

Appendix A4. Queensland

July 2025

Appendix to the 2025 Enhanced Locational Information Report

We acknowledge the Traditional Custodians of the land, seas and waters across Australia. We honour the wisdom of Aboriginal and Torres Strait Islander Elders past and present and embrace future generations.

We acknowledge that, wherever we work, we do so on Aboriginal and Torres Strait Islander lands. We pay respect to the world's oldest continuing culture and First Nations peoples' deep and continuing connection to Country; and hope that our work can benefit both people and Country.

'Journey of unity: AEMO's Reconciliation Path' by Lani Balzan

AEMO Group is proud to have launched its first <u>Reconciliation Action Plan</u> in May 2024. 'Journey of unity: AEMO's Reconciliation Path' was created by Wiradjuri artist Lani Balzan to visually narrate our ongoing journey towards reconciliation - a collaborative endeavour that honours First Nations cultures, fosters mutual understanding, and paves the way for a brighter, more inclusive future.

Important notice

Purpose

This report has been published to implement the Energy Security Board (ESB) 'enhanced information' transmission access reforms. The report is intended to support more informed investment and decision-making processes in the National Electricity Market, by collating public metrics and indicators that represent important locational characteristics of the power system. This report includes only publicly available information from existing AEMO, industry, and stakeholder publications.

AEMO publishes this *Enhanced Locational Information (ELI) Report* pursuant to its functions in section 49(2)(c) of the National Electricity Law. This publication is generally based on information available to AEMO as at 1 April 2025, unless otherwise indicated.

Disclaimer

AEMO has made reasonable efforts to ensure the quality of the information in this publication but cannot guarantee that information, forecasts and assumptions are accurate, complete or appropriate for your circumstances.

Modelling work performed as part of preparing this publication inherently requires assumptions about future behaviours and market interactions, which may result in forecasts that deviate from future conditions. There will usually be differences between estimated and actual results, because events and circumstances frequently do not occur as expected, and those differences may be material.

This publication does not include all of the information that an investor, participant or potential participant in the National Electricity Market might require, and does not amount to a recommendation of any investment.

Anyone proposing to use the information in this publication (which includes information and forecasts from third parties) should independently verify its accuracy, completeness and suitability for purpose, and obtain independent and specific advice from appropriate experts.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this publication:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this publication; and
- are not liable (whether by reason of negligence or otherwise) for any statements, opinions, information or other matters contained in or derived from this publication, or any omissions from it, or in respect of a person's use of the information in this publication.

Copyright

© 2025 Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the <u>copyright permissions</u> on AEMO's website.

Version control

Version	Release date	Changes
1.0	09/07/2025	Initial release.

Contents

A4.1	Introduction	4
A4.2	Average forecast daily usable battery state of charge	5
A4.3	Projected generation build	6
A4.4	REZs overview	12
A4.5	Q1 – Far North Queensland	13
A4.6	Q2 – North Queensland Clean Energy Hub	17
A4.7	Q3 – Northern Queensland	21
A4.8	Q4 – Isaac	25
A4.9	Q5 – Barcaldine	29
A4.10	Q6 – Fitzroy	33
A4.11	Q7 – Wide Bay	37
A4.12	Q8 – Darling Downs	41
A4.13	Q9 – Banana	45
A4.14	Non-REZ	48

Figures

Figure 1	Average forecast daily usable state of charge (SoC) for batteries across Queensland, 2024 ISP Step Change scenario, 2030 (%)	5
Figure 2	Projected generation capacity (MW) and across Queensland, under the 2024 ISP <i>Step Change</i> projected build, 2025	6
Figure 3	Projected generation capacity (MW) and across Queensland, under the 2024 ISP <i>Step Change</i> projected build, 2030	7
Figure 4	Projected generation capacity (MW) and across Queensland, under the 2024 ISP <i>Step Change</i> projected build, 2040	8
Figure 5	Annual generation energy production (MWh) across Queensland, 2024	9
Figure 6	Projected annual generation energy production (MWh) across Queensland, under the 2024 ISP Step Change projected build, 2030	10
Figure 7	Projected annual generation energy production (MWh) across Queensland, under the 2024 ISP Step Change projected build, 2040	11
Figure 8	Overview of Queensland region and REZs	12

A4.1 Introduction

This appendix provides detailed locational indicators and metrics for Queensland. This appendix contains the following information:

- The average forecast daily usable stage of charge (SoC) for batteries (planted under the 2024 ISP *Step Change* scenario) across Queensland in 2030 (Section A4.1).
- The generation and storage capacity and annual generation energy production across Queensland under the 2024 ISP *Step Change* projected build in 2024 (actual annual production) and 2025, 2030, and 2040 (Section A4.3).
- An overview map of the Queensland region and associated REZs (Section A4.4).
- Detailed locational indicators and metrics for each REZ within Queensland (Sections A4.5 to A4.14).

This appendix uses existing sources of publicly available information which includes the Final 2024 ISP.

A4.2 Average forecast daily usable battery state of charge

Figure 1 presents the average forecast daily usable stage of charge (SoC) for batteries (planted under the Step Change scenario) across Queensland in 2030.

