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IMPORTANT NOTICE  

Purpose 

AEMO has prepared this document to provide information about the 2015 National Electricity 

Forecasting Report (NEFR), as at the date of publication.  It describes how the 2015 NEFR operational 

consumption, maximum demand and minimum demand forecasts were developed.  

Disclaimer 

This report contains data provided by or collected from third parties, and conclusions, opinions or 

assumptions that are based on that data.  

AEMO has made every effort to ensure the quality of the information in this document but cannot 

guarantee that information and assumptions are accurate, complete or appropriate for your 

circumstances. This document does not include all of the information that an investor, participant or 

potential participant in the national electricity market might require, and does not amount to a 

recommendation of any investment.  

Anyone proposing to use the information in this document should independently verify and check its 

accuracy, completeness and suitability for purpose, and obtain independent and specific advice from 

appropriate experts.  

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and 

consultants involved in the preparation of this document: 

 make no representation or warranty, express or implied, as to the currency, accuracy, reliability or 

completeness of the information in this document; and 

 are not liable (whether by reason of negligence or otherwise) for any statements or representations 

in this document, or any omissions from it, or for any use or reliance on the information in it. 
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ABOUT THIS INFORMATION PAPER  

The 2015 Forecasting Methodology Information Paper is a companion document to the 2015 National 

Electricity Forecasting Report (NEFR). It is designed to help interpret the electricity consumption 

forecasts contained in the NEFR, by:  

 Providing a detailed description of how annual operational consumption, maximum demand (MD) 

and minimum demand forecasts were developed.  

 Outlining how AEMO sought to ensure the forecasting processes and assumptions were 

consistently applied and fit for purpose.  

 Providing further detail on the customer segments used. 

 Describing AEMO’s approach to developing the forecasts for each forecasting component 

(residential and commercial sector, industrial sector, rooftop photovoltaic (PV), energy efficiency, 

and small non-scheduled generation (SNSG)).  

 Detailing modelling improvements made since the 2014 NEFR. 

AEMO has made these key methodology improvements for the 2015 NEFR:  

 Increased the sample size of large industrial loads, from 93 in 2014 to 115 in 2015.  

 Modelled residential and commercial rooftop photovoltaic (PV) separately, to reflect the different 

drivers in each sector. 

 Incorporated industrial loads directly into the maximum demand model.   

 Modified the maximum demand model to include temperature and day-of-week interactions, by 

modelling the demand for workdays and non-workdays separately.  

 Improved the methodology for determining the impact of energy efficiency on maximum demand.  
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CHAPTER 1. INTRODUCTION 

Electricity demand forecasts are used for operational purposes, to calculate marginal loss factors, and 

as a key input into AEMO’s national transmission planning role. It is important to understand how the 

forecasts are developed and what assumptions are applied.  

In 2012, AEMO changed the way it develops and publishes annual electricity demand forecasts for the 

electricity industry, by developing independent forecasts for each National Electricity Market (NEM) 

region. AEMO collaborates with industry to ensure representative and robust forecasts are consistently 

produced for each region. In 2015, AEMO made further improvements to this process.  

This report outlines the methodology used in the annual operational consumption, maximum demand 

and minimum demand forecasting process.  

As part of the 2015 NEFR, AEMO produced forecasts for energy consumption, maximum demand and, 

for the first time, South Australian minimum demand. The forecasts were produced in components, 

which were then aggregated at a regional level to produce regional forecasts for energy and demand. 

These components were:  

 Residential and commercial load. 

 Large industrial load. 

 Transmission losses. 

 Auxiliary losses. 

 Small non-scheduled generation.  

Forecasts for energy efficiency and rooftop photovoltaic (PV) were also produced, and can be 

described as post-model adjustments to the residential and commercial forecasts.  

The 2015 NEFR forecast operational consumption, maximum demand, and minimum demand under 

low, medium and high demand scenarios, with the medium scenario considered the most likely. Table 1 

summarises how each of the three 2015 NEFR scenarios related to the component forecasts.   

Table 1  2015 NEFR component scenario mapping 

2015 
NEFR 
Reference 

Related 
economic 
scenario 

Related large 
industrial scenario 

Related rooftop PV 
scenario 

Related energy 
efficiency scenario 

Related small non-
scheduled generation 

scenario 

High HCO5 High Low uptake Low uptake High uptake 

Medium MCO5 Medium Moderate uptake Moderate uptake Moderate uptake 

Low LCO5 Low High uptake High uptake Low uptake 

 

1.1 Key definitions 

AEMO forecasts are reported as: 

 Annual operational consumption: electricity used by residential, commercial, and large  

industrial consumers drawn from the electricity grid, including transmission losses.1 It is  

measured in gigawatt hours (GWh) and the forecasts are presented on a “sent-out”2 basis. 

 Operational maximum (minimum) demand: the highest (lowest) level of electricity drawn  

from the transmission grid at any one time in a year measured on a daily basis, averaged over  

                                                      
1  Supplied by scheduled, semi-scheduled and significant non-scheduled generating units. Refer to AEMO’s definitions here. 
2  Measured at the connection point between the generating system and the network. 

https://www.google.com/url?q=http://www.aemo.com.au/Electricity/Planning/~/media/Files/Other/planning/Use%2520of%2520Operational%2520Consumption%2520and%2520Demand.ashx&sa=U&ei=QyZxVeYFz-KwBKXjgNAL&ved=0CAYQFjAB&client=internal-uds-cse&usg=AFQjCNHUYqTU8O33dHRvN-vbVr8z6p3EBA
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a 30 minute period. It is measured in megawatts (MW) and the forecasts are presented  

“as generated”.3 

 

 

 

 

 

 

 

 

 

 

 

                                                      
3  Measured at the terminals of a generating system. 

Operational 

consumption 

Transmission losses 

Large industrial 

consumption 

Residential and 

commercial consumption 

Underlying 

consumption 

Rooftop PV Energy efficiency 

adjustment 

Underlying 

consumption 

Embedded 

generation 

Underlying consumption refers to everything consumed on site, 

and may be met by localised generation from rooftop PV and 

embedded generators, or by the electricity grid. 

Operational 

demand 

Operational demand from 

all consumers 

Energy used in transmission 

and distribution 

Auxiliary loads 
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CHAPTER 2. OPERATIONAL CONSUMPTION 

2.1 Residential and commercial load 

Residential and commercial load is defined as the load on the network attributable to residential and 

commercial consumers. It includes distribution losses incurred in the provision of electricity to 

customers.  

The general model structure for the 2015 NEFR methodology for residential and commercial load was 

unchanged from the 2014 NEFR. However, several aspects were refined in response to external peer 

review feedback, changes in the market environment, and ongoing internal improvement initiatives. The 

changes included:  

 Exploring the consumer response to price decreases. 

 Emphasising more recent consumption data, given the trend of declining electricity consumption 

has recently slowed.  

 Incorporating the likelihood of a consumer response to the Australian Energy Regulator (AER) 

determination of distribution costs in New South Wales.  

 Incorporating more weather stations in the weather variables.  

 Reducing the size of the residential and commercial component, due to a reallocation of customers 

as large industrial.4  
 

As it did for the 2014 NEFR, AEMO engaged Woodhall Investment Research Ltd to help develop the 

annual consumption models. The following sections detail the data used in modelling, the development 

of the model and the model specification. 

2.1.1 Data sources and variable selection  

The residential and commercial model used historical data to estimate a relationship between electricity 

consumption and four key drivers of consumption (income, price, weather, and population). It then used 

these estimates and forecast values for the key drivers to calculate consumption forecasts. The data 

sources used are listed in Table 2.  

Table 2 Data sources used for the residential and commercial forecasts 

Source  Data 

Frontier Economics5, the Australian 
Bureau of Statistics (ABS), KPMG6 

Historical and forecast economic variables including:  

 Real gross state product (GSP).  

 Population (POP).  

 Real total price of electricity (TPE).  

 Real residential price of electricity (RPE).  

 Real business price of electricity (BPE).  

Bureau of Meteorology Historical weather data 

Metering Settlements and Transfer 
Solution (MSATS) 

Historical consumption data 

 

                                                      
4 Residential and commercial load is a derived value − AEMO derives residential and commercial load by subtracting industrial consumption, 

auxiliary load, and transmission losses from total operational consumption − so increasing the number of industrial customers decreases the 
estimated residential and commercial load. 

5 Frontier Economics, Electricity market forecasts: 2015, April 2015. Available at http://www.aemo.com.au/Electricity/Planning/Forecasting/National-
Electricity-Forecasting-Report/NEFR-Supplementary-Information 

6 For a summary of these, see AEMO, Economic Outlook, available at http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-
Forecasting-Report/NEFR-Supplementary-Information  

http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/NEFR-Supplementary-Information
http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/NEFR-Supplementary-Information
http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/NEFR-Supplementary-Information
http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/NEFR-Supplementary-Information
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AEMO used a combination of theory and testing when selecting which variables to include as drivers in 

the model. It gave consideration to the theoretical relationship between consumption and a range of 

drivers, so the estimated coefficients made theoretical sense. For example, the coefficients for each 

variable should show that energy demand is likely to:  

 Increase with real state-wide income.  

