

Appendix A5. South Australia

July 2025

Appendix to the 2025 Enhanced Locational Information Report

We acknowledge the Traditional Custodians of the land, seas and waters across Australia. We honour the wisdom of Aboriginal and Torres Strait Islander Elders past and present and embrace future generations.

We acknowledge that, wherever we work, we do so on Aboriginal and Torres Strait Islander lands. We pay respect to the world's oldest continuing culture and First Nations peoples' deep and continuing connection to Country; and hope that our work can benefit both people and Country.

'Journey of unity: AEMO's Reconciliation Path' by Lani Balzan

AEMO Group is proud to have launched its first <u>Reconciliation Action Plan</u> in May 2024. 'Journey of unity: AEMO's Reconciliation Path' was created by Wiradjuri artist Lani Balzan to visually narrate our ongoing journey towards reconciliation - a collaborative endeavour that honours First Nations cultures, fosters mutual understanding, and paves the way for a brighter, more inclusive future.

Important notice

Purpose

This report has been published to implement the Energy Security Board (ESB) 'enhanced information' transmission access reforms. The report is intended to support more informed investment and decision-making processes in the National Electricity Market, by collating public metrics and indicators that represent important locational characteristics of the power system. This report includes only publicly available information from existing AEMO, industry, and stakeholder publications.

AEMO publishes this *Enhanced Locational Information (ELI) Report* pursuant to its functions in section 49(2)(c) of the National Electricity Law. This publication is generally based on information available to AEMO as at 1 April 2025, unless otherwise indicated.

Disclaimer

AEMO has made reasonable efforts to ensure the quality of the information in this publication but cannot guarantee that information, forecasts and assumptions are accurate, complete or appropriate for your circumstances.

Modelling work performed as part of preparing this publication inherently requires assumptions about future behaviours and market interactions, which may result in forecasts that deviate from future conditions. There will usually be differences between estimated and actual results, because events and circumstances frequently do not occur as expected, and those differences may be material.

This publication does not include all of the information that an investor, participant or potential participant in the National Electricity Market might require, and does not amount to a recommendation of any investment.

Anyone proposing to use the information in this publication (which includes information and forecasts from third parties) should independently verify its accuracy, completeness and suitability for purpose, and obtain independent and specific advice from appropriate experts.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this publication:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this publication; and
- are not liable (whether by reason of negligence or otherwise) for any statements, opinions, information or other matters contained in or derived from this publication, or any omissions from it, or in respect of a person's use of the information in this publication.

Copyright

© 2025 Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the <u>copyright permissions</u> on AEMO's website.

Version control

Version	Release date	Changes
1.0	09/07/2025	Initial release.

Contents

A5.1	Introduction	4
A5.2	Average forecast daily usable battery state of charge	5
A5.3	Projected generation build	6
A5.4	REZs overview	12
A5.5	S1 – South East South Australia	13
A5.6	S2 – Riverland	17
A5.7	S3 – Mid-North South Australia	20
A5.8	S4 – Yorke Peninsula	24
A5.9	S5 – Northern South Australia	27
A5.10	S6 – Leigh Creek	30
A5.11	S7 – Roxby Downs	32
A5.12	S8 – Eastern Eyre Peninsula	35
A5.13	S9 – Western Eyre Peninsula	38
A5.14	S10 – South East South Australia Coast	40
A5.15	Non-REZ	42

Figures

Figure 1	Average forecast daily usable state of charge (SoC) for batteries across South Australia, 2024 ISP <i>Step Change</i> scenario, 2030 (%)	5
Figure 2	Projected generation capacity (MW) and across South Australia, under the 2024 ISP <i>Step Change</i> projected build, 2025	6
Figure 3	Projected generation capacity (MW) and across South Australia, under the 2024 ISP <i>Step Change</i> projected build, 2030	7
Figure 4	Projected generation capacity (MW) and across South Australia, under the 2024 ISP <i>Step Change</i> projected build, 2040	8
Figure 5	Annual generation energy production (MWh) across South Australia, 2024	9
Figure 6	Projected annual generation energy production (MWh) across South Australia, under the 2024 ISP <i>Step Change</i> projected build, 2030	10
Figure 7	Projected annual generation energy production (MWh) across South Australia, under the 2024 ISP <i>Step Change</i> projected build, 2040	11
Figure 8	Overview of South Australia region and REZs	12