A4.3 Projected generation build

Figure 2 to **Figure 7** show the generation and storage capacity and annual generation energy production across Queensland under the 2024 ISP *Step Change* projected build in 2024 (actual annual production) and 2025, 2030, and 2040¹.

Figure 2 Projected generation capacity (MW) and across Queensland, under the 2024 ISP Step Change projected build, 2025

¹ Units smaller than 50 MW have been omitted from the capacity map, and those smaller than 125 GWh annually have been omitted from the energy production maps. Icon sizes do not represent area of land usage. Icon locations have been arranged for visual clarity. ISP projects have been placed within their relevant ISP sub-region or REZ but do not represent specific anticipated connection points.

Figure 3 Projected generation capacity (MW) and across Queensland, under the 2024 ISP Step Change projected build, 2030

Figure 4 Projected generation capacity (MW) and across Queensland, under the 2024 ISP Step Change projected build, 2040

Figure 5 Annual generation energy production (MWh) across Queensland, 2024

Note: This figure makes use of historical calendar year generation data and is hence presented for the year 2024. All other build figures make use of the 2024 *ISP Step Change* projected build.

Figure 6 Projected annual generation energy production (MWh) across Queensland, under the 2024 ISP Step Change projected build, 2030

Figure 7 Projected annual generation energy production (MWh) across Queensland, under the 2024 ISP Step Change projected build, 2040

A4.4 REZs overview

The following sections of this appendix provides detailed locational indicators and metrics for each REZ in Queensland. **Figure 8** provides an overview map of the Queensland region and associated REZs. Appendix A2 provides a guide to interpreting the REZ scorecards presented throughout the remainder of this appendix.

Figure 8 Overview of Queensland region and REZs

A4.5 Q1 – Far North Queensland

REZ information

² Queensland energy policies may be subject to change from state government review processes.

³ See <u>https://www.epw.qld.gov.au/__data/assets/pdf_file/0030/32988/queensland-supergrid-infrastructure-blueprint.pdf.</u>

	transform the system in line with the Queensland clean energy targets described in the QEJP. The investments outlined in this document will build Queensland's SuperGrid.						
Queensland Government	2023 Queenslan Roadmap ⁴	d REZ	Outlines the path solar generation	nway for connectir	ng around	1 22 GW	of new wind and
Powerlink	Transmission Ar Report ⁵	Transmission Annual Planning Report ⁵ Existing Transmission Planning Function.					
Resource metrics							
Resource		Solar		Wind			
Resource Quality		С		A			
Renewable Potential (MW)		1,100		2,280			
Demos I O and a firm	2029-30	2039-40	2049-50	2029-30	203	9-40	2049-50
Demand Correlation	F F		F	В	E	3	В
Climate hazard	•						
Temperature score		В		Bushfire score A			A

Marginal loss factors

Marginal Loss Factor								
Technology	Voltage (kV) 2025-26 MLF							
Wind	275	0.9649 – 0.9696						
Marginal Loss Factor Robustness								
	2029-30	2034-35	2039-40					
MLF Robustness score	E	E	E					

⁴ See <u>https://www.epw.qld.gov.au/___data/assets/pdf_file/0036/49599/REZ-roadmap.pdf</u>.

⁵ See <u>https://www.powerlink.com.au/planning-report/transmission-annual-planning-report-2024</u>.

Congestion and curtailment

Congestion information – calendar year 2024							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2024									
DUID	Generator name		Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)	
KABANWF1	Kaban Wii	nd Farm	152	0.9	0.4	3,562			
MEWF1	Mount Emerald Wind Farm		178	1.4	0.7	6,491			
Historical hosting capacity indicator for 20% network spill threshold ⁶									
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)			
KABANWF1	Kaban Wii	nd Farm	300	300	300	300			
MEWF1	Mount Emeral	d Wind Farm	300	300	300	300			
VRE curtailmer	nt – ISP forecast								
	2025-	2026	2026-	2027	2027-2028				
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)			
Step Change	0	1	0	3	0	2			

⁶ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

ISP forecast

A4.6 Q2 – North Queensland Clean Energy Hub

REZ information

⁷ Queensland energy policies may be subject to change from state government review processes.

Queensland Government	Queensland Sup infrastructure Bl		includes the maj transform the sy targets describe	Outlines the optimal infrastructure pathway for the QEJP, and includes the major electricity infrastructure investments required to transform the system in line with the Queensland clean energy targets described in the QEJP. The investments outlined in this document will build Queensland's SuperGrid.				
Queensland Government	2023 Queenslan Roadmap ⁹	d REZ	Outlines the path solar generation	nway for connectir	ig around	1 22 GW	of new wind and	
Powerlink	Transmission Ar Report ¹⁰	nual Planning	Existing Transmi	mission Planning Function.				
Resource metrics								
Resource		Solar		Wind				
Resource Quality		А		В				
Renewable Potential (MW)		8,000		18,600				
Denne d O service d'an	2029-30	2039-40	2049-50	2029-30	2039	9-40	2049-50	
Demand Correlation	F F		F	А	A A		A	
Climate hazard	·		·					
Temperature score		D		Bushfire score C			С	