 Decrease with rising electricity prices.  

 Reflect seasonal weather variations throughout the year.  

Statistical approaches involved examining the fit and statistical significance of each variable when 

placed in the model, and the reasonableness of the modelling results.  

The data is region-specific, so unique models were developed for each region. AEMO used quarterly 

data for modelling, commencing September, December, March, and June. Results were then 

aggregated to financial year.  

Calculating consumption data  

AEMO estimated historical consumption data for the residential and commercial segment using the data 

it collects for market settlements. It aggregated data collected every half-hour for each NEM region 

since January 2000 to produce quarterly data. AEMO used a top-down approach to derive residential 

and commercial load, by subtracting industrial consumption, auxiliary load, and transmission losses 

from total operational consumption.  

For modelling, estimated rooftop PV consumption was added to the calculated operational residential 

and commercial consumption. See Figure 1 for further explanation of how residential and commercial 

consumption was defined and calculated.  

Figure 1 Defining and calculating residential and commercial data  
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As noted above, the historical residential and commercial data used in the 2015 NEFR differed to that 

used in the 2014 NEFR, because 22 customers were moved from the residential and commercial sector 

to the industrial sector. This was part of an ongoing modelling improvement, which involved increasing 

the number of industrial customers for which AEMO produced individual forecasts. This change resulted 

in reduced residential and commercial load.  

Calculating income data  

The 2014 NEFR used Principal Component Analysis (PCA) to create a single income variable utilising 

GSP and State Final Demand (SFD). PCA calculates linear weights that are used to combine the two 

data series to create a single variable. AEMO found that the choice of variable made very little 

difference to the model estimation, so only GSP was considered in the 2015 NEFR. Historical and 

forecast income data was provided by KPMG.  

Calculating price data  

Historical and forecast price data was provided by Frontier Economics. Based on coefficient and 

residual analysis, AEMO assessed residential price of electricity (RPE) as the most appropriate price 

variable for Queensland and Tasmania, and total price of electricity (TPE) as the most appropriate price 

variable for South Australia, New South Wales and Victoria.   

The price series produced by Frontier Economics included a 30% decline in electricity prices for New 

South Wales in 2015-16, based on the draft determination from the Australian Energy Regulator (AER). 

At the time of modelling, the AER had not released its final determination on network charges for New 

South Wales, or draft determinations for Queensland or South Australia.  

The potential for price decreases is noteworthy for two reasons: 

 Prices have historically continued to rise. 

 The consumer response to electricity prices is asymmetric. While consumers may reduce 

consumption in response to price rises, they do not necessarily revert to previous levels of 

consumption when prices later fall, due to permanent changes in behaviour.  

AEMO sought to capture this asymmetric price response by modelling the impact of price increases and 

decreases differently using different price variables. At the time of modelling, sufficient historical data for 

this approach was only available for South Australia and Tasmania. For the other regions, AEMO used 

the approach used in the 2014 NEFR to address the potential impact of the carbon price repeal, by 

assuming that rather than responding to a price decrease, consumers continue to respond to the higher 

prices they have experienced in recent years.  

In South Australia and Tasmania, AEMO used two price variables, one to capture the response to price 

increases and one to capture the response to price decreases. The price variables were developed by 

defining two dummy variables (equation 1) and then defining two price variables using these dummy 

variables (equation 2). 

Equation 1 Dummy variables for changes in electricity price 

𝑑− =  {
1,      ∆ log(𝑝𝑟𝑖𝑐𝑒) < 0

0,       ∆ log(𝑝𝑟𝑖𝑐𝑒) > 0
   𝑑+ =  {

0,      ∆ log(𝑝𝑟𝑖𝑐𝑒) < 0

1,       ∆ log(𝑝𝑟𝑖𝑐𝑒) > 0
 

Equation 2 Asymmetric price variables 

𝑃− =  ∑ 𝑑− ∆ log(𝑝𝑟𝑖𝑐𝑒) ,                       𝑃+ =  ∑ 𝑑+ ∆ log(𝑝𝑟𝑖𝑐𝑒),   
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Calculating population data  

Historical and forecast population data were determined by ABS projections. Consumption and income 

data were converted to per capita parameters before modelling. This allowed the underlying trends in 

consumption to be modelled.  

Calculating weather data  

Historical average daily temperature data was provided by the Bureau of Meteorology. AEMO used this 

data to estimate historical heating degree days (HDD) and cooling degree days (CDD)7
 for each region. 

In the 2015 NEFR, AEMO used a weighted average of several weather stations in each region. The 

weather stations and weights used are shown in Table 3. 

Table 3 Weather stations and weights used to calculate HDD and CDD8 

NSW QLD SA 

Station 
ID 

Station name 
Station 
weighting 

Station 
ID 

Station name 
Station 
weighting 

Station 
ID 

Station name 
Station 
weighting 

72150 Wagga Wagga 0.3% 40717 Coolangatta 15% 23083 
Edinburgh 
RAAF 

58% 

66137 Bankstown 
Airport 

17.2% 40211 Archerfield 12% 23090 Adelaide 42% 

66037 Sydney Airport 11% 39083 Rockhampton 12%    

67113 Penrith 12% 32040 Townsville 11%    

63303 Orange Airport 7% 39128 
Bundaberg 
Airport 

12%    

66062 
Sydney 
(Observatory 
Hill) 

12% 39326 
Gladstone 
Airport 

12% 
 
 

 
 

67105 Richmond 
RAAF 

10% 40842 
Brisbane 
Airport 

12%   
 

70014 Canberra 
Airport 

7% 40913 Brisbane 13%   
 

60139 Port 
Macquarie 

10%      
 

61390 Newcastle 
University 

4%      
 

69139 Bega 9%       

VIC TAS  

86071 Melbourne 27% 94008 Hobart Airport 18%    

81123 Bendigo 34% 91126 Devonport 18%    

86282 Melbourne 
Airport 

14% 91237 Launceston 26%   
 

86371 Frankston 
AWS 

18% 94029 Hobart 19%   
 

87163 Geelong 
Airport 

7% 94087 
Mount 
Wellington 

19%   
 

During the modelling process, HDD and CDD were found to be significant in New South Wales, 

Victoria, and South Australia. HDD was not significant in Queensland and CDD was not significant in 

Tasmania so these variables were omitted from the final models.  

                                                      
7 HDD and CDD are measures of how much (in degrees) and for how long (in days) the outside air temperature is lower/higher than a threshold 

temperature.  
8 Numbers may not add to 100% due to rounding error.  
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AEMO estimated forecast HDD and CDD using the historical trend in the data. This was done on a 

quarterly basis to allow for differing seasonal trends. HDD were found to be decreasing and CDD to be 

increasing over time in all regions, except Queensland where CDD was also decreasing.  

Other variables  

Other variables, such as the price of substitute electricity sources (for example gas), were considered 
but were found to be statistically insignificant.  

Table 4 Summary of final variable selection 

 Electricity consumption Income Price Temperature 

Variable Y = Electricity/population * 1000 GSP/population * 1000 P = TPE or RPE  
P- and P+ (SA and Tas) 

HDD and CDD 

Unit kWh/capita $/capita c/kWh Degree days 

2.1.2 Model development  

Annual consumption forecasts were developed using econometric methods which estimated the 

relationship between historical electricity consumption and the key drivers that determine residential 

and commercial consumption (income, electricity price, weather, and population).  

The estimates, also known as coefficients, were then used in conjunction with forecast values for the 

key drivers, to derive electricity consumption forecasts.  

The model used in the 2015 NEFR is based on the 2014 NEFR model. It was developed in two stages, 

which allowed AEMO to produce long-run and short-run coefficients.9 A summary of the methodology is 

provided below. For more details, see the 2013 and 2014 NEFR Methodology Information Papers.10
 

There were two additional changes in the 2015 NEFR methodology, compared to the 2014 NEFR:  

 AEMO reviewed the use of the intercept correction applied in 2014 to correct an upward forecast 

bias.  

 The Maximum Price Model, which was used to model the consumer response to the proposed 

carbon price repeal, was used to model the consumer response to an expected fall in electricity 

prices due to changes in network tariffs.  

Estimating the long-run relationship: Dynamic Ordinary Least Squares  

The long-run response estimated the relationship between electricity consumption and a number of 

long-run drivers (such as income and electricity prices).  

As it did for the 2014 NEFR, AEMO adopted the Dynamic Ordinary Least Squares (DOLS)11
 approach. 