A5.1 Introduction

This appendix provides detailed locational indicators and metrics for South Australia. This appendix contains the following information:

- The average forecast daily usable stage of charge (SoC) for batteries (planted under the 2024 ISP *Step Change* scenario) across South Australia in 2030 (Section A5.1).
- The generation and storage capacity and annual generation energy production across South Australia under the 2024 ISP *Step Change* projected build in 2024 (actual annual production) and 2025, 2030, and 2040 (Section A5.3).
- An overview map of the South Australia region and associated REZs (Section A5.4)
- Detailed locational indicators and metrics for each REZ within South Australia (Sections A5.5 to A5.15).

This appendix uses existing sources of publicly available information, including the Final 2024 ISP.

A5.2 Average forecast daily usable battery state of charge

Figure 1 presents the average forecast daily usable SoC for batteries (planted under the *Step Change* scenario) across South Australia in 2030.

Figure 1 Average forecast daily usable state of charge (SoC) for batteries across South Australia, 2024 ISP Step Change scenario, 2030 (%)

A5.3 Projected generation build

Figure 2 to **Figure 7** show the generation and storage capacity and annual generation energy production across South Australia under the 2024 ISP *Step Change* projected build in 2024 (actual annual production) and 2025, 2030, and 2040¹.

¹ Units smaller than 50 MW have been omitted from the capacity map, and those smaller than 125 GWh annually have been omitted from the energy production maps. Icon sizes do not represent area of land usage. Icon locations have been arranged for visual clarity. ISP projects have been placed within their relevant ISP sub-region or REZ but do not represent specific anticipated connection points.

Figure 3 Projected generation capacity (MW) and across South Australia, under the 2024 ISP Step Change projected build, 2030

Figure 4 Projected generation capacity (MW) and across South Australia, under the 2024 ISP Step Change projected build, 2040

Figure 5 Annual generation energy production (MWh) across South Australia, 2024

Note: This figure makes use of historical calendar year generation data and is hence presented for the year 2024. All other build figures make use of the 2024 *ISP Step Change* projected build.

Figure 6 Projected annual generation energy production (MWh) across South Australia, under the 2024 ISP Step Change projected build, 2030

Figure 7 Projected annual generation energy production (MWh) across South Australia, under the 2024 ISP Step Change projected build, 2040

A5.4 REZs overview

The following sections of this appendix provides detailed locational indicators and metrics for each REZ in South Australia. **Figure 8** provides an overview map of the South Australia region and associated REZs. Appendix A2 provides a guide to interpreting the REZ scorecards presented throughout the remainder of this appendix.

Figure 8 Overview of South Australia region and REZs

A5.5 S1 – South East South Australia

REZ information

Marginal Loss Factor						
Technology	Voltage (kV)	Voltage (kV) 2025-26 MLF				
Solar	3.3 – 11	1.0127 – 1.0257				
Wind	33	0.9297 – 0.9333				
Marginal Loss Factor Robustnes	s					
MLF Robustness score ²	2029-30	2034-35	2039-40			
MLF RODUSTIESS SCORE	-	-	-			

Congestion information – calendar year 2024						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
S>>NIL_TBTU_TBTU_1	29.0	139,407.7	Generation contributing to flow from either Tailem Bend to Tungkillo 275 kV on trip of the parallel Tailem Bend-Tungkillo 275 kV line			
S>>NIL_TBTX4_TBMO_1	27.4	154,246.8	Generation contributing to flow from Tailem Bend to Mobilong 132 kV on trip of the Tailem Bend 275/132kV (#4) transformer			
S>>NIL_TUTB_TUTB_1	57.9	29,511.4	Generation contributing to flow from either Tailem Bend to Tungkillo 275 kV on trip of the parallel Tailem Bend-Tungkillo 275 kV line			
V::S_NIL_MAXG_1	11.8	81,452.9	Generation connecting to 132 kV network between South East and Tailem Bend			
V::S_NIL_MAXG_xxx	22.8	42,854.7	Generation connecting to 132 kV network between South East and Tailem Bend			
V:S_600_HY_TEST	96.1	195,401.9	Generation contributing to flow from Heywood to South East 275 kV			
V:S_600_HY_TEST_DYN	212.0	448,240.7	Generation contributing to flow from Heywood to South East 275 kV			

² No MLF robustness scores are shown as the MLF robustness for VRE in this REZ is heavily dependent on market conditions and interconnector flows.