Marginal loss factors

Marginal Loss Factor								
Technology	Voltage (kV)	2025-26 MLF						
Solar	132	0.9516 – 0.9816						
Wind	132	0.9813						
Marginal Loss Factor Robustnes	s							
	2029-30	2034-35	2039-40					
MLF Robustness score	E	E	E					

 $^{^{8} \}text{ See } \underline{\text{https://www.epw.qld.gov.au/} } \underline{\text{data/assets/pdf_file/0030/32988/queensland-supergrid-infrastructure-blueprint.pdf}}.$

⁹ See <u>https://www.epw.qld.gov.au/___data/assets/pdf_file/0036/49599/REZ-roadmap.pdf</u>.

¹⁰ See <u>https://www.powerlink.com.au/planning-report/transmission-annual-planning-report-2024</u>.

Congestion and curtailment

Congestion information – calendar year 2024							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2024								
DUID	Generator name		Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
KEPSF1	Kennedy Er	nergy Park	15	1.1	0.0	295		
KEPWF1	Kennedy Energy Park		43	0.3	0.1	454		
KSP1	Kidston Solar Project		47.7	1.0	0.1	1,160		
Historical hosti	ng capacity indicate	or for 20% network	spill threshold					
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)		
-	-				-	-		
VRE curtailmen	t – ISP forecast							
	2025-	2026	2026	-2027	2027	-2028		
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)		
		••••••••••••••••••••••••••••••••••••••		• • •		• • •		

ISP forecast

A4.7 Q3 – Northern Queensland

REZ information

¹¹ Queensland energy policies may be subject to change from state government review processes.

¹² See <u>https://www.epw.qld.gov.au/__data/assets/pdf_file/0030/32988/queensland-supergrid-infrastructure-blueprint.pdf</u>.

¹³ See https://www.epw.qld.gov.au/__data/assets/pdf_file/0036/49599/REZ-roadmap.pdf.

Powerlink	Transmission Annual Planning Report ¹⁴ Existing Trans			mission Planning Function.			
Resource metrics							
Resource		Solar Wind					
Resource Quality	В			E			
Renewable Potential (MW)	3,400			-			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	203	9-40	2049-50
Demand Correlation	F	F	F	A/B	A	/B	A/B
Climate hazard							
Temperature score	С			Bushfire score		E	

Marginal loss factors

Marginal Loss Factor					
Technology	Voltage (kV)	Voltage (kV) 2025-26 MLF			
Solar	132	0.9363 – 1.0151			
Solar	275	275 0.9475			
Marginal Loss Factor Robustnes	Marginal Loss Factor Robustness				
MLE Debustmens seems	2029-30	2034-35	2039-40		
MLF Robustness score	E	E	E		

¹⁴ See <u>https://www.powerlink.com.au/planning-report/transmission-annual-planning-report-2024</u>.

Congestion and curtailment

Congestion information – calendar year 2024			
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation
Q>NIL_TV66	43.5	1,416,752.1	Generation contributing to flows on 66 kV network in Townsville area

VRE semi-scheduled curtailment – calendar year 2024						
DUID	Generato	r name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
CLARESF1	Clare Sol	ar Farm	100	0.8	0.2	1,912
HAUGHT11	Haughton Solar	Farm Stage 1	100	2.1	0.6	4,900
RRSF1	Ross River S	Solar Farm	116	1.0	0.3	2,369
SMCSF1	Sun Metals Solar Farm		121	0.9	0.2	1,943
Historical hosting capacity indicator for 20% network spill threshold ¹⁵						
DUID	Generato	or name	HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)
CLARESF1	Clare Sola	ar Farm	300	300	300	300
HAUGHT11	Haughton Solar	Farm Stage 1	150	300	300	300
RRSF1	Ross River S	Solar Farm	300	300	300	300
SMCSF1	Sun Metals S	Solar Farm	300	300	300	300
VRE curtailmen	nt – ISP forecast					
	2025-	2026	2026-20	027	2027-2028	
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)
Step Change	0	1	0	4	0	4

¹⁵ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

ISP forecast

A4.8 Q4 – Isaac

REZ information

The Isaac REZ has grade B solar resource quality covering Collinsville and Mackay, and has a number of large-scale solar generation projects already in operation. There are numerous potential pumped hydro locations to the north east and south east of Nebo. This REZ has a good diversity of resources – wind, solar and storage. Locating storage in this zone could maximise transmission utilisation towards Brisbane.

In September 2022, the Queensland Government released its QEJP and the SuperGrid Blueprint which calls for the large-scale pumped hydro station, Pioneer-Burdekin. Pioneer-Burdekin is currently progressing through Queensland Government assessment and decision-making processes and AEMO is yet to consider it an anticipated project (based on AEMO's criteria). AEMO recognises the Queensland Government's intention to build the project. Inclusion of Pioneer-Burdekin is expected to impact the ultimate REZ generation build and timings within this REZ. The Isaac REZ forms part of the NQ transmission backbone from Nebo to Strathmore. Due to the existing high voltage infrastructure, there are no augmentation options specifically for this REZ. The associated augmentations are the NQ2 group constraint and CQ-NQ flow path augmentations that facilitate power from Q1 to Q5 to be transmitted south to the load centres. The network has a transmission limit of 2,500 MW in summer peak and summer typical conditions and 2,750 MW for winter reference conditions.