This involved estimating the cointegrating12 long-run equation and adding sufficient leads and lags13 of 

                                                      
9 Coefficients can be used to describe the change in energy that can be expected due to a change in a given variable. Estimating long-run and 

short-run coefficients allows AEMO to analyse the long-term and short-term impact of a change in a variable.  
10 AEMO, Forecasting Methodology Information Paper. Available at http://www.aemo.com.au/Electricity/Planning/Forecasting/NEFR-

Archive/National-Electricity-Forecasting-Report-2014/NEFR-Supplementary-Information-2014 and 
http://www.aemo.com.au/Electricity/Planning/Forecasting/NEFR-Archive/National-Electricity-Forecasting-Report-2013/NEFR-Supplementary-
Information-2013  

11 As proposed by Saikkonen (1991). 
12 Based on work undertaken for the 2013 NEFR, the variables used in the forecast models may be cointegrated, indicating a long-run relationship 

between price and income which can be used to forecast electricity consumption.  
13 Leads and lags are transformations of existing time series data that are added to the equation to improve the fit of the model. They are created by 

delaying or bringing forward the data series by a specified number of time periods. AEMO determined the appropriate number of leads and lags 
of the differenced variables by assessing the stability of the coefficients under different lead and lags structures in DOLS. See the 2013 NEFR 
Methodology for more information on the method used to select leads and lags.  

http://www.aemo.com.au/Electricity/Planning/Forecasting/NEFR-Archive/National-Electricity-Forecasting-Report-2014/NEFR-Supplementary-Information-2014
http://www.aemo.com.au/Electricity/Planning/Forecasting/NEFR-Archive/National-Electricity-Forecasting-Report-2014/NEFR-Supplementary-Information-2014
http://www.aemo.com.au/Electricity/Planning/Forecasting/NEFR-Archive/National-Electricity-Forecasting-Report-2013/NEFR-Supplementary-Information-2013
http://www.aemo.com.au/Electricity/Planning/Forecasting/NEFR-Archive/National-Electricity-Forecasting-Report-2013/NEFR-Supplementary-Information-2013
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the first differences14 of the explanatory variables. The specification of the DOLS equation is shown 

below in Equation 3.  

Equation 3 Dynamic Ordinary Least Squares 

𝑦𝑡 =  𝑐0 +  𝑐1𝑥𝑡 + ∑ 𝑐𝑖2∆𝑥𝑡+𝑖 + 𝑢𝑡

𝑛

𝑖= −𝑛

 

AEMO adopted this approach because it:  

 Enables a valid and consistent approach to be applied across all NEM regions.  

 Provides an efficient estimator for the long-run relationship in the presence of variables with 

differing and higher orders of integration. Additionally, if a Newey-West15 correction is applied, it is 

reasonable to apply standard tests on the coefficients.  

 Is known to be effective when working with small datasets where endogeneity16 may be present.  

 

AEMO used the statistical package EVIEWS to estimate the DOLS equation for each region, with 

income and price variables entering the equation as the cointegrating regressors. All regional DOLS 

models also included constant temperature variables (to model the contemporaneous weather impact 

on consumption) and seasonal dummy variables (to account for seasonality) as deterministic 

regressors or covariates.  

Estimating the short-run response: Integrated Dynamic Model  

The short-run response estimated how much demand can deviate in the short run from the long-run 

demand forecast, in response to a change in a variable. As it did for the 2014 NEFR, AEMO adopted 

the Integrated Dynamic Model (IDM) approach.  

The standard approach when estimating a short-run response within a cointegrating long-run equation 

is to place the lagged error correction (EC) term within a dynamic system, such as an error correction 

model (ECM), as shown in Equation 4 below. The ECM describes how the dependent variable and 

explanatory variables behave in the short-run, and the speed at which the system will adjust back to the 

long-run equilibrium consistent with the long-run cointegrating relationship.  

Equation 4 Error Correction Model with long-run estimates 

∆𝑦𝑡 =  𝛿(𝑦𝑡−1 − 𝑐0 +  𝑐1𝑥𝑡−1) +  ∑ 𝛼𝑖∆𝑦𝑡−𝑖

𝑛

𝑖=1

+ ∑ 𝛽𝑖∆𝑥𝑡−𝑖 + 𝑢𝑡

𝑛

𝑖=0

 

 
 

However, when using AEMO’s data, the contemporaneous coefficients estimated in the ECM were 

problematic to interpret, as they were unusually large due to seasonality in the data.  

Consequently, in the 2013 and 2014 NEFR, AEMO adopted an Integrated Dynamic Model (IDM). This 

approach was maintained for the 2015 NEFR. The IDM integrated the long-run relationship between the 

variables (assuming cointegration) while allowing for short-run fluctuations consistent with the long-run 

                                                      
14 Differences are a transformation of a data series, usually adopted to deal with time series data that exhibits strong increasing (or decreasing) 

trends, i.e. data with a non-zero means, also known as non-stationary data. This technique allows the underlying variation in the time series to 
become more apparent. They are created by taking the difference of data points in consecutive observations (e.g. incomet – incomet-1). When the 
first difference of non-stationary data achieves stationarity, as is the case for AEMO’s data, then the time series is said to be integrated to order 
one.  

15 A Newey-West correction is used to correct autocorrelation in the standard errors of a regression model, and is generally used for time series data 
where the standard assumption of regression analysis does not apply. 

16 AEMO’s dataset is small and endogeneity is suspected.  
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equilibrium. The IDM integrated the lagged EC term (the residuals estimated from the DOLS) into the 

model. It also included fourth lagged differences of all the main economic and temperature variables.  

Equation 5 Integrated Dynamic Model 

∆4𝑦𝑡 =  𝑐0 +  ∑ 𝑐𝑖1∆4𝑥𝑡−𝑖 +  𝑐2

4

𝑖=1

𝐸𝐶(−1) +  𝑐3𝐸𝐶(−2)  + 𝑐4𝐸𝐶(−3) + 𝑐5𝐸𝐶(−4) +  𝑢𝑡   

 

where Δ4 is the fourth-difference operator such that Δ4y = y – y(-4), where c is the estimate of the 

annual difference of 𝑥 for each quarter, c2 through c5 are the estimates of the EC term and u is the error 

term.  

Initially, four lags of the EC term were used, representing an equilibrium adjustment for each quarter. 

However, based on further analysis, AEMO found that in each region, only the fourth lagged EC term 

was statistically significant.  

AEMO considered IDM as superior to a standard ECM in modelling seasonal data.17 Advantages 

included:  

 Similar to an ECM, the IDM imposed constant elasticities for each variable across all seasons. (By 

taking the fourth differences of the main variables, the IDM could account for seasonal differences 

so that short-run effects could be seasonally adjusted.) IDM allowed for an equilibrium adjustment 

to vary across seasons so that the adjustment to the long run would also be seasonally corrected.  

 An integrated model that produced both short-run and long-run forecasts where a transition from 

short-run to long-run did not need to be specialised and could be gradual.  

Intercept correction  

To assess the forecasts, AEMO checked the “fit” of the model, that is, the difference between actual 

historical consumption and an estimate for past consumption calculated by the model. For both the 

2013 and 2014 NEFR, the estimated historical values were above actual consumption for the last few 

years of data.  

The annual operational consumption models were based on over 10 years of data, during which the 

dominant trend has been rising consumption. This could lead to an upwards bias in estimated values. If 

it appears the trend has shifted with a consumption decline or increase observed in recent years, the 

“overestimation” observed in the historical data could lead to over-forecasting.  

In the 2014 NEFR, AEMO tested the inclusion of an intercept correction18
  around the turning point in 

the historical consumption data, to reduce the magnitude of the overestimation in the last few periods of 

historical data.  The intercept correction added emphasis to recent data where a change in the 

consumption trend has been observed, and this starting point varied by NEM region.  

A statistical assessment showed that including an intercept correction was statistically significant and 

added more information to the model in all regions except Tasmania. Consequently, in the 2014 NEFR 

AEMO applied an intercept correction to all regions except Tasmania.  

In the 2015 NEFR, AEMO reassessed the intercept correction based on the performance of the 2014 

forecasts over the last year. In Queensland, AEMO’s forecast had underestimated consumption, so the 

intercept correction was removed to give a better “fit”.  

                                                      
17 Based on impulse response functions for short-run demand response to innovations in the variables. 
18 An intercept correction is a simple method that adds a dummy variable to a particular period of time.  
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2.1.3 Model specification  

For each region, a DOLS equation was estimated to produce the long-run income and price elasticities. 

An IDM was then estimated and used to produce the residential and commercial forecast.  

The DOLS equation used for Queensland, New South Wales and Victoria is shown in Equation 6, and 

the equation for South Australia and Tasmania in Equation 7. HDD and CDD were omitted for 

Queensland and Tasmania respectively, as they were found to not be significant.  

Equation 6 Dynamic Ordinary Least Squares, model structure for Queensland, New South Wales and 
Victoria 

𝐿𝑜𝑔(𝑦) =  𝑐1 +  𝑐2𝐿𝑜𝑔(𝐼) + 𝑐3𝐿𝑜𝑔(𝑃) +  𝑐5𝐻𝐷𝐷 + 𝑐6𝐶𝐷𝐷 +  𝑐7𝑠2 +  𝑐8𝑠3 + 𝑐9𝑠4 

 

Equation 7 Dynamic Ordinary Least Squares, model structure for South Australia and Tasmania 

𝑳𝒐𝒈(𝒚) =  𝒄𝟏 + 𝒄𝟐𝑳𝒐𝒈(𝑰) + 𝒄𝟑𝑷− +  𝒄𝟒𝑷+ +  𝒄𝟓𝑯𝑫𝑫 +  𝒄𝟔𝑪𝑫𝑫 + 𝒄𝟕𝒔𝟐 + 𝒄𝟖𝒔𝟑 + 𝒄𝟗𝒔𝟒 

 

Table 5 shows the values for the estimated coefficients in each region.  

