

Appendix A6. Tasmania

July 2025

Appendix to the 2025 Enhanced Locational Information Report

We acknowledge the Traditional Custodians of the land, seas and waters across Australia. We honour the wisdom of Aboriginal and Torres Strait Islander Elders past and present and embrace future generations.

We acknowledge that, wherever we work, we do so on Aboriginal and Torres Strait Islander lands. We pay respect to the world's oldest continuing culture and First Nations peoples' deep and continuing connection to Country; and hope that our work can benefit both people and Country.

'Journey of unity: AEMO's Reconciliation Path' by Lani Balzan

AEMO Group is proud to have launched its first <u>Reconciliation Action Plan</u> in May 2024. 'Journey of unity: AEMO's Reconciliation Path' was created by Wiradjuri artist Lani Balzan to visually narrate our ongoing journey towards reconciliation - a collaborative endeavour that honours First Nations cultures, fosters mutual understanding, and paves the way for a brighter, more inclusive future.

Important notice

Purpose

This report has been published to implement the Energy Security Board (ESB) 'enhanced information' transmission access reforms. The report is intended to support more informed investment and decision-making processes in the National Electricity Market, by collating public metrics and indicators that represent important locational characteristics of the power system. This report includes only publicly available information from existing AEMO, industry, and stakeholder publications.

AEMO publishes this *Enhanced Locational Information (ELI) Report* pursuant to its functions in section 49(2)(c) of the National Electricity Law. This publication is generally based on information available to AEMO as at 1 April 2025, unless otherwise indicated.

Disclaimer

AEMO has made reasonable efforts to ensure the quality of the information in this publication but cannot guarantee that information, forecasts and assumptions are accurate, complete or appropriate for your circumstances.

Modelling work performed as part of preparing this publication inherently requires assumptions about future behaviours and market interactions, which may result in forecasts that deviate from future conditions. There will usually be differences between estimated and actual results, because events and circumstances frequently do not occur as expected, and those differences may be material.

This publication does not include all of the information that an investor, participant or potential participant in the National Electricity Market might require, and does not amount to a recommendation of any investment.

Anyone proposing to use the information in this publication (which includes information and forecasts from third parties) should independently verify its accuracy, completeness and suitability for purpose, and obtain independent and specific advice from appropriate experts.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this publication:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this publication; and
- are not liable (whether by reason of negligence or otherwise) for any statements, opinions, information or other matters contained in or derived from this publication, or any omissions from it, or in respect of a person's use of the information in this publication.

Copyright

© 2025 Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the <u>copyright permissions</u> on AEMO's website.

Version control

Version	Release date	Changes
1.0	09/07/2025	Initial release.

Contents

A6.1	Introduction	4
A6.2	Projected generation build	5
A6.3	REZs overview	11
A6.4	T1 – North East Tasmania	12
A6.5	T2 – North West Tasmania	15
A6.6	T3 – Central Highlands	18
A6.7	T4 – North Tasmania Coast	21
A6.8	Non-REZ	23

Figures

· ·	generation capacity (MW) and across Tasmania, under the 2024 ISP <i>Step</i> rojected build, 2025	5
•	generation capacity (MW) and across Tasmania, under the 2024 ISP <i>Step</i> rojected build, 2030	6
· ·	generation capacity (MW) and across Tasmania, under the 2024 ISP <i>Step</i> rojected build, 2040	7
Figure 4 Annual ge	neration energy production (MWh) across Tasmania, 2024	8
	annual generation energy production (MWh) across Tasmania, under the 2024 Change projected build, 2030	9
•	annual generation energy production (MWh) across Tasmania, under the 2024 Change projected build, 2040	0
Figure 7 Overview	of Tasmania region and REZs 1	1

A6.1 Introduction

This appendix provides detailed locational indicators and metrics for Tasmania. This appendix contains the following information:

- The generation and storage capacity and annual generation energy production across Tasmania under the 2024 ISP *Step Change* projected build in 2024 (actual annual production) and 2025, 2030, and 2040 (Section A6.1).
- An overview map of the Tasmania region and associated REZs (Section A6.1)
- Detailed locational indicators and metrics for each REZ within Tasmania (Sections A6.4 to A6.8).

This appendix uses existing sources of publicly available information, including the Final 2024 ISP.

A6.2 Projected generation build

Figure 1 to **Figure 6** show the generation and storage capacity and annual generation energy production across Tasmania under the 2024 ISP *Step Change* projected build in 2024 (actual annual production) and 2025, 2030, and 2040¹.

¹ Units smaller than 50 MW have been omitted from the capacity map, and those smaller than 125 GWh annually have been omitted from the energy production maps. Icon sizes do not represent area of land usage. Icon locations have been arranged for visual clarity. ISP projects have been placed within their relevant ISP sub-region or REZ but do not represent specific anticipated connection points.