REZ generation build and timings within this REZ.			
Jurisdictional body Reference		Function	
Queensland Government	Queensland Energy and Jobs Plan (QEJP) ¹⁶	Overarching plan to reach targets for Queensland's clean energy system of 50% renewable energy by 2030, 70% by 2032 and 80% by 2035. Describes Powerlink's roles to:	

¹⁶ Queensland energy policies may be subject to change from state government review processes.

				ated REZ Delivery (subject to legisla		DB) for ti	ransmission in
			 progress early design and planning for the SuperGrid backbone transmission. 				
Queensland Government	Queensland Sup infrastructure Bl		Outlines the optimal infrastructure pathway for the QEJP, and includes the major electricity infrastructure investments required to transform the system in line with the Queensland clean energy targets described in the QEJP. The investments outlined in this document will build Queensland's SuperGrid.				ents required to ean energy
Queensland Government	2023 Queenslar Roadmap ¹⁸	nd REZ	Outlines the pathway for connecting around 22 GW of new wind and solar generation.				
Powerlink	Transmission Ar Report ¹⁹	nnual Planning	Existing Transmission Planning Function.				
Resource metrics							
Resource		Solar		Wind			
Resource Quality		В		D			
Renewable Potential (MW)		6,900			3,8	00	
Demond Connelation	2029-30	2039-40	2049-50	2029-30	203	9-40	2049-50
Demand Correlation	F	F	F	A	ŀ	۹.	A
Climate hazard							
Temperature score		С		Bushfire score			С

Marginal loss factors

Marginal Loss Factor					
Technology	Voltage (kV)	Voltage (kV) 2025-26 MLF			
Solar	33 - 66	0.9379 – 0.9413			
Solar	132	0.9410 – 0.9463			
Wind	275 0.9430				
Marginal Loss Factor Robustness					
MLF Robustness score	2029-30	2034-35	2039-40		
	В	А	A		

¹⁷ See <u>https://www.epw.qld.gov.au/___data/assets/pdf_file/0030/32988/queensland-supergrid-infrastructure-blueprint.pdf</u>.

¹⁸ See <u>https://www.epw.qld.gov.au/__data/assets/pdf_file/0036/49599/REZ-roadmap.pdf</u>.

¹⁹ See <u>https://www.powerlink.com.au/planning-report/transmission-annual-planning-report-2024</u>.

Congestion and curtailment

Congestion information – calendar year 2024			
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation
-	-	-	-

VRE semi-sche	eduled curtailment –	calendar year 20)24			
DUID	Generato	r name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
CLERMSF1	Clermont Solar Farm		75	0.6	0.1	988
CLRKCWF1	Clarke Creek	Wind Farm	338	0.0	0.0	0
CSPVPS1	Collinsville Solar P'	V Power Station	40	0.9	0.1	725
DAYDSF1	Daydream S	olar Farm	150	0.9	0.3	2,986
HAMISF1	Hamilton Sc	olar Farm	56	0.7	0.1	823
HAYMSF1	Hayman So	lar Farm	50	0.8	0.1	843
LILYSF1	Lilyvale So	ar Farm	100	0.3	0.1	488
MIDDLSF1	Middlemount	Solar Farm	26	1.0	0.1	512
RUGBYR1	Rugby Run Solar Farm		65	1.2	0.2	2,050
WHITSF1	Whitsunday Solar Farm		56	0.7	0.1	793
Historical host	ing capacity indicat	or for 20% netwo	rk spill threshold ²⁰			
DUID	Generato	r name	HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)
CSPVPS1	Collinsville Solar P	V Power Station	300	300	300	300
DAYDSF1	Daydream S	olar Farm	300	300	300	300
HAMISF1	Hamilton Sc	olar Farm	300	300	300	300
HAYMSF1	Hayman So	lar Farm	300	300	300	300
LILYSF1	Lilyvale So	ar Farm	300	300	300	300
MIDDLSF1	Middlemount	Solar Farm	300	300	300	300
WHITSF1	Whitsunday S	Solar Farm	300	300	300	300
VRE curtailme	nt – ISP forecast					
	2025-	2026	2026-2	027	2027	-2028
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)
Step Change	0	1	0	3	0	3