Table 5 DOLS coefficients 

 Constant 

c1 

Log(I) 

c2 

Log(P) 

c3 

 HDD 

c5 

CDD 

c6 

s2 

c7 

s3 

c8 

s4 

c9 

T19 

C10 

Qld 5.92764 0.25038 -0.32311  N/A 0.00042 0.08501 0.13604 0.01203 N/A 

NSW 1.46439 0.71014 -0.37243  0.00031 0.00038 0.01738 0.02449 -0.01360 N/A 

Vic 4.49344 0.34837 -0.21229  0.00032 0.00039 0.01853 0.01996 -0.00241 N/A 

 Constant 

c1 

Log(I) 

c2 

P- 

c3 

P+ 

c4 

HDD 

c5 

CDD 

c6 

s2 

c7 

s3 

c8 

s4 

c9 

 

SA 1.03486 0.65829 0.01800 -0.23230 0.00037 0.00058 0.03891 0.04927 -0.00689 0.00042 

Tas -1.44733 0.95976 0.08472 -0.40337 0.00047 N/A -0.01408 0.01424 -0.06210 N/A 

 

The coefficients (c2 – c6) for the cointegrating long-run equation can be interpreted as follows:  

 Per capita consumption has a long-run income elasticity of c2. As the value for c2 is positive for all 

NEM regions, the long-run response to an increase of 1% in income per capita is a c2% increase in 

electricity consumption.  

 Per capita consumption has a long-run price elasticity of: 

 c3 for Queensland, New South Wales and Victoria. As the value for c3 is negative for these 

regions, the long-run response to an increase of 1% in price is a c3% decrease in electricity 

consumption.  

 c3 and c4 for South Australia and Tasmania. As the value for c3 is positive, the long-run response 

to a decrease of 1% in the price differential is a c3% increase in electricity consumption. As the 

value for c4 is negative, the long-run response to an increase of 1% in the price differential is a 

c4% increase in electricity consumption.   

 HDDs and CDDs are significant in explaining energy consumption in the long run, but only at the 

time of each heating or cooling event.  

                                                      
19 An intercept correction was applied in South Australia in the DOLS model.  
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As the forecasts were developed on a per capita basis, population has an implied elasticity of 0.01, 

meaning the long-run response to an increase of 1% in population is a 1% increase in electricity 

consumption.  

Using Queensland as an example:  

 A 1% increase in income per capita would lead to a 0.25% increase in electricity consumption.  

 A 1% increase in price would lead to a 0.32% decrease in electricity consumption.  

The long-run income and price elasticities that were estimated for each NEM region were statistically 

significant and, most importantly, were consistent with the general literature for income and price effects 

on electricity consumption. Residual plots from the model are in Appendix D.  

AEMO used the IDM equation shown in Equation 8 for each NEM region, with the two price variables 

only relevant for South Australia and Tasmania, and the intercept correction T not significant for all 

regions.  

Equation 8 Integrated Dynamic Model, regional model structure 

∆4𝑦 =  𝑐1 + 𝑐2∆4𝐼𝑠 +  𝑐3∆4𝑃𝑠 + 𝑐4∆4𝑃𝑠
′ +  𝑐5∆4𝐻𝐷𝐷𝑠 +  𝑐6∆4𝐶𝐷𝐷𝑠 +  𝑐7𝐸𝐶(−4) +  𝑐8𝑇   

 
 

Table 6 shows the values for the estimated coefficients in each region. 

Table 6 IDM coefficients 

 Constant 

c1 

Δ4Is 

c2 

Δ4Ps 

c3 

 Δ4HDDs 

c5 

Δ4CDDs 

c6 

EC(- 4) 

c7 

T 

c8 

Qld 0.00381 0.05976 -0.32534  N/A 0.00040 -0.63679 N/A 

NSW 0.00962 -0.05100 -0.08387  0.00033 0.00039 -0.26102 -0.02668 

Vic -0.00023 0.27164 -0.11815  0.00031 0.00040 -0.60002 -0.01875 

 Constant 

c1 

Δ4Is 

c2 

Δ4P-s 

c3 

Δ4P+s 

c4 

Δ4HDDs 

c5 

Δ4CDDs 

c6 

EC(- 4) 

c7 

T 

c8 

SA 0.00531 0.29216 0.02856 -0.18085 0.00041 0.00057 -0.72363 N/A 

Tas -0.00101 0.73234 0.09035 -0.47625 0.00043 N/A -1.23253 N/A 

 
The coefficients for the IDM equation can be interpreted as follows: 

 The instantaneous response to a 1% increase in income is a c2% increase in electricity 

consumption.  

 For Queensland, New South Wales and Victoria, the instantaneous response to a 1% increase in 

price is a c3% decrease in electricity consumption.  

 For South Australia and Tasmania, the instantaneous response to a 1% decrease in the price 

variable is a c3% increase in electricity consumption. 

 For South Australia and Tasmania, the instantaneous response to a 1% increase in the price 

variable is a c4% decrease in electricity consumption. 

 The adjustment to the new long-run, following a short-run response to a change in a driver, takes 

place at a rate of c7*100% after four quarters.  

Using Queensland as an example:  

 A 1% increase in income per capita would lead to an instantaneous electricity consumption 

increase of 0.06%.  

 A 1% increase in price would lead to an instantaneous decrease in electricity consumption of 

0.33%.  
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 The adjustment to the long-run, following short-run disequilibria, takes place at a rate of 64% after 

four quarters.  

2.1.4 Modelling limitations and exclusions  

Residential and commercial forecasting is subject to a number of limitations: 

 Separate drivers for the residential and commercial market segments cannot be considered, 

because the segments have been modelled together.  

 A top-down economic approach has been used to model regional consumption. The impact of 

appliance penetration or specific retail price offers has not been assessed.  

 Behavioural effects have not been explicitly considered in the 2015 NEFR. 

2.2 Rooftop PV  

Similar to previous editions of the NEFR, the 2015 NEFR rooftop PV forecast rested on two 

fundamental components: 

 Installed capacity forecasts. 

 Half-hourly traces of rooftop PV generation.  

AEMO made some key changes to rooftop PV modelling compared to the 2014 NEFR (see Table 7). In 

particular: 

 Residential and commercial rooftop PV uptake was modelled separately, to capture the different 

underlying drivers. 

 Systems greater than 100 kW were included in the commercial uptake. In 2014, only systems 

below 100 kW were included in modelling, and all were classified as residential systems. 

Note that solar farms were excluded from the forecasts. These were categorised as small  

non-scheduled generation and will be discussed further in Section 2.5. 

Table 7 Key changes in the 2015 NEFR rooftop PV forecasts  

NEFR  Forecast component Scope Model 

2014 Residential <= 100 kW  Payback 

2015 Residential < 10 kW Payback 

Commercial  >= 10 kW Net present value 

2.2.1 Data sources  

The rooftop PV forecasts relied on several data sources, as listed in Table 8 below.  

Table 8 Main data sources used for rooftop PV forecasts  

Source  Data Use  

Clean Energy Regulator 
(CER) 

A list of all installations registered with the Clean 
Energy Regulator (CER) to December 2014. 
This included size of installations and out-of-
pocket expenses (for many systems). 

Historical data. 
Also used to estimate payback and net 
present values for existing systems. 

ROAM Consulting Normalised generation from rooftop PV systems 
in the NEM 

Used to estimate annual generation from 
rooftop PV systems based on uptake 
forecasts 

Bureau of Meteorology 
(BOM) 

Solar radiation data and temperature data. Used to extrapolate half-hourly PV traces 
for use in maximum demand  

Australian Bureau of 
Statistics (ABS) 

Number of dwellings and businesses, type of 
businesses and population data 

Used to estimate saturation 
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Source  Data Use  

Frontier Economics Projected residential and commercial electricity 
prices 

Used in the payback and net present 
value analysis 

KPMG Projected exchange rates Used in the payback and net present 
value analysis 

2.2.2 Rooftop PV scenarios  

Three rooftop PV uptake scenarios were developed, each one relating to the economic scenarios 

developed for the NEFR. A mapping of the economic scenarios and underlying drivers of the rooftop PV 

uptake scenarios is shown below in Table 9.  

Table 9 Mapping of PV uptake scenarios and the economic scenarios  

Driver Low rooftop PV uptake Moderate rooftop PV uptake High rooftop PV uptake 

Economic scenario High centralised energy 
demand. 

Medium centralised energy 
demand.  

Low centralised energy 
demand. 

Rooftop PV systems cost 
(before the STC rebate is 
applied) 

Increases slightly up to 
2018 then remains flat. By 
2035, system costs range 
from $2.6/Watt and 
$3.0/Watt depending on 
region. 

Continues declining. By 2035, 
system costs range from 
$1.9/Watt to $2.2/Watt 
depending on region. 

Continues declining until 
$1/Watt by 2035. 

Government incentives Existing feed-in tariff and SRES remain unchanged. 

 

AEMO assumed that some form of feed-in tariff will remain via retailers, even though governments 

might remove or reduce a mandated feed-in tariff in the future.   