VRE semi-scheduled curtailment – calendar year 2024						
DUID	Generator name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)	
CNUNDAWF	Canunda Wind Farm	46	0.1	0.0	93	
LKBONNY1	Lake Bonney Wind Farm Stage 1	81	0.2	0.0	303	
LKBONNY2	Lake Bonney Stage 2 Windfarm	159	0.2	0.1	646	
LKBONNY3	Lake Bonney Stage 3 Wind Farm	39	0.2	0.0	140	
MAPS2PV1	Mannum - Adelaide Pipeline Pumping Station No 2, PV Units 1-6	13.4	0.0	0.0	9	
MAPS3PV1	Mannum - Adelaide Pipeline Pumping Station No 3, PV Units 1-6	12.4	0.0	0.0	6	
MBPS2PV1	Murray Bridge-Onkaparinga Pipeline Pumping Station No 2	10.3	0.0	0.0	7	
Historical host	ing capacity indicator for 20% network	spill threshold ³				
DUID	Generator name	HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)	
CNUNDAWF	Canunda Wind Farm	292	300	300	300	
LKBONNY1	Lake Bonney Wind Farm Stage 1	242	300	300	300	
LKBONNY2	Lake Bonney Stage 2 Windfarm	243	300	300	300	
LKBONNY3	Lake Bonney Stage 3 Wind Farm	243	300	300	300	

VRE curtailment – ISP forecast							
2025-2026 2026-2027 2027-2							
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	
Step Change	0	10	0	9	0	9	

³ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

S1 – South East South Australia

A5.6 S2 – Riverland

REZ information

Marginal Loss Factor							
Technology Voltage (kV) 2025-26 MLF							
Solar	3.3	0.9837 – 1.0146					
Marginal Loss Factor Robustnes	Marginal Loss Factor Robustness						
MI E Debustasse	2029-30	2039-40	2049-50				
MLF Robustness	A	A	A				

Congestion information – calendar year 2024						
(Constraint II)		Marginal value (\$)	Most affected generation			
S>NIL_MHNW1_MHNW2	1,674.2	10,929,593.8	Generation contributing to westward flow on the Murraylink DC interconnector			
S>NIL_NWRB2_NWRB1	158.9	1,073,921.0	Generation contributing to flow from North West Bend to Robertstown 132 kV on trip of a parallel line			
SVML^NIL_MH-CAP_ON	293.7	163,220.7	Generation contributing to Eastward flow on the Murraylink DC interconnector			

VRE semi-scheduled curtailment – calendar year 2024							
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)	
MANNSF2	Mannum 2 S	Solar Farm	29	1.0	0.0	403	
MWPS1PV1	Morgan-Whyalla F Station		4.6	1.5	0.0	81	
MWPS2PV1	Morgan-Whyalla F Station		4.6	1.3	0.0	97	
MWPS3PV1	Morgan-Whyalla Pipeline Pumping Station No 3		6.2	1.1	0.0	74	
MWPS4PV1	Morgan-Whyalla Pipeline Pumping Station No 4		4.56	0.6	0.0	49	
Historical hosti	ng capacity indicate	or for 20% network	spill threshold				
DUID	Generato	or name	HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)	
-	-		-	-	-	-	
VRE curtailmer	nt – ISP forecast						
	2025-	2026	2026	-2027	2027-2028		
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	
Step Change	0	16	0	16	0	16	

A5.7 S3 – Mid-North South Australia

REZ information

⁴ Additional augmentation is required in Mid-North when the combination of generation in S3, S4, S5, S6, S7, S8, S9 >2,000 MW in the 2024 ISP.

Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50
Demand Correlation	F	F	F	A	А	A
Climate hazard						
Temperature score		D		Bushfire score		D

Marginal Loss Factor					
Technology	Voltage (kV) 2025-26 MLF				
	33	0.9157			
Wind	132	0.9604 – 0.9624			
	275	0.9560 – 0.9697			
Marginal Loss Factor Robustnes	s				
MLF Robustness score	2029-30	2034-35	2039-40		
	A	A	A		

Congestion information – calendar year 2024								
Constraint ID	Binding Marginal hours value (\$)		Most affected generation					
S>>NIL_RBTX_RBTX_1	60.4	186,603.2	Generation exporting from 132 kV through the 275/132 kV Robertstown transformers					
S>>NIL_TBTU_TBTU_1	29.0	139,407.7	Generation contributing to flow from either Tailem Bend to Tungkillo 275 kV on trip of the parallel Tailem Bend-Tungkillo 275 kV line					
S>>NIL_TBTX4_TBMO_1	27.4	154,246.8	Generation contributing to flow from Tailem Bend to Mobilong 132 kV on trip of the Tailem Bend 275/132kV (#4) transformer					
S>>NIL_TUTB_TUTB_1	57.9	29,511.4	Generation contributing to flow from either Tailem Bend to Tungkillo 275 kV on trip of the parallel Tailem Bend-Tungkillo 275 kV line					
S>>NIL_TWPA_TPRS	62.3	491,580.3	Generation contrubting to flow from Templers to Roseworthy 132 kV on trip of the Templers West-Para 275 kV line					
S>NIL_BWMP_HUWT	144.6	1,625,369.8	Generation contributing to flow from Hummocks to Waterloo 132 kV on trip of the Blyth West-Munno Para 275 kV line					
S>NIL_HUWT_STBG3	316.3	3,220,101.2	Generation contributing to flow from Snowtown to Bungama 132 kV on trip of the Hummocks-Waterloo 132 kV line					
S>NIL_NWRB2_NWRB1	158.9	1,073,921.0	Generation contributing to flow from North West Bend to Robertstown 132 kV on trip of a parallel line					

VRE semi-sche	duled curtailment –	calendar year 2024				
DUID	Generat	or name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
BLUFF1	The Bluff	Wind Farm	53	0.0	0.0	17
CLEMGPWF	Clements Ga	p Wind Farm	57	0.2	0.0	371
GSWF1A	Goyder South	Wind Farm 1A	201	0.9	0.2	1,627
GSWF1B1	Goyder South	Wind Farm 1B	196	0.3	0.0	12
HALLWF1	Hallett 1 V	Vind Farm	95	0.2	0.1	496
HALLWF2	Hallett 2 V	Vind Farm	71	0.3	0.1	521
HDWF1	Hornsdale	Wind Farm	102	0.0	0.0	25
HDWF2	Hornsdale V	Vind Farm 2	102	0.0	0.0	40
HDWF3	Hornsdale V	Vind Farm 3	109	0.0	0.0	36
NBHWF1	North Brown I	Hill Wind Farm	132	0.2	0.1	631
SNOWNTH1	Snowtown Wind F	arm Stage 2 North	144	0.1	0.1	608
SNOWTWN1	Snowtown Wind Fa	arm Units 1 And 47	99	1.4	0.5	4,810
SNOWSTH1	Snowtown So	uth Wind Farm	126	0.2	0.1	691
WATERLWF	Waterloo	Wind Farm	130	0.5	0.2	1,772
WGWF1	Willogoleche	e Wind Farm	119	1.6	0.6	5,620
Historical host	ing capacity indicate	or for 20% network	spill threshold⁵			
DUID	Generat	or name	HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)
BLUFF1	The Bluff	Wind Farm	300	300	300	300
CLEMGPWF	Clements Ga	p Wind Farm	164	242	265	300
GSWF1A	Goyder South	Wind Farm 1A	300	300	300	300
HALLWF1	Hallett 1 V	Vind Farm	300	300	300	300
SNOWNTH1	Snowtown Wind F	arm Stage 2 North	300	300	300	300
SNOWTWN1	Snowtown Wind Fa	arm Units 1 And 47	28	57	90	170
SNOWSTH1	Snowtown So	uth Wind Farm	300	300	300	300
WGWF1	Willogoleche	e Wind Farm	300	300	300	300
VRE curtailme	nt – ISP forecast					
	2025	-2026	2026	-2027	2027	-2028
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)
Step Change	0	7	0	5	0	4

⁵ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

⁶ This represents the additional network capacity for MN1 group constraint augmentation. The MN1 group constraint represents the generation build limit applied to S3, S4, S5, S6, S7, S8, and S9 REZs in the 2024 ISP.