²⁰ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

ISP forecast

A4.9 Q5 - Barcaldine

REZ information

Barcaldine REZ map					
Aramac Barcaldine Barcaldine Barcaldine Compare and parenters Comparente					
Overview		Network Transfer Capability			
This REZ has grade A solar resource quality but is remote from the Queensland transmission backbone.		The current total REZ transmission limit for existing and new VRE before any network upgrade in Barcaldine is approximately 85 MW.			
Queensland transmission backbo	ne.	before any network upgrade in Barcaldine is approximately 85 MW.			
Queensland transmission backbo Jurisdictional body	Reference Queensland Energy and Jobs	 before any network upgrade in Barcaldine is approximately 85 MW. Function Overarching plan to reach targets for Queensland's clean energy system of 50% renewable energy by 2030, 70% by 2032 and 80% by 2035. Describes Powerlink's roles to: be the Designated REZ Delivery Body (RDB) for transmission in QREZ regions (subject to legislation) progress early design and planning for the SuperGrid backbone 			
Queensland transmission backbo	Reference Queensland Energy and Jobs Plan (QEJP) ²¹ Queensland SuperGrid	 before any network upgrade in Barcaldine is approximately 85 MW. Function Overarching plan to reach targets for Queensland's clean energy system of 50% renewable energy by 2030, 70% by 2032 and 80% by 2035. Describes Powerlink's roles to: be the Designated REZ Delivery Body (RDB) for transmission in QREZ regions (subject to legislation) progress early design and planning for the SuperGrid backbone transmission. Outlines the optimal infrastructure pathway for the Queensland Energy and Jobs Plan, and includes the major electricity infrastructure investments required to transform the system in line with the Queensland clean energy targets described in the QEJP. The investments outlined in this document will build Queensland's 			

²¹ Queensland energy policies may be subject to change from state government review processes.

²² See <u>https://www.epw.qld.gov.au/___data/assets/pdf__file/0030/32988/queensland-supergrid-infrastructure-blueprint.pdf.</u>

²³ See <u>https://www.epw.qld.gov.au/__data/assets/pdf_file/0036/49599/REZ-roadmap.pdf</u>.

²⁴ See <u>https://www.powerlink.com.au/planning-report/transmission-annual-planning-report-2024.</u>

Resource metrics							
Resource	Solar			Wind			
Resource Quality	A			D			
Renewable Potential (MW)	8,000			3,900			
Demand Correlation	2029-30	2039-40	2049-50	2029-30	2039	9-40	2049-50
	F	F	F	A	A	4	А
Climate hazard							
Temperature score		D		Bushfire score			С

Marginal loss factors

Marginal Loss Factor					
Technology	Voltage (kV)	2025-26 MLF			
Solar	132 0.9410				
Marginal Loss Factor Robustnes	Marginal Loss Factor Robustness				
MI E Dahuataana aaaaa	2029-30	2034-35	2039-40		
MLF Robustness score	F	F	F		

Congestion and curtailment

Congestion information – calendar year 2024				
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation	
-	-	-	-	

VRE semi-scheduled curtailment – calendar year 2024								
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
-	-		-	-	-	-		
Historical hosting capacity indicator for 20% network spill threshold								
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)		
-	-		-	-	-	-		
VRE curtailment – ISP forecast								
	2025-2026		2026	2026-2027 2027-202		-2028		
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)		
Step Change	0 1		0	13	0	12		

ISP forecast

A4.10Q6 – Fitzroy

REZ information

²⁵ See <u>https://aemo.com.au/consultations/current-and-closed-consultations/2023-transmission-expansion-options-report-consultation.</u>

²⁶ Queensland energy policies may be subject to change from state government review processes.

²⁷ See https://www.epw.qld.gov.au/__data/assets/pdf_file/0030/32988/queensland-supergrid-infrastructure-blueprint.pdf.

Queensland Government	2023 Queenslar Roadmap ²⁸	nd REZ	Outlines the pathway for connecting around 22 GW of new wind and solar generation.				
Powerlink	Transmission Ar Report ²⁹	nnual Planning	Existing Transmission Planning Function.				
Resource metrics							
Resource	Solar			Wind			
Resource Quality	В			С			
Renewable Potential (MW)	7,533			3,500			
Demond Convolution	2029-30	2039-40	2049-50	2029-30	2039	9-40	2049-50
Demand Correlation	F	F	F	А	A	4	A
Climate hazard				·			÷
emperature score C			Bushfire score B		В		

Marginal loss factors

Marginal Loss Factor						
Technology	Voltage (kV) 2025-26 MLF					
Solar	132	32 0.9328				
Marginal Loss Factor Robustness						
MLE Debustment seems	2029-30	2034-35	2039-40			
MLF Robustness score	A	A	A			

²⁸ See <u>https://www.epw.qld.gov.au/__data/assets/pdf_file/0036/49599/REZ-roadmap.pdf.</u>

²⁹ See <u>https://www.powerlink.com.au/planning-report/transmission-annual-planning-report-2024</u>.

Congestion and curtailment

Congestion information – calendar year 2024						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
Q>>NIL_BCCP_RGLC	26.8	92,130.5	Generation contributing to flow from Raglan to Larcom Creek 275 kV on trip of the Bouldercombe – Calliope River 275 kV line			

VRE semi-scheduled curtailment – calendar year 2024								
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
MOUSF1	Moura Solar Farm		82	0.3	0.1	572		
Historical hosting capacity indicator for 20% network spill threshold								
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)		
-	-		-	-	-	-		
VRE curtailment – ISP forecast								
Scenario	2025-2026		2026-2027		2027-2028			
	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)		
Step Change	0	1	0	4	0	2		

ISP forecast

A4.11 Q7 – Wide Bay

REZ information

³⁰ Queensland energy policies may be subject to change from state government review processes.