2.2.3 Residential installed capacity forecast  

Consistent with the 2014 NEFR, the methodology used to develop the residential rooftop PV installed 

capacity forecasts in the 2015 NEFR was: 

1. Estimate historical payback periods for residential rooftop PV systems in each NEM region.  

2. Develop and calibrate a relationship between payback period and installed capacity uptake rate 

using historical data.  

3. Estimate future payback periods, based on a variety of economic and demographic variables.  

4. Derive the installed capacity forecast using this forecast payback period.  

5. Apply saturation levels to the installed capacity forecasts.  

Changes in the model parameters since 2014 are summarised in Table 10 below. 

Table 10 Changes in the model parameters since 2014 

Parameter 2014 NEFR 2015 NEFR 

Historical data Data from the CER up to December 2013 Data from the CER up to December 2014 

Feed-in tariff 7 – 8 c/kWh depending on the NEM region  5 – 6 c/kWh depending on the NEM region  

Electricity prices Based on the 2014 forecasts from Frontier 
Economics 

Based on the 2015 forecasts from Frontier 
Economics 

Gross system cost (before 
the STC rebate is applied) 

Medium scenario: 
System costs were forecast to continue to fall 
at historical rates until 2016 and then remain 
flat.   

Medium scenario: 

Exchange rates now have an impact on 
projected system costs. 
System costs were forecast to fall very 
slightly in the short term due to falling 
exchange rates. After around 2018, a 
forecast higher exchange rate would reduce 
system costs further. 
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Parameter 2014 NEFR 2015 NEFR 

Saturation Dwellings available for rooftop PV installations 
included separate houses, semi-detached row 
or terrace houses, townhouses, blocks of flats, 
units and blocks of apartments, structures 
attached to a building and caravans. 
Average residential system size for saturation 
was 3.5 kW. 

Dwellings available for rooftop PV 
installations included only separate houses, 
semi-detached row or terrace houses and 
townhouses. 

Average residential system size for 
saturation was assumed to be 4 kW. 

 

For more details, see the 2014 Forecasting Methodology Information Paper.  

2.2.4 Commercial installed capacity forecast  

Commercial rooftop PV forecasts were developed for the first time in the 2015 NEFR. These forecasts 

were produced based using the following methodology: 

1. Segmented the commercial rooftop PV market 

2. Estimated net present values for existing commercial rooftop PV systems in each NEM region.  

3. Developed and calibrated a relationship between net present values and installed capacity 

uptake rate using historical data.  

4. Estimated net present values for future commercial rooftop PV installations, based on a variety 

of economic and demographic variables.  

5. Forecast installed capacity using results from Step 3, assuming the historical relationship 

between uptake and net present values (from Step 2) applies to future installations. 

6. Applied saturation levels to the installed capacity forecasts.  

Details of each step are discussed below. 

Step 1: Segmented the commercial rooftop PV market  

Historical data indicates that commercial rooftop PV installations, particularly those below 100 kW, were 

concentrated in specific sizes, and therefore could be categorised by the different segments in  

Table 11. 

The installed capacity for each segment was forecast separately, to reflect the likely different underlying 

drivers and economics. 

Table 11 Categorisation of commercial PV installations 

Segment Size range 

Small 10 – 25 kW 

Medium 25 – 90 kW 

Large 90 – 100 kW 

Very large > 100 kW 

Step 2: Estimated historical net present values 

Where information about out-of-pocket expenses was available from historical data, the net present 

values for existing commercial PV systems were estimated, assuming the following: 

Table 12 Assumptions for net present value estimation 

Parameter Assumption 

Finance Upfront purchase 
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Parameter Assumption 

Discount rate 7% 

System lifetime  25 years 

PV exports No exports 

Electricity prices Average prices for business customers (provided by Frontier Economics)  

System degradation 1% per annum 

STC rebate Applicable to systems below 100 kW 

Step 3: Developed a relationship between historical uptake and net present values 

AEMO derived a linear relationship from historical monthly uptake (in MW), and the median net present 

values estimated from Step 2. This analysis only included commercial systems that were installed since 

2012, as many earlier installations may have been driven by government incentives and green 

marketing. Importantly, analysis showed that historical uptake and net present values are positively 

correlated. 

Historical uptake of systems above 100 kW was excluded from this analysis, due to a lack of 

information about the costs of these systems.  

Step 4: Estimated net present values for future installations  

The net present values for future installations of commercial rooftop PV were estimated. Similar 

assumptions to those in Step 2 were used (see Table 12), although the STC rebate would be reduced 

depending on the year of installation as a result of the decreasing deeming period.  

Step 5: Forecast installed capacity 

Future uptake of different segments (i.e. small, medium and large) of commercial rooftop PV systems 

was modelled based on their estimated net present values. This assumes the linear relationship 

between historical uptake and net present values derived in Step 3 would hold for future installations.  

As discussed previously, there is insufficient information about commercial systems above 100 kW to 

perform a net present value analysis. As such, future uptake of these systems was assumed to be 

identical to the average historical uptake rate observed in 2014.  

Step 6: Estimated and applied saturation levels 

Saturation levels place an upper limit on installed capacity. They primarily reflect the amount of suitable 

commercial roof space available for rooftop PV installations.  

Saturation levels were estimated based on the number and type of businesses from the ABS. First, the 

business type was used, to determine if a business is likely to be on a standalone site (e.g. 

manufacturing), or clustered with other businesses on a shared common site (e.g. retail).  

Using this classification, AEMO then calculated saturation levels, using the assumptions in Table 13. 

Table 13 Estimating saturation levels for commercial rooftop PV 

Business site Saturation level Assumption 

Standalone 75 % X total number of standalone 
businesses  

Only 75% of standalone business sites are suitable for 
commercial PV installations, due to building 
restrictions, rental etc. 

Clustered 10% X total number of clustered 
businesses 

Only 10% of clustered business sites are suitable for 
commercial PV installations due to shared roof space 
and other building restrictions. 
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Further, the average system size installed was assumed to vary with the number of employees for a 

given business (see Table 14).  

Table 14 Average system size assumed for commercial rooftop PV 

Number of employees Average system size 

1-19 20 kW 

20-199 40 kW 

> 200 100 kW 

Finally, the total number of businesses was assumed to grow at the same rate as population growth 

during the forecast period. 

2.2.5 Rooftop PV energy forecasts  

AEMO derived the rooftop PV forecasts using the installed capacity forecasts and average monthly 

rooftop PV energy distribution profiles. The average monthly energy distribution profiles were calculated 

using the average monthly aggregated energy data from ROAM Consulting. Further detail can be found 

in the 2013 and 2014 Forecasting Methodology Information papers. 

The output of a rooftop PV system will reduce as the system degrades over time. There are also 

expected improvements in rooftop PV efficiency over the forecast period for new installations. AEMO 

did not explicitly model either of these effects, and assumed instead that the degeneration of existing 

systems over 10 years or more would be offset by efficiency gains of new systems being installed. 

2.2.6 Modelling limitations and exclusions  

The following items were not considered in the rooftop PV forecasts, but AEMO is monitoring the 

market for developments in network limitations and financing methods.  

 Network limitations.  

 As the size of installed capacity continues to rise, certain portions of the network could start 

facing stability issues due to the high penetration rates of rooftop PV.  

 To maintain network stability, limitations or restrictions on system sizes might be introduced. 

This could take the form of outright limitations, or of additional costs of connection or higher 

network charges to support upgrades.  

 Different financing methods.  

 AEMO is aware of new financing methods, such as leasing, being introduced into the market. 

These will reduce the upfront costs of installing a rooftop PV system. In most cases, these have 

targeted commercial installations, but extension to the residential sector is possible. 

 Rooftop PV panel degradation and efficiency improvements.  

 AEMO did not include either system degradation or system efficiency gains in modelling energy 

generated from rooftop PV systems. System degradation was only considered when estimating 

the net present values for commercial systems.  

2.3 Energy efficiency 

Methodology changes since the 2014 NEFR improve the transparency of the approach to energy 

efficiency (EE) forecasting, and the quality of the results (see Figure 2 for an overview of the 

methodology used).  

The key change was the use of New South Wales energy efficiency programs, and updated state 

appliance consumption projections. The 2015 forecasts were based on two recent studies for the New 
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South Wales Department of Industry (DOI), providing consistent assumptions and information that 

specifically address the potential for EE savings for a range of EE programs. Updated appliance EE 

data from DOI were also incorporated. 

Figure 2 Energy efficiency forecasting methodology 

 

 

2.3.1 Data sources  

AEMO estimated EE savings from appliances and buildings. These savings were calculated using three 

key data sources, summarised in Table 15. 

Table 15 Data sources used to forecast energy efficiency 

Source  Data Description Reference 

George Wilkenfeld 
and Associates 

Appliances EE savings for five of the measures20 were 
updated based on a projection performed by 
the consultant for the Department of 
Environment. Values from the projection are 
as at 25/02/2015. 