A5.8 S4 – Yorke Peninsula

REZ information

⁷ Additional augmentation is required in Mid-North when the combination of generation in S3, S4, S5, S6, S7, S8, S9 >2,000 MW in the 2024 ISP.

Marginal Loss Factor									
Technology	Voltage (kV) 2025-26 MLF								
Wind	132	0.8456					0.8456		
Marginal Loss Factor Robustness									
MLF Robustness score	2029-30	2034-35	2039-40						
	F	F	F						

Congestion information – calendar year 2024								
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation					
S>NIL_BWMP_HUWT	144.6	1,625,369.8	Generation contributing to flow from Hummocks to Waterloo 132 kV on trip of the Blyth West – Munno Para 275 kV line					
S>NIL_HUWT_STBG3	316.3	3,220,101.2	Generation contributing to flow from Snowtown to Bungama 132 kV on trip of the Hummocks – Waterloo 132 kV line					

VRE semi-scheduled curtailment – calendar year 2024										
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)				
WPWF	Wattle Point	Wind Farm	91	3.6	0.9	8,257				
Historical hosting capacity indicator for 20% network spill threshold ⁸										
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)				
WPWF	Wattle Point	Wattle Point Wind Farm		54	66	123				
VRE curtailmen	t – ISP forecast									
	2025-	2026	2026	-2027	2027-2028					
Scenario	Curtailment (%)	Curtailment (%) Economic offloading (%)		Economic offloading (%)	Curtailment (%)	Economic offloading (%)				
Step Change	0	0 10		9 0		9				

⁸ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

A5.9 S5 – Northern South Australia

REZ information

⁹ Additional augmentation is required in Mid-North when the combination of generation in S3, S4, S5, S6, S7, S8, S9 >2,000 MW or in Eyre Peninsula when (0.5 x S5), S8, S9 > 1,125 MW in the 2024 ISP.

Marginal Loss Factor								
Technology	Voltage (kV)	2025-26 MLF						
Solar	132	0.9725						
	275	0.9735						
Wind	275	0.9689 – 0.9735						
Marginal Loss Factor Robustness								
	2029-30	2034-35	2039-40					
MLF Robustness score	С	С	С					

Congestion information – calendar year 2024							
Constraint IDBinding hoursMarginal value (\$)			Most affected generation				
S>NIL_HUWT_STBG3	316.3	3,220,101.2	Generation contributing to flow from Snowtown to Bungama 132 kV on trip of the Hummocks – Waterloo 132 kV line				

VRE semi-scheduled curtailment – calendar year 2024										
DUID	Generat	or name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)				
BNGSF1	Bungala One	e Solar Farm	110	0.2	0.1	554				
BNGSF2	Bungala Two	Solar Farm	110	0.2	0.1	600				
LGAPWF1	Lincoln Gap	Wind Farm	123	0.3	0.1	971				
LGAPWF2	Lincoln Gap	Wind Farm	85	0.3	0.1	784				
PAREPS1	Port Augusta Rene	wable Energy Park	77	0.8	0.1	1,312				
PAREPW1	Port Augusta Rene	wable Energy Park	201	1.3	1.0	9,092				
Historical hosti	ng capacity indicato	or for 20% network s	spill threshold ¹⁰							
DUID	Generat	or name	HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)				
PAREPS1	Port Augusta Rene	wable Energy Park	300	300	300	300				
PAREPW1	Port Augusta Rene	wable Energy Park	300	300	300	300				
VRE curtailmer	nt – ISP forecast									
	2025-	2026	2026	-2027	2027-2028					
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)				
Step Change	0	7	0	8	0	7				

¹⁰ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

A5.10 S6 – Leigh Creek

REZ information

¹¹ Additional augmentation is required in Mid-North when the combination of generation in S3, S4, S5, S6, S7, S8, S9 >2,000 MW in the 2024 ISP.