Queensland Government	Queensland Sup infrastructure Bl		Outlines the Optimal infrastructure pathway for the QEJP, and includes the major electricity infrastructure investments required to transform the system in line with the Queensland clean energy targets described in the QEJP. The investments outlined in this document will build Queensland's SuperGrid.				
Queensland Government	2023 Queenslan Roadmap ³²	id REZ	Outlines the path solar generation	nway for connectir	ig around	22 GW	of new wind and
Powerlink	Transmission Ar Report ³³	nual Planning	Existing Transmi	ssion Planning Fu	nction		
Resource metrics							
Resource		Solar		Wind			
				E			
Resource Quality		С			E		
Resource Quality Renewable Potential (MW)		C 2,200			E 1,1		
Renewable Potential (MW)	2029-30	-	2049-50	2029-30		00	2049-50
	2029-30 F	2,200	2049-50 F	2029-30 A	1,1	00)-40	2049-50 A
Renewable Potential (MW)		2,200 2039-40			1,1 203 9	00)-40	

Marginal loss factors

Marginal Loss Factor										
Technology Voltage (kV) 2025-26 MLF										
Solar	132 0.9772 – 0.9787									
Marginal Loss Factor Robustnes	Marginal Loss Factor Robustness									
	2029-30	2034-35	2039-40							
MLF Robustness score	A	A	A							

³¹ See <u>https://www.epw.qld.gov.au/__data/assets/pdf_file/0030/32988/queensland-supergrid-infrastructure-blueprint.pdf</u>.

³² See <u>https://www.epw.qld.gov.au/___data/assets/pdf_file/0036/49599/REZ-roadmap.pdf.</u>

³³ See <u>https://www.powerlink.com.au/planning-report/transmission-annual-planning-report-2024</u>.

Congestion and curtailment

Congestion information – calend	lar year 2024		
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation
-	-	-	-

VRE semi-sche	duled curtailment –	calendar year 2024	1				
DUID	Generato	or name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)	
CHILDSF1	Childers S	olar Farm	56	0.2	0.0	244	
SRSF1	Susan River	Solar Farm	75	0.2	0.0	212	
WOOLGSF1	Woolooga S	Solar Farm	176	0.2	0.1	809	
Historical hosti	ng capacity indicato	or for 20% network	spill threshold ³⁴				
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)	
CHILDSF1	Childers S	Childers Solar Farm		300	300	300	
SRSF1	Susan River	Solar Farm	187	236	105	281	
WOOLGSF1	Woolooga S	Solar Farm	300	300	300	300	
VRE curtailmen	t – ISP forecast						
	2025-	2026	2026-2027		2027	-2028	
Scenario	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)	
Step Change	0 3		0	5	0	6	

³⁴ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

ISP forecast

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Additional REZ hosting capacity provided (MW)
-	-	-	-

A4.12 Q8 – Darling Downs

REZ information

³⁵ Queensland energy policies may be subject to change from state government review processes.

³⁶ See https://www.epw.qld.gov.au/__data/assets/pdf_file/0030/32988/queensland-supergrid-infrastructure-blueprint.pdf.

			transform the system in line with the Queensland clean energy targets described in the QEJP. The investments outlined in this document will build Queensland's SuperGrid.				
Queensland Government	2023 Queenslan Roadmap ³⁷	d REZ	Outlines the pathway for connecting around 22 GW of new wind and solar generation.				
Powerlink	Transmission An Report ³⁸	nual Planning	Existing Transmi	ssion Planning Fu	nction.		
Resource metrics							
Resource		Solar		Wind			
Resource Quality		В		С			
Renewable Potential (MW)		6,992		5,600 ³⁹			
Daman d Campletian	2029-30	2039-40	2049-50	2029-30	203	9-40	2049-50
Demand Correlation	F	F	F	А	A A A		
Climate hazard							
Temperature score		С		Bushfire score			E

Marginal loss factors

Marginal Loss Factor					
Technology	Voltage (kV)	2025-2	26 MLF		
	110	0.9852 – 0.9888			
Solar	132	0.9543 -	- 0.9977		
	275	0.9767 – 0.9975			
	132	353			
Wind	275	0.9	691		
Marginal Loss Factor Robustnes	s				
MLF Robustness score	2029-30	2034-35	2039-40		
	A	A	A		

Congestion and curtailment

Congestion information – c	Congestion information – calendar year 2024									
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation							
N::Q_NIL_KC	43.9	35,100.6	Kogan Creek Power Station, and generation contributing to northerward flow on Dumaresq – Bulli Creek 330 kV lines and Terranorra interconnector							
Q^^N_NIL_SRAR	9.0	76,672.9	Generation contributing to southward flow on QNI							
Q>NIL_DRLCLB_NIL	48.8	680,452.0	Generation contributing to flow from Drillham to Columboola 132 kV							
Q>NIL_YLMR	226.6	1,890,486.8	Generation contributing to flow from Yarranlea to Middle Ridge 110 kV							

³⁷ See <u>https://www.epw.qld.gov.au/__data/assets/pdf_file/0036/49599/REZ-roadmap.pdf</u>.