Review of Impact Modelling for E3 Work 
Program. Published report to the 
Department of Climate Change and 
Energy Efficiency (DCCEE), March 
2014.21 

Pitt & Sherry Buildings  Qualitative Assessment of Energy 
Savings from Building Energy Efficiency 
Measures Final Report. Published 
report prepared for DCCEE, March 
2013.22 

                                                      
20 Household Refrigerators & Freezers - Labelling 1986 to MEPS 2005, Televisions-labelling & MEPS, Lamp efficacy (Res use), Air conditioners - 

Res MEPS 2004-2010 and Clothes washers, dishwashers, clothes dryers (Plug loads only). 
21 Available at: http://www.energyrating.gov.au/wp-

content/uploads/Energy_Rating_Documents/Library/General/Equipment_Energy_Efficiency_Program_(E3)/Impacts-of-the-E3-Program.pdf 
Viewed 18 March 2015.   

22 Available at: http://www.pittsh.com.au/assets/files/CE%20Showcase/Quantitative%20Assessment%20of%20Buildings%20Measures.pdf Viewed 
18 March 2015.   
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Source  Data Description Reference 

Jacobs NSW EE 
programs23 

NSW state government energy efficiency 

programs included: 

 Energy Savings Scheme (ESS). 

 Energy Saver Program (ESP). 

 Energy Efficiency for Small Business 

Program (EESBP). 

NSW energy efficiency programs – cost 
benefit analysis. Unpublished report 
prepared for the NSW Office of 
Environment and Heritage, December 
2014. 

 

 

These sources provided recent assessments of EE savings across programs initiated by the Federal 

Government and New South Wales State Government. Both the George Wilkenfeld and Pitt & Sherry 

sources listed used information from Regulation Impact Statements (RIS) undertaken before programs 

are initiated.  

Industrial EE savings were not explicitly included in this year’s analysis, as the program AEMO relied on 

last year (Energy Efficiency Opportunities program) has been discontinued, and the measures were 

considered less likely to be implemented. Also, AEMO assumed that EE savings have been considered 

by some industrial loads in their forecasts provided to AEMO. 

Appliance energy efficiency savings  

George Wilkenfeld estimated 38 TWh of savings across the NEM by 2030 from appliance energy rating 

labelling and Minimum Energy Performance Standards (MEPS) – collectively referred to in some 

studies as E3. A further 2 TWh in savings was estimated as a result of NSW EE programs. Of the total 

estimated 40 TWh in savings, over 70% came from programs already in place.   

As the George Wilkenfeld report only provides national savings, AEMO determined estimated regional 

savings using information from the latest Federal Department of the Environment, Water, Heritage and 

the Arts report on residential energy use.24 Potential savings from Western Australia and Northern 

Territory were excluded. The George Wilkenfeld report included forecast values to 2030, which AEMO 

extended to 2035 using linear extrapolation from the last five years (2026 to 2030). 

Figure 3 shows the projected savings across the NEM. Stable growth between 2024-25 and 2029-30 

suggests the extrapolation is a reasonable approximation of savings beyond 2030.  

                                                      
23 Included NSW EE programs are Energy Savings Scheme (ESS), Energy Saver Program (ESP) and Energy Efficiency for Small Business 

Program (EESBP) 
24 http://www.industry.gov.au/Energy/Energy-information/Documents/energyuseaustralianresidentialsector19862020part1.pdf. Viewed  

18 March 2015. 
   http://www.industry.gov.au/Energy/Energy-information/Documents/energyuseappendixg.pdf Viewed 18 March 2015. 

http://www.industry.gov.au/Energy/Energy-information/Documents/energyuseaustralianresidentialsector19862020part1.pdf
http://www.industry.gov.au/Energy/Energy-information/Documents/energyuseappendixg.pdf
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Figure 3 Projected energy efficiency savings for appliances, E3 modelling categories  

 

 

The 2009 MEPS chiller program was excluded from the appliance savings, because it was treated as 

an existing project in the building EE savings (as part of the baseline for the Pitt & Sherry assessment).  

Building energy efficiency savings  

The estimated savings from building-related EE measures were based on the Pitt & Sherry study. 

AEMO determined total savings for the NEM based on the report’s savings for each state.  

Figure 4 shows these projected savings. Savings across the NEM from building-related EE measures 

were estimated to be 18 TWh by 2035. 
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Figure 4 Projected energy efficiency savings for buildings  

 

Source: Pitt and Sherry (2013)  

 

2.3.2 Energy efficiency uptake scenarios  

The three EE uptake scenarios used for the 2015 NEFR forecasts represented uncertainties about the 

number of new EE programs to be implemented in the long-term forecast period.  

Scenario Energy Efficiency Scenario Definition 

High 
consumption 

Slow uptake The slow uptake scenario assumes no additional EE programs beyond 
those already implemented. It assumes no additional EE savings above 
the existing long-term trend. 

Medium 
consumption 

Moderate uptake The moderate uptake scenario assumes that all EE programs already 
implemented and those currently being implemented remain. This 
incorporates assumed implementation delays for some programs (such 
as phasing out carbon-intensive water heaters) and uncertainty about 
whether some programs will be implemented (such as Residential 
Mandatory Disclosure). 

Low 
consumption 

Rapid uptake The rapid uptake scenario assumes implementation of additional EE 
programs beyond those already approved and assumes all potential 
savings are realised. 

 

2.3.3 Calculating energy efficiency impact 

AEMO estimated EE savings, and incorporated this as a post model adjustment (PMA) to annual 

energy and maximum demand. To determine residential and commercial consumption, AEMO applied a 

PMA to the non-industrial consumption for appliances and building EE.  
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Calculation for appliances and building savings  

AEMO developed forecasts for the three EE uptake scenarios (rapid, moderate, and slow) defined in 

Section 2.3.2, using a three step approach:  

1. Estimated the expected EE savings for annual energy using EE policy measures identified for 

the period 2000 to 2035.  

2. Calculated the long-term efficiency trend observed in the regression period (2003-14) for all 

NEM regions (aggregated), and projected this trend to 2035. The difference between this 

projected trend (grey line in Figure 5 and Figure 6) and the expected savings over the forecast 

period (2015-35) is the EE PMA for annual energy.  

3. Disaggregated into forecasts for each region, based on region-specific savings identified in 

2.3.1 and accounted for distribution losses (detailed below).  

For example, EE forecasts for measures that target appliances and buildings in Queensland are shown 

in Figure 5 and Figure 6 respectively.  

Figure 5 Energy efficiency forecasts for appliances in Queensland 
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Figure 6 Energy efficiency forecasts for buildings in Queensland 

 
 
Source: Pitt and Sherry (2013)  

 

The savings in the previous two figures identify electricity that is not needed due to EE savings at the 

end-user premises. In other words, if there was no EE implemented, this electricity would be required. 

Since the PMA is modelled on transmission-delivered consumption, distribution network losses that 

would have occurred when transmitting the electricity need to be accounted for.  

𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑀𝐴 𝑓𝑜𝑟 𝐸𝐸 = 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠𝑒𝑠 + 𝐸𝐸 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 𝑎𝑡 𝑒𝑛𝑑 𝑢𝑠𝑒𝑟. 

The distribution losses used in this analysis are shown in Table 16. These are generally from recent 

losses reported to the Australian Energy Regulator (AER) by distribution companies as part of the 

distribution loss factor approvals process.  

Table 16 Estimated distribution losses in Australia (% of transmitted energy)  

NSW Qld SA Tas Vic 

4.8%  5.4%  6.1%  5.4%  5.2%  

2.3.4 Modelling limitations and exclusions  

The EE forecasts were based on existing and planned policies and measures, and included 

consideration of currently identified future programs. Pitt & Sherry considered there is a large potential 

for additional savings, some of which could be achieved by future policies. AEMO has not considered 

future polices that have not been identified, due to the uncertainty involved in such an approach. 

The forecasts did not include rebound effects, where a portion of cost savings from EE measures are 

spent on additional energy services. EE savings in lighting, space conditioning (air conditioning and 

heating), and hot water use are likely to have rebound effects. Energy Efficient Strategies (EES) 
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(2011)25
 estimated rebound to be approximately 15%, meaning that for every 1 GWh of energy savings, 

0.15 GWh of additional consumption would occur, leading to a net EE saving of 0.85 GWh. 

AEMO has not considered the effect of any interaction between electricity price response, EE, and the 

uptake of distributed generation such as rooftop PV, in the annual operational consumption and 

maximum demand forecasts, and has not measured the potential overlap. 

The forecasts considered electricity only, and did not include the gas consumption impacts considered 

in the George Wilkenfeld and Pitt & Sherry reports. 

2.4 Large industrial load 

Large industrial loads are industrial customers that account for a relatively large proportion of 

consumption in each NEM region. These customers include aluminium and steel producers, liquefied 

natural gas (LNG) export facilities, petroleum, paper and chemical manufacturers, large coal and metal 

ore mines and water desalination plants. AEMO classified industrial loads into industry sectors using 

the Australian and New Zealand Standard Industrial Classification (ANZSIC)26 code.  

The half-hourly demand for large industrial customers is not typically temperature sensitive, although 

desalination and water pumping loads are affected by rainfall. 