Marginal Loss Factor										
Technology	Voltage (kV)	Voltage (kV) 2025-26 MLF								
-	-	-						-		
Marginal Loss Factor Robustnes	s									
MLF Robustness score	2029-30	2034-35	2039-40							
	E	E	E							

Congestion and curtailment

Congestion information – calendar year 2024							
Constraint ID	onstraint ID Binding Marginal hours value (\$)		Most affected generation				
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2024									
DUID	Generator name		Generator name		Generator name Maximum Average Capacity (MW) curtailment (%)		Average curtailment (MW)	Curtailment (MWh)	
-	-		-	-	-	-			
Historical hosting capacity indicator for 20% network spill threshold									
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)			
-	-	-		-	-	-			
VRE curtailmer	nt – ISP forecast								
	2025-	2026	2026	2026-2027		-2028			
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)			
Step Change	-			-	-	-			

ISP forecast												
VRE outlook		S	Solar PV ((MW)					Wind (I	MW)		
	Existing/			Projected	i		Existing/			Projected	ł	
	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030
Step Change	-	-	-	-	-	-	-	-	-	-	-	-
Transmission	access expans	ion for S	tep Chan	ge								
There are r	no existing, com	mitted, ar	nticipated			is REZ and RE for this		outcome	s all scena	arios did r	not project	any
Committed, Anticipated, and Actionable Transmission Projects			Timing Status			Additional REZ hosting capacity provided (MW)						
-					-		-			-		

A5.11 S7 – Roxby Downs

REZ information

¹² Additional augmentation is required in Mid-North when the combination of generation in S3, S4, S5, S6, S7, S8, S9 >2,000 MW in the 2024 ISP.

Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039-4	9-40 2049-50	
	F	F	F	A	А		A
Climate hazard							
Temperature score		E	Bushfire score			С	

Marginal Loss Factor										
Technology	Voltage (kV)	2025-26 MLF								
-	-	-								
Marginal Loss Factor Robustnes	s									
	2029-30	2034-35	2039-40							
MLF Robustness score	F	F	F							

Congestion information – calendar year 2024									
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation						
-	-	-	-						

VRE semi-scheduled curtailment – calendar year 2024										
DUID	Generator name		Generator name		Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
-	-				-	-				
Historical hosting capacity indicator for 20% network spill threshold										
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)				
-	-		-	-	-	-				
VRE curtailmen	nt – ISP forecast									
	2025-	-2026	2026	-2027	2027-2028					
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)				
Step Change	-	-	0	27	0	19				

A5.12 S8 – Eastern Eyre Peninsula

REZ information

¹³ Additional augmentation is required in Mid-North when the combination of generation in S3, S4, S5, S6, S7, S8, S9 >2,000 MW or in Eyre Peninsula when (0.5 x S5), S8, S9 > 1,125 MW in the 2024 ISP.

Marginal Loss Factor									
Technology	Voltage (kV)	2025-26 MLF							
	33	33 0.9403							
Wind	132 0.9467								
Marginal Loss Factor Robustnes	s								
MLF Robustness score	2029-30	2034-35	2039-40						
WLF RODUSTIESS SCORE	E	E	E						

Congestion information – calendar year 2024									
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation						
-	-	-	-						

VRE semi-scheduled curtailment – calendar year 2024										
DUID	Generator name		Generator name		Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
CATHROCK	Cathedra	I Rocks	66	1.0	0.2	1,562				
MTMILLAR	Mt Millar W	/ind Farm	70	2.9	0.6	5,666				
Historical hosti	ng capacity indicato	or for 20% network	spill threshold							
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)				
-	-			-	-					
VRE curtailmen	t – ISP forecast									
	2025-	2026	2026	-2027	2027	-2028				
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)				
Step Change	0	5	0	4	0	6				

A5.13 S9 – Western Eyre Peninsula

REZ information

Western Eyre Peninsula REZ maj	р							
	Streaky Bay	Elliston	Wind Solar Hy Existing 🔥 🍪 🤅 Future 🚷 🍪 🤅	SP Project inscion Line inscion Line inscion Line insistin Line ins Location Control Control C				
Overview			Network Transf	fer Capability				
The Western Eyre Peninsula REZ s network as the Eastern Eyre Penins wind resource quality. There are no or committed within this REZ. Jurisdictional body	sula. It has grade o o generators curre	C solar and ently connected	capability of this the MN1-SA mic	tional network cap zone to accommo I-north and NSA1 r	date new genera	tion is subject to		
The Western Eyre Peninsula REZ's	jurisdictional plar	ning body is Elec						
Resource metrics								
Resource		Solar			Wind			
	C C							
Resource Quality								
		4,000			1,500			
Resource Quality	2029-30	4,000 2039-40	2049-50	2029-30	1,500 2039-40	2049-50		
Resource Quality Renewable Potential (MW) Demand Correlation	2029-30 F	4,000	2049-50 F	2029-30 A	1,500	2049-50 A		
Resource Quality Renewable Potential (MW)		4,000 2039-40			1,500 2039-40			

