to produce the forecast. Fig. 15 and 16 
demonstrate this process for a forecast that is not accurate; Fig. 15 shows that the residuals are 
heteroscedastic, and Fig. 16 shows that the distribution of the observed residuals does not match 
that which generated the forecast. 

Assessing residuals versus fits in this way is a standard approach when building regression models, 
and is used during model development at AEMO. We recommend AEMO formally include this as 
part of its forecast assessment. This is critical to forecast assessment due to the way that forecasts 
are currently produced: if actual residuals from the forecast regression at the extremes do not 
match the distribution of residuals used to produce the forecasts (e.g., due to heteroscedasticity, 
non-normality, or correlation of residuals), then this is likely to make the forecast inaccurate. 
Assessing the residuals directly as part of the forecast accuracy assessment process is the most 
direct approach to diagnose this inaccuracy. 

This is one example of how residuals may be analysed and presented. Alternative presentations 
(e.g., QQ-plots) and analyses (e.g., residuals over time, or versus individual predictors) should be 
considered internally to ensure the most useful model diagnostics are obtained. 
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Figure 15. Residuals versus fitted values for an example forecast, with extremes of fitted values highlighted. Note: not an 

actual AEMO forecast. 

 

 
Figure 16. Comparison of kernel density estimates of the observed residuals at the fitted extremes (points highlighted in 
Fig. 15) versus the distribution that generated the forecast. Note that these are fitted extremes, not observed extremes; 

observed extremes would not have the same distribution as the generated residuals. This demonstrates that this example 
forecast is performing poorly. Note: not an actual AEMO forecast. 

 

Recommendation 13. Compare the residuals that produced the simulated seasonal 
minimum/maximum demands, to the observed residuals from the actual minimum/maximum 
demand intervals. This is to assess the plausibility of forecasting the observed minimum/maximum 
demands. 
Each observation used to generate the minimum/maximum demand forecast (from the 3,000 
synthetic weather-years) had an associated forecast (𝑓(𝑥)), and a residual. Thus, the distribution of 
residuals at the minimum/maximum demand interval can be extracted from the forecast – for the 
maximum, these residuals will generally be positive, for the minimum, they will generally be 
negative. This distribution of residuals can then be compared to the residual of the observed 
minimum/maximum demand: if these do not align, it would suggest that there are problems with 
the residuals in the forecasting method. Fig. 17 provides an example of this comparison.  
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This approach, on its own, will not present a holistic picture of forecast accuracy, but provides an 
additional line of evidence that may assist with diagnosis of problems with minimum/maximum 
demand forecasts. 

 

 
Figure 17. Example residual from forecast regression of seasonal maximum demand (red) compared against the 
distribution of residuals that generated maximum demand in the forecasting process. Note: not an actual AEMO 

forecast. 

 

Recommendation 14. The strategies proposed in Recommendations 12 and 13 are appropriate for 
the existing regression-simulation forecasting framework; if or when the forecasting methodology 
changes, these methods should be assessed for relevance and replaced by other (model-specific) 
diagnostics if necessary. 
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Appendix A: Relative score simulations 
To investigate the behaviour of the relative score function, a simple synthetic test was performed. 
Let the true observed value of the maximum demand be y = 2,500. The forecast of this maximum is 
a Gaussian distribution with mean m and standard deviation s, where m varies from 2,000 to 3,000, 
and s is either 100 or 200. Then, the relative score was used to assess (i.e., score) each of these 
forecasts. This process was then repeated with the modified relative score (where the relative 
score is normalised by the actual value y, rather than the forecast, 𝑞>), and also with a scaled 
scenario (y=5,000, m varying from 4,000 to 6,000). The resulting relative scores appear in Fig. 18. 

 

 
Figure 18. Example of current (solid lines) and proposed (dashed lines) relative score. The example forecast used here is a 
Gaussian distribution, with mean taking values along the x-axis, and standard deviation of 100 (black lines), or 200 (blue 
lines). This figure indicates the asymmetry of the current score formula, and demonstrates the consistency of this metric 

under scaling. 
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Appendix B: Number of observations required to detect forecast inaccuracy 
To illustrate how many observations may be required to detect forecast inaccuracy, we consider a 
simple scenario.  
Assume that we wish to count only the number of forecasts that are within the interval defined by 
the 90%-10% POE. By definition, 80% of observations should be within this interval. Given some 
number of observations, we can apply a standard frequentist statistical test, with the null 
hypothesis being the forecast is correct, that is, 80% are within the interval. The null hypothesis is 
rejected if there is a probability of 5% or less of observing the data under this null hypothesis.  

Now, suppose the forecast is incorrect, then we can determine the probability of detecting that 
error, that is, the probability that the null hypothesis is correctly rejected. Fig. 19 shows the 
relationship between the true probability of being within the 90%-10% POE interval and the 
probability of detecting an error, depending on the number of observations. For example, suppose 
the true probability is 0.5. With only 5 observations, the probability of detecting an error is less than 
0.25. However, with 20 observations, the probability of detecting that same error is approximately 
0.87. This demonstrates that to detect small errors many observations are required, but very large 
errors in the forecast may be detected with only 10 observations. 

 

 
Figure 19. Probability of detecting an error in an interval forecast, based on the number of data points observed, and the 
magnitude of the error. In each case, the null hypothesis is that 80% of observations fall within the interval, and the test is 

applied at significance level 0.05. 
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