Forecasts for committed Liquefied Natural Gas (LNG) export facilities were produced by Lewis Grey 

Associates. Details on the methodology used can be found on AEMO’s website.27 

Forecasts for all other industrial loads have been individually developed by AEMO, based on sectoral 

outlooks for each industry, and in consultation with individual customers and relevant Transmission 

Network Service Providers (TNSPs) and Distribution Network Service Providers (DNSPs). These 

forecasts were aggregated at the regional level for confidentiality reasons.  

This year, AEMO also split the regional forecasts into two categories - ‘manufacturing’, as defined by 

Division C of the ANZSIC code, and ‘other’. 

Changes in the large industrial load methodology in the 2015 NEFR, compared to the approach used in 

2014, included:  

 Classifying loads into ANZSIC subdivisions, and using sector-based growth rates to develop 

the long term high, medium and low scenario forecasts. 

 Net addition of 22 sites based on revised site identification method. 

 High case includes identified projects that could commence within the next three years.  

 Using information obtained during the NGFR process regarding gas contract position and 

onsite generation.  

2.4.1 Data sources  

AEMO forecast large industrial electricity consumption based several data sources, as listed in Table 17 

below.   

                                                      
25 Energy Efficient Strategies. The Value of Ceiling Insulation. Report to ICANZ. September 2011. Available at: http://icanz.org.au/wp-

content/uploads/2013/04/ICANZ-CeilingInsulationReport-V04.pdf Viewed 23 July 2014. 
26 For more information on ANZSIC code classifications, refer to the ABS website, 

http://www.abs.gov.au/ausstats/abs@.nsf/0/20C5B5A4F46DF95BCA25711F00146D75?opendocument  
27 http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-

Report/~/media/Files/Electricity/Planning/Reports/NEFR/2015/Projections%20of%20Gas%20and%20Electricity%20Used%20in%20LNG%20%20
Public%20Report%20%20Final.ashx  

http://icanz.org.au/wp-content/uploads/2013/04/ICANZ-CeilingInsulationReport-V04.pdf
http://icanz.org.au/wp-content/uploads/2013/04/ICANZ-CeilingInsulationReport-V04.pdf
http://www.abs.gov.au/ausstats/abs@.nsf/0/20C5B5A4F46DF95BCA25711F00146D75?opendocument
http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/~/media/Files/Electricity/Planning/Reports/NEFR/2015/Projections%20of%20Gas%20and%20Electricity%20Used%20in%20LNG%20%20Public%20Report%20%20Final.ashx
http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/~/media/Files/Electricity/Planning/Reports/NEFR/2015/Projections%20of%20Gas%20and%20Electricity%20Used%20in%20LNG%20%20Public%20Report%20%20Final.ashx
http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/~/media/Files/Electricity/Planning/Reports/NEFR/2015/Projections%20of%20Gas%20and%20Electricity%20Used%20in%20LNG%20%20Public%20Report%20%20Final.ashx
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Table 17 Large industrial load data sources 

Source  Data Use  

Large industrial customers Consumption and demand forecasts To develop customer forecasts.  

Distribution network service 
providers (DNSPs) or transmission 
network service providers (TNPSs) 

Information regarding existing and 
future customers 

Used to assess customer forecast 
information. 

News sources, annual reports, 
other media 

Publically available information or 
announcements.  

Used to assess customer forecasts.  

Metering Settlements and Transfer 
Solution (MSATS) 

Historical data To develop forecasts where customers are 
unable to provide information 

Deloitte Access Economics, KPMG, 
BIS Shrapnel  

Industry sector growth outlooks To develop long term industry forecasts.  

 

2.4.2 Forecast method 

Step 1: Selected large industrial customers  

The industrial customers included:  

 All transmission-connected loads.  

 All distribution loads with MD greater than 10 MW on at least 36 days in the previous year (10% of 

days in a year). 

 Key customers identified by TNSPs and DNSPs (including past customers and new customers 

with potential for significant change).  

The approach used to identify customers meeting the above requirements was refined this year, and 

the number of industrial loads included was increased from 93 to 115. Table 18 below shows the 

number of large industrial customers included in the 2014 and 2015 NEFRs, and their aggregate 

contribution to regional energy consumption. Note that four sites were removed in the 2015 NEFR, due 

to their closure or project cancellation. 

Table 18 Large industrial load numbers in each NEM region in the 2013 and 2014 NEFRs  

Region Number of customers % of 2013−14 annual energy  

 2014 NEFR  2015 NEFR  Net Change  2014 NEFR  2015 NEFR  

NSW  23  36 13 20% 23% 

Qld  25  31 6 37% 30% 

SA  16  18 2 23% 23% 

Tas  14  13 -1 60% 60% 

Vic  15  17 2 20% 20% 

Total NEM  93  115 22 27% 26% 

 

Step 2: Gathered information  

Questionnaire  

AEMO distributed a questionnaire to all large industrial customers identified in Step 1, requesting 

information about their historical and forecast electricity consumption. Each customer was asked to 

provide: 

 Forecast consumption (GWh). 

 Forecast demand (MW). 
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 Forecast demand capacity (MW). 

 Forecast onsite generation (GWh). 

 Current and planned onsite generation capacity (MW).  

For the forecasts, each customer was asked to provide three forecasts which reflected high, medium 

and low consumption. Customers were asked to develop the three forecasts based on the scenario 

information in Table 19.  

Table 19 Large industrial load scenarios 

Scenario Definition Expected Characteristics 

High 
consumption 

Represents a realistic increase in electricity 
consumption and/or demand from the network 
following favourable economic conditions such as 
high GDP, low electricity prices, high commodity 
prices. 

Increased production, increased 
operations/additional shifts, decreased on-site 
generation, increased demand for exports. 

Medium 
consumption 

Represents the most likely forecast levels of 
electricity consumption and maximum demand. 

Current production levels maintained or higher/ 
lower production levels reflecting planned and 
committed changes to operations.  

Low 
consumption 

Represents a realistic decrease in electricity 
consumption from the network following non-
favourable economic conditions such as low GDP, 
high electricity prices or low commodity prices. 

Lower production levels, lower output/shift 
reduction, increased on-site generation, decreased 
demand for exports. 

 

Consultation  

After receiving the questionnaire responses, AEMO contacted each customer directly to discuss the 

information and further clarify any likely changes to future operations. Individual company information 

collected from these interviews and questionnaires is confidential.  

Step 3: Developed forecasts  

AEMO reviewed all information obtained to ensure consistency across responses and incorporate any 

additional public announcements.  

Estimated 2014-15 electricity consumption  

The 2014-15 electricity consumption was estimated using nine months of actual data from July 2014 to 

March 2015, and three months of forecast data for April to June 2014, as actual data for this period was 

unavailable at the time of forecast development.  

Where customers were unable to provide information, AEMO estimated consumption for April to June 

based on historical data.  

Short-term forecasts  

In most cases, the questionnaire responses provided enough information to construct forecasts that 

directly reflected the customers’ views over the next five years. Where customers were unable to 

provide information, AEMO used responses to the 2014 NEFR where available, or assumed that 

consumption remained at 2013-14 levels in the medium scenario, and that consumption in the high and 

low scenarios reflected historical maximum and minimum consumption. 

Long-term forecasts  

Long-term forecasts are more uncertain than short-term forecasts, because there is less certainty 

around future business operations. Consequently, AEMO forecast most customers’ long-term 

consumption based on industry sector outlooks, to capture broader sectoral trends.  
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Industrial loads, as noted above, were classified into industry subdivisions using the ANZSIC code. The 

growth rates used to capture trends in each industry sector were based on economic information 

developed by BIS Shrapnel, Deloitte Access Economics and information provided to AEMO by KPMG.28 

The long-term growth rates applied to each sector to develop the high, medium and low consumption 

scenario forecasts are shown in Table 20.  

Table 20 Large industrial load long-term industry growth rates 

Industry Sector ANZSIC 
Division and 
Subdivision 

High Scenario Medium  
Scenario 

Low Scenario 

Manufacturing     

Food product C - 11 1.6% 0.1% 0.0% 

Wood product C - 14 1.6% 1.3% -1.3% 

Pulp, paper and converted paper product C - 15 1.3% -1.3% -4.1% 

Petroleum product C - 17 1.2% 0.5% -2.7% 

Basic chemical product C - 18 1.2% 0.5% -2.7% 

Non-metallic mineral product C - 20 2.0% 1.8% 1.4% 

Cement:     

     New South Wales C - 20 2.9% 2.8% 2.7% 

     Queensland C - 20 3.3% 3.2% 3.1% 

     South Australia C - 20 2.2% 1.2% 0.3% 

     Victoria C - 20 2.4% 2.3% 2.2% 

     Tasmania C - 20 1.6% 1.4% 1.2% 

Primary metal product C - 21 2.7% 2.0% 1.8% 

Fabricated metal product C - 22 2.7% 2.0% 1.8% 

Transport Equipment C - 23 #N/A #N/A #N/A 

Other     

Mining:     

     Coal B - 06 2.4% 1.8% 1.2% 

     Gold B - 08 0.4% 0.3% 0.3% 

     Iron Ore B - 08 3.3% 2.5% 1.7% 

     Base Metals B - 08 2.1% 1.6% 1.1% 

Defence services O - 76 2.5% 2.3% 2.0% 

Source: KPMG, Deloitte Access Economics, BIS Shrapnel, AEMO 

Very large customers and desalination plants have not been modelled based on sectoral growth rates, 

because incremental growth is not a realistic approach for these customers. Large customers, such as 

metal smelters or refineries and some metal ore mines, do not typically make changes to their level of 

consumption due to the high level of investment required to upgrade their facilities. They are also 

unique businesses, or one of a small number of similar businesses, where sector-based growth is not 

an appropriate forecast technique. For these customers, AEMO assumed that consumption would 

remain flat over the long-term period in the medium scenario. In the high and low scenarios, AEMO 

                                                      
28 Information from BIS Shrapnel and Deloitte Access Economics was accessed through a subscription. The reports referenced are:  BIS Shrapnel, 

Long Term Forecasts 2014-2029, 40th edition, accessed February 2015. Deloitte Access Economics, Business Outlook: Energy prices take a 
dive, December quarter 2014, accessed February 2015. 
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used the historical maximum or minimum consumption values, held constant over the long-term period. 