³⁸ See <u>https://www.powerlink.com.au/planning-report/transmission-annual-planning-report-2024</u>.

³⁹ Darling Downs REZ wind outlook exceeds the expected renewable potential based on the geographical size and resource quality. The modelling allows for additional wind above this wind resource limit, but the additional capacity incurs a land use penalty factor of \$0.29 million/MW. Even with this penalty applied, the ISP model still projects additional wind capacity in *Step Change* by 2049-50.

Congestion inf	ormation – calendar year 2024									
VRE semi-scheduled curtailment – calendar year 2024										
DUID	Generator name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)					
BLUEGSF1	Blue Grass Solar Farm	148	0.0	0.0	31					
COLUMSF1	Columboola Solar Farm	162	1.0	0.3	3,053					
COOPGWF1	Coopers Gap Wind Farm	440	0.0	0.0	264					
DDSF1	Darling Downs Solar Farm	108	0.3	0.1	631					
DULAWF1	Dulacca Wind Farm	173	0.2	0.1	876					
EDENVSF1	Edenvale Solar Park	146	0.0	0.0	144					
GANGARR1	Gangarri Solar Farm	120	0.8	0.2	1,591					
MARYRSF1	Maryrorough Solar Farm	27	0.5	0.0	320					
OAKEY1SF	Oakey 1 Solar Farm	25	0.1	0.0	46					
OAKEY2SF	Oakey 2 Solar Farm	55	0.1	0.0	67					
WANDSF1	Wandoan Solar Farm 1	125	0.2	0.1	532					
WARWSF1	Warwick Solar Farm 1	32	0.1	0.0	98					
WARWSF2	Warwick Solar Farm 2	32	0.2	0.0	104					
WDGPH1	Western Downs GPH	400	0.4	0.5	4,137					
YARANSF1	Yarranlea Solar Farm	103	0.3	0.1	654					

Historical hosting capacity indicator for 20% network spill threshold⁴⁰

				HHCI Wind +	HHCI Solar	HHCI Solar +	
DUID	Generator	r name	HHCI Wind (MW)	BESS (MW)	(MW)	BESS (MW)	
BLUEGSF1	Blue Grass Solar Farm		300	300	300	300	
COLUMSF1	Columboola S	Solar Farm	300	300	300	300	
COOPGWF1	Coopers Gap	Wind Farm	300	300	300	300	
DDSF1	Darling Downs	Solar Farm	300	300	300	300	
DULAWF1	Dulacca Wir	nd Farm	82	158	300	300	
EDENVSF1	Edenvale So	olar Park	300	300	300	300	
GANGARR1	Gangarri So	lar Farm	300	300	300	300	
MARYRSF1	Maryrorough S	Solar Farm	173	229	11	54	
OAKEY1SF	Oakey 1 So	lar Farm	300	300	300	300	
OAKEY2SF	Oakey 2 So	lar Farm	300	300	300	300	
WANDSF1	Wandoan Sol	ar Farm 1	300	300	300	300	
WDGPH1	Western Dov	wns GPH	300	300	300	300	
YARANSF1	Yarranlea So	olar Farm	173	229	14	75	
VRE curtailme	nt – ISP forecast					·	
	2025-	-2026	2026-	2027	2027-2028		
Scenario	Curtailment (%)	Curtailment (%) Economic offloading (%)		Economic offloading (%)	Curtailment (%)	Economic offloading (%)	

⁴⁰ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.

Congestion inf	ormation – calendar	year 2024				
Step Change	0	1	0	2	0	2

ISP forecast

		Wind (MW)										
'RE	Existing/		l	Projected	I		Existing/			Projecte	d	
utlook	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028			committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029 2030
itep Change	1,485	-	-	-	-	-	1,788	-	1,400	1,418	1,418	3,28
ransmis	sion access expa	nsion for	Step Cha	ange								
	12,000											
	10,000											
5												
(MV	8,000											
Installed Capacity (MW)	6,000											
pac	0,000	_						_			_	
Ca	4,000			_	_		_	_				
lled												
sta	2,000											
Ц	0											
	-	2025-26		2026	-27	2	2027-28	202	8-29	:	2029-30	
	Exi	sting No	n-VRE		Exi	sting So	olar	E	xisting V	Vind		
	ISF	9 Solar F	orecas	t 📖	ISF	Wind	Forecast •	Ex	xisting T	ransmi	ssion	
	Tra	insmissi	on Fore	ecast								

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Additional REZ hosting capacity provided (MW)
-	-	-	

A4.13Q9 – Banana

REZ information

⁴¹ Queensland energy policies may be subject to change from state government review processes.