¹⁴ Additional augmentation is required in Mid-North when the combination of generation in S3, S4, S5, S6, S7, S8, S9 >2,000 MW or in Eyre Peninsula when (0.5 x S5), S8, S9 > 1,125 MW in the 2024 ISP.

Marginal Loss Factor										
Technology	Voltage (kV)	2025-26 MLF								
-	-	-								
Marginal Loss Factor Robustnes	s									
MLF Robustness score	2029-30	2034-35	2039-40							
	-	-	-							

Congestion and curtailment

Congestion information – calendar year 2024								
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation					
-	-	-	-					

VRE semi-sche	VRE semi-scheduled curtailment – calendar year 2024											
DUID	Generator name		Generator name		Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
-	-		-	-	-	-						
Historical hosting capacity indicator for 20% network spill threshold												
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)						
-	-		-	-	-	-						
VRE curtailmer	nt – ISP forecast											
	2025-	2026	2026-2027		2027	-2028						
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)						
Step Change	-	-	-	-	-	-						

ISP forecast												
		5	Solar PV ((MW)					Wind (I	MW)		
VRE outlook	Existing/ Projected				I		Existing/			Projected	ł	
	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 20292029- 2030committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030		
Step Change	-	-	-	-	-	-	-	-	-	-	-	-
Transmission	access expans	ion for S	tep Chan	ge								
There is no e	existing, commit		•			-	d the modelling ditional VRE for			ressive C	<i>hange</i> and	d Step
Committed, Anticipated, and Actionable Transmission Projects			Timing	g Status			Additional REZ hosting capacity provided (MW)					
-					-		-			-		

A5.14 S10 – South East South Australia Coast

REZ information

Marginal Loss Factor							
Technology	Voltage (kV)	2025-26 MLF					
-	-	-					

Congestion and curtailment

Congestion information – calendar year 2024							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2024								
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
-	-				-	-		
Historical hosting capacity indicator for 20% network spill threshold								
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)		
-	-		-	-	-	-		
VRE curtailment – ISP forecast								
	2025-2026		2026	-2027	2027-2028			
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)		
Step Change	-	-	-	-	-	-		

	Solar PV (MW)					Wind (MW)						
VRE outlook	Existing/	Projected			Existing/	Projected						
	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030
Step Change	-	-	-	-	-	-	-	-	-	-	-	-
Transmission access expansion for Step Change												
There is no existing, committed, anticipated VRE projects for this REZ and the modelling outcomes, for all scenarios and the offshore wind sensitivities, did not project any additional VRE for this REZ. Therefore, no VRE curtailment or transmission expansion occurs in this REZ.												
Committed, Anticipated, and Actionable Transmission Projects		Timing S		Statu	Status		hostin	Additional REZ hosting capacity provided (MW)				

A5.15 Non-REZ

Congestion information – calendar year 2024							
Constraint ID	straint ID Binding M hours va		Most affected generation				
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2024								
DUID	Generator name	Maximum Average Capacity (MW) curtailment (%)		Average curtailment (MW)	Curtailment (MWh)			
ADPPV1	Adelaide Desalination Plant	19	0.2	0.0	57			
BOWWPV1	Bolivar Waste Water Treatment Plant	6	0.0	0.0	0			
HVWWPV1	Happy Valley Water Treatment Plant	8	0.0	0.0	0			
STARHLWF	Starfish Hill Wind Farm	35	0.0	0.0	0			
TB2SF1	Tailem Bend 2 Hybrid Renewable Power Station	87	0.4	0.1	709			
TBSF1	Tailem Bend Solar Project 1	95	0.1	0.0	121			
Historical hosting capacity indicator for 20% network spill threshold								
DUID	Generator name	HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)			
-	-	-	-	-	-			