Some closures were assumed in the low scenario. These were based on public information regarding 

electricity contract expiry dates.  

Desalination and water-supply pumping loads vary due to rainfall rather than economic conditions. 

AEMO forecast long-term electricity consumption based on information received from customers.  

2.4.3 Modelling limitations and exclusions  

Individual customer forecasting is subject to a number of limitations, including:  

 Information provided from non-public sources is sensitive and cannot be made publicly available, 

so AEMO’s public forecasts were aggregated for each NEM region.  

 AEMO depends on DNSPs’ and TNSPs’ proactive advice of new projects. Because some projects 

may be speculative and not eventuate, there is inherent uncertainty in estimating the timing and 

magnitude of future consumption.  

Longer-term forecasts (20 years) are particularly difficult to obtain, given the uncertainty some 

industries face in terms of commercial pressures (such as exchange rates and changes in taxation). 

Changes to commercial operations are also difficult to predict and can be abrupt (especially with regard 

to plant closures) and are often highly confidential.  

Sectoral-based long-term forecasting does not consider changes in energy intensity over time.  

Non-industrial large loads (such as casinos, shopping centres, hospitals, rail networks, stadiums, and 

universities) were excluded from this segment, and were incorporated into the commercial and 

residential forecast. 

2.5 Small non-scheduled generation 

Forecasts included existing small non-scheduled generation (SNSG) projects, as well as potential future 

SNSG projects. Forecasts for existing, operational SNSG projects were based on characteristics such 

as generation capacity and historical data. Forecasts for future SNSG projects (committed, advanced, 

and prospective) were developed based on characteristics of similar, existing SNSGs, such as location 

and generator class (fuel source). Small non-scheduled generation includes solar farms.  

The number of generators included in the SNSG forecasts has increased since the 2014 NEFR. Refer 

to Appendix C for the full list of generators in each region. 

2.5.1 Data sources 

AEMO forecast SNSG generation based on the following data sources: 

 AEMO’s generation information pages. 

 Publicly available information. 

 Historical data. 

2.5.2 SNSG scenarios 

SNSG forecasts were developed for three scenarios that corresponded to the 2015 NEFR high, 

medium, and low scenarios.  
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AEMO used the data outlined in 2.5.1 and categorised all SNSG projects according to the criteria 

below: 

 Category A (operational) - SNSG has previously generated, and is currently generating. 

 Category B (committed) - A final investment decision has been made and the project is moving to, 

or is currently in, construction phase. 

 Category C (advanced) - A final investment decision has not been made, but the project is in the 

later stages of the development approval process. 

 Category D (prospective) - A final investment decision has not been made, and the project is in 

the intermediate stages of the approval process. 

The project status relates to each 2015 NEFR scenario, as shown in Table 21 below. 

Table 21 SNSG project status and 2015 NEFR scenarios 

2015 NEFR scenario Related SNSG scenario Categories included  

High High uptake A, B, C and D 

Medium Moderate uptake A, B and C 

Low Slow uptake A and B 

 

2.5.3 Calculating SNSG forecasts  

SNSG installed capacity and future capacity factors were calculated using up to five years of historical 

data, ending December 2014. AEMO assumed that the installed capacity of existing projects would 

remain unchanged over the 20-year outlook period, unless a site has been decommissioned. 

All new projects were assumed to start operation at the mid-point of the calendar year in which they are 

due for completion, and remain at this level over the 20-year outlook period. 

Capacity factors for existing projects were calculated using actual historical generation data and 

installed capacity information. Future output across the forecast period was then estimated using a 

weighted average of the historical capacity factors for each project, based on the past five years of 

data.  Capacity factors in the low scenario were calculated using the lowest three historical capacity 

factors over the past five years, and capacity factors in the high scenario were calculated using the 

highest three. 

For future SNSG projects, where historical output is not available, AEMO estimated capacity factors 

using the following methods: 

 Where similar projects already exist, in terms of NEM region and generator class (fuel source), 

AEMO used the total historical output from all similar, existing projects, divided by their combined 

rated capacity. 

 Where no similar projects exist - typically a new generator class in a particular NEM region - 

AEMO either used the region average for all existing SNSG projects, or applied the capacity factor 

of similar SNSG projects from another region. 

AEMO then combined the resulting capacity factor profile with the expected capacities of all future 

SNSG projects, and used this to forecast the expected generation per project over the outlook period. 

2.5.4 Modelling limitations and exclusions 

AEMO constructed SNSG forecasts based on publicly available information on potential project 

development.  
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The information on projects planned during the first five years of the forecast period is sufficient. 

However, towards the end of the forecast period, there is no reliable information regarding SNSG 

project development. As such, no new projects were assumed, and contribution factors and capacity 

factors remain constant.  While this may underestimate future SNSG generation levels, a similar lack of 

reliable information on SNSG retirement rates means possible overestimation of future generation from 

existing projects. 

For these reasons, AEMO effectively assumed that the installation rate over the second half of the 

forecast period would equal the retirement rate, resulting in generation profiles that do not vary beyond 

the initial five years of the outlook period. 
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CHAPTER 3. MAXIMUM DEMAND 

3.1 Introduction 

This chapter should be read in parallel with the operational consumption chapter, which provides more 

information on each segment.  

3.2 Residential and commercial load 

This section outlines the methodology used to develop maximum demand forecasts for residential and 

commercial consumption. These forecasts were prepared by Monash University’s Business and 

Economic Forecasting Unit. Monash University prepared maximum demand reports for each NEM 

region and an overarching technical report.29
 

Maximum demand is the single highest demand that occurs in any half-hour period over an entire 

season. As this is the most extreme event that occurs in a season, and is highly dependent on weather, 

there is substantial uncertainty inherent in maximum demand forecasts. For this reason a probabilistic 

distribution of maximum demand was forecast, and 10%, 50%, and 90% Probability of Exceedance 

(POE) levels provided.  

For any given season: 

 A 10% POE maximum demand projection is expected to be exceeded, on average, one year in 10. 

 A 50% POE maximum demand projection is expected to be exceeded, on average, five years in 10 

(or one year in two). 

 A 90% POE maximum demand projection is expected to be exceeded, on average, nine years in 10. 

For each NEM region, maximum demand forecasts were developed using separate models for summer 

(October to March) and winter (April to September). A semi-parametric model of half-hourly demand 

was developed as a series of 48 models relating to each period of the day.30 These models included 

calendar-dependent effects (e.g., day of week, public holiday) and weather effects, as well as  

half-yearly (for each season) demographic and economic effects, based on AEMO’s annual 

consumption forecasts.  

The models were used, together with simulated half-hourly temperature data and residual re-sampling, 

to develop POE forecasts of maximum demand. Residual re-sampling accounts for any serial 

correlation in the residuals. 

Figure 7 gives an overview of the maximum demand forecast methodology used in the 2015 NEFR.   

For the non-industrial component of the maximum demand forecasts, each summer and winter period 

had 48 separate models fitted (one for each half-hourly period). The historical data used to build the 

models was half-hourly non-industrial demand.31 This demand is equivalent to residential and 

commercial consumption plus transmission network losses and generator auxiliary loads. 

 

                                                      
29 Available at http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/NEFR-Supplementary-Information  
30 See Rob J Hyndman & Shu Fan, 2008. Density forecasting for long-term peak electricity demand, Monash Econometrics and Business Statistics 
Working Papers 6/08, Monash University, Department of Econometrics and Business Statistics. 
31 Operational as-generated demand with large industrial loads subtracted. Industrial loads are forecast using a different methodology within the 

Monash model. 

http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/NEFR-Supplementary-Information
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Figure 7 Maximum demand forecast methodology diagram 

 

 
The estimated historical PV generation was also added back to the non-industrial demand, to allow for 

modelling on the “underlying” non-industrial demand. A separate rooftop PV generation model was 

used to simulate future rooftop PV generation. This simulated rooftop PV generation was later 

subtracted from the simulated "underlying" non-industrial demand, to obtain the non-industrial demand 

supplied from the grid. 

Equation 9 shows the semi-parametric model developed by Monash University to model demand. It is 

split into two separate models, one that uses demographic, economic and cooling/heating degree day 