⁴² See https://www.epw.qld.gov.au/__data/assets/pdf_file/0030/32988/queensland-supergrid-infrastructure-blueprint.pdf.

				d in the QEJP. The investments outlined in this uild Queensland's SuperGrid.			
Queensland Government	2023 Queenslan Roadmap ⁴³	ld REZ	Outlines the pathway for connecting around 22 GW of new wind and solar generation.				
Powerlink	Transmission Ar Report ⁴⁴	nnual Planning	Existing Transm	ansmission Planning Function.			
Resource metrics							
Resource		Solar		Wind			
Resource Quality		В		E			
Renewable Potential (MW)		6,100					
Dama d O and a flam	2029-30	2039-40	2049-50	2029-30	2039-40	2049-50	
Demand Correlation	F	F	F	A A		A	
Climate hazard			·				
Temperature score	С			Bushfire score		В	

Marginal loss factors

Marginal Loss Factor							
Technology Voltage (kV) 2025-26 MLF							
-	-	-					
Marginal Loss Factor Robustness	s						
	2029-30	2034-35	2039-40				
MLF Robustness score	E	E	E				

⁴³ See <u>https://www.epw.qld.gov.au/__data/assets/pdf_file/0036/49599/REZ-roadmap.pdf</u>.

⁴⁴ See <u>https://www.powerlink.com.au/planning-report/transmission-annual-planning-report-2024</u>.

Congestion and curtailment

Congestion information – calendar year 2024							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
Q>NIL_EMBW_EMLV_DS	45.3	197,776.5	Generation contributing to flow from Emerald to Lilyvale 66 kV on trip of the Emerald – Comet – Blackwater 66 kV line				
Q>NIL_EMCM_6056	304.3	296,443.9	Generation contributing to flow from Emerald to Comet 66 kV				

VRE semi-scheduled curtailment – calendar year 2024										
DUID	Generator name		Generator name		Generator name		Generator name Maximum Capacity (MW) Average curtailment (%)		Average curtailment (MW)	Curtailment (MWh)
-	-		-	-	-	-				
Historical hosti	Historical hosting capacity indicator for 20% network spill threshold									
DUID	Generator name		HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)				
-	-		-	-	-	-				
VRE curtailmen	t – ISP forecast									
	2025	-2026	2026	-2027	2027-2028					
Scenario	Curtailment Economic (%) offloading (%)		Curtailment (%)	Economic offloading (%)	Curtailment (%)	Economic offloading (%)				
Step Change	-	-	-	-	-	-				

ISP forecast

ISP forecast												
Solar PV (MW)							Wind (MW)					
VRE outlook	Existing/		Projected	1		Existing/			Projected	ł		
	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030	committed/ anticipated	2025- 2026	2026- 2027	2027- 2028	2028- 2029	2029- 2030
Step Change	-	-	-	-	-	-	-	-	-	-	-	-
Transmission	access expans	ion for Si	tep Chan	ge						·		
	There are no existing, committed, anticipated VRE projects for this REZ and the modelling outcomes for <i>Progressive Change</i> and <i>Step</i> <i>Change</i> scenarios did not project any additional VRE for this REZ. Therefore, no VRE curtailment or transmission expansion occurs in this REZ in those scenarios.											
Committed, Anticipated, and Actionable Transmission Projects					Timing		Status			Additional REZ hosting capacity provided (MW)		
-					-		-			-		

A4.14 Non-REZ

Congestion and curtailment

Congestion information – calendar year 2024								
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation					
Q:NIL_CS	7.5	80,134.3	Generation contributing to flow between Southern and Central Queensland					
Q^^NIL_CS	10.7	182,064.7	Generation contributing to flow between Southern and Central Queensland					

VRE semi-sche	duled curtailment – calendar year 202	4			
DUID	Generator name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
EMERASF1	Emerald Solar Park	72	2.1	0.4	3,642
KINGASF1	Kingaroy Solar Farm	40	0.2	0.0	37
MCINTYR1	MacIntyre Wind Farm	890	0.0	0.0	1
Historical hosti	ing capacity indicator for 20% network	spill threshold ⁴⁵			
DUID	Generator name	HHCI Wind (MW)	HHCI Wind + BESS (MW)	HHCI Solar (MW)	HHCI Solar + BESS (MW)
BRAEMAR1	Braemar	300	300	300	300
CALL_B_1	Callide B	300	300	300	300
DDPS1	Darling Downs	300	300	300	300
EMERASF1	Emerald Solar Park	114	150	9	42
GSTONE1	Gladstone	300	300	300	300
KAREEYA1	Kareeya	300	300	300	300
KPP_1	Kogan Creek	300	300	300	300
MPP_1	Millmerran	300	300	300	300
STAN-1	Stanwell	300	300	300	300
SWAN_E	Swanbank E	300	300	300	300
W/HOE#1	Wivenhoe	300	300	300	300
YABULU	Townsville GT	300	300	300	300

⁴⁵ The maximum hosting capacity was set to 300 MW for these studies. See Appendix A2.5 for the detailed methodology and see 2025 ELI Report chart data for information on the reference generation profiles used in this analysis.