Figure 2 Projected generation capacity (MW) and across Tasmania, under the 2024 ISP Step Change projected build, 2030

Figure 3 Projected generation capacity (MW) and across Tasmania, under the 2024 ISP Step Change projected build, 2040

Figure 4 Annual generation energy production (MWh) across Tasmania, 2024

Note: This figure makes use of historical calendar year generation data and is hence presented for the year 2024. All other build figures make use of the 2024 ISP *Step Change* projected build.

Figure 5 Projected annual generation energy production (MWh) across Tasmania, under the 2024 ISP Step Change projected build, 2030

Figure 6 Projected annual generation energy production (MWh) across Tasmania, under the 2024 ISP Step Change projected build, 2040

A6.3 REZs overview

The following sections of this appendix provides detailed locational indicators and metrics for each REZ within Tasmania. **Figure 7** shows an overview map of the Tasmania region and associated REZs. Appendix A2 provides a guide to interpreting the REZ scorecards presented throughout the remainder of this appendix.

A6.4 T1 – North East Tasmania

REZ information

А

Bushfire score

Temperature score

В

² Additional augmentation is required in North East Tasmania when the combination of generation in T1 and T4 is greater than 1,600 MW in the 2024 ISP.

Marginal loss factors

Marginal Loss Factor							
Technology	Voltage (kV) 2025-26 MLF						
-	-	-	-				
Marginal Loss Factor Robustnes	Marginal Loss Factor Robustness						
	2029-30	2034-35	2039-40				
MLF Robustness score	A	A	A				

Congestion and curtailment

Congestion information – calendar year 2024					
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation		
T^V_NIL_9	56.8	32,291.9	Generation contributing to northward flow on Basslink		
T^V_NIL_BL_6	55.8	30,915.7	Generation contributing to northward flow on Basslink		
T>T_NIL_110_1	282.9	839,950.4	Generation contributing to flow from Derby to Scottsdale Tee 110 kV		
T>T_NIL_BL_IMP_5FF	2.0	199,611.2	Generation contributing to flow from Hadspen to Georgetown No. 2 220 kV on trip of the Hadspen – Georgetown No. 1 220 kV line		
V^T_NIL_9	69.8	47,031.1	Generation contributing to southward flow on Basslink		

VRE semi-scheduled curtailment – calendar year 2024								
DUID	Generator name		Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
-	-		-	-	-	-		
Historical hosting capacity indicator for 20% network spill threshold								
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)		
-	-		-	-	-	-		
VRE curtailmen	t – ISP forecast							
	2025-	2026	2026	-2027	2027	-2028		
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)		
Step Change	0	0	0	2	0	2		

ISP forecast

A6.5 T2 – North West Tasmania

REZ information

³ See <u>https://www.renewableenergyzones.tas.gov.au/</u>.

T2 – North West Tasmania

Resource metrics							
Resource		Solar		Wind			
Resource Quality		F			A		
Renewable Potential (MW)	150		5,000				
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039	9-40	2049-50
Demand Correlation	F	F	F	В	В	}	А
Climate hazard							
Temperature score		А		Bushfire score			А

Marginal loss factors

Marginal Loss Factor						
Technology Voltage (kV) 2025-26 MLF						
Wind	220 0.9555					
Marginal Loss Factor Robustnes	Marginal Loss Factor Robustness					
	2029-30	2034-35	2039-40			
MLF Robustness score	E	В	В			

Congestion and curtailment

Congestion information – calendar year 2024						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
T::T_NIL_1	637.6	311,416.9	Generation contributing to flow from Farrell to Sheffield 220 kV			
T::T_NIL_3	21.3	15,240.1	Generation contributing to flow from Sheffield to Palmerston 220 kV			

VRE semi-scheduled curtailment – calendar year 2024							
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)	
GRANWF1	Granville Harbo	our Wind Farm	111	0.1	0.0	367	
Historical hosting capacity indicator for 20% network spill threshold ⁴							
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)	
GRANWF1	Granville Harbo	our Wind Farm	300	300	300	300	
VRE curtailmen	t – ISP forecast						
	2025-	2026	2026-2027		2027-2028		
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	
Step Change	0	0	0	2	0	2	

⁴ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

ISP forecast

A6.6 T3 – Central Highlands

REZ information

Jurisdictional body

TasNetworks is the jurisdictional planning body for this REZ.

Resource metrics								
Resource		Solar		Wind				
Resource Quality		F			F A			
Renewable Potential (MW)		150			3,400			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039	9-40	2049-50	
Demand Correlation	F	F	F	В	E	3	A/B	
Climate hazard								
Temperature score	A			Bushfire score D			D	

Marginal loss factors

Marginal Loss Factor						
Technology Voltage (kV) 2025-26 MLF						
Wind	220 0.9924					
Marginal Loss Factor Robustnes	s					
	2029-30	2034-35	2039-40			
MLF Robustness score	В	В	В			

Congestion and curtailment

Congestion information – calendar year 2024							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
T::T_NIL_3	21.3	15,240.1	Generation contributing to flow from Sheffield to Palmerston 220 kV				
T^T_NIL_BL_6	3.6	96,669.8	Generation in Southern Tasmania				
T>T_NIL_BL_IMP_3FF	0.4	60,267.2	Generation contributing to flow from Palmerston to Hadspen No. 2 220 kV on trip of the Palmerston – Hadspen No. 1 220 kV line				

VRE semi-scheduled curtailment – calendar year 2024								
DUID	Generator name		Generator name		Maximum Average Capacity (MW) curtailment (%)		Average curtailment (MW)	Curtailment (MWh)
CTHLWF1	Cattle Hill V	Vind Farm	144	0.0	0.0	159		
Historical hosti	Historical hosting capacity indicator for 20% network spill threshold⁵							
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)		
CTHLWF1	Cattle Hill V	Vind Farm	300	300	300	300		
VRE curtailmen	t – ISP forecast							
	2025-	2026	2026	-2027	2027-2028			
Scenario	Curtailment (%) Economic offloading (%)		Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)		
Step Change	0	0	1	3	1	2		

⁵ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

ISP forecast

A6.7 T4 – North Tasmania Coast

REZ information

for the offshore wind resource potential in relatively shallow waters close to shore, with a connection point close to existing 220 kV networks. There is interest from offshore wind proponents in this REZ but no proposed projects are sufficiently progressed to be considered as anticipated or committed by AEMO's criteria. North West Tasmania Coast REZ connects to the 220 kV network within the North West REZ or North East REZ. Two potential connection points for this offshore REZ are in the vicinity of Burnie or George Town, and the REZ transmission network limit for each connection point is considered differently. For a connection to the 220 kV network in the vicinity of Burnie, the total REZ transmission network limit for existing and new VRE is included as part of the North West REZ limit of approximately 277 MW for peak demand and summer typical conditions and 112 MW for winter reference condition. For a connection to the 220 kV network in the vicinity of George Town, the total REZ transmission network limit for existing and new VRE is included as part of the North East Tasmania NET1 group constraint with a combined network limit of 1,600 MW for offshore wind and onshore VRE from T1.

Jurisdictional body

TasNetworks is the jurisdictional planning body for this REZ.

Resource metrics							
Resource	Of	fshore Wind (fixe	əd)	Offshore Wind (floating)			
Resource Quality		А		Α			
Renewable Potential (MW)		14,400		26,150			
Demand Consolation	2029-30 2039-40		2049-50	2029-30	2039-4	40	2049-50
Demand Correlation	В	В	A	В	В		А
Climate hazard	limate hazard						
Temperature score		А	Bushfire score A				

Marginal loss factors

Marginal Loss Factor								
Technology	Voltage (kV) 2025-26 MLF							
-	· · ·							
Marginal Loss Factor Robustnes	s							
MLF Robustness score	2029-30	2034-35	2039-40					
MLF RODUSTNESS SCORE	-	-	-					

Congestion and curtailment

Congestion information – calendar year 2024						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
-	-	-	-			

VRE semi-scheduled curtailment – calendar year 2024								
DUID	Generator name		Generator name		Maximum Average Capacity (MW) curtailment (%)		Average curtailment (MW)	Curtailment (MWh)
-	-		-	-	-	-		
Historical hosti	ng capacity indicate	or for 20% network	spill threshold					
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)		
-	-		-	-	-	-		
VRE curtailmen	nt – ISP forecast							
	2025-	2026	2026-2027		2027	-2028		
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)		
Step Change	-	-	-	-	-	-		

ISP forecast

ISP forecast												
Solar PV (MW)					Wind (MW)							
VRE outlook	Existing/			Projected	I		Existing/			Projected	ł	
	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030
Step Change	-	-	-	-	-	-	-	-	-	-	-	-
Transmission	access expans	ion for S	tep Chan	ge								
	There are no existing, committed, anticipated VRE projects for this REZ and the modelling outcomes, for all scenarios and the offshore wind sensitivities, did not project any additional VRE for this REZ. Therefore, no VRE curtailment or transmission expansion occurs in this REZ.											
Committed, Anticipated, and Actionable Transmission Projects			Timing Status			Additional REZ hosting capacity provided (MW)						
-				-		-			-			

A6.8 Non-REZ

Congestion and curtailment

Congestion information – calendar year 2024							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2024								
DUID			Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)			
MUSSELR1	Musselroe Wind Farm	168	0.6	0.4	3,561			
Historical hosti	ng capacity indicator for 20% network	spill threshold ⁶						
DUID	Generator name	HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)			
GORDON	Gordon	300	300	300	300			
LI_WY_CA	Catagunya	300	300	300	300			
MUSSELR1	Musselroe Wind Farm	17	45	64	165			
POAT220	Poatina	300	300	300	300			
REECE1	Reece	188	300	300	300			
TARRALEA	Tarraleah	98	132	131	266			
TREVALLN	Trevallyn	300	300	300	300			

⁶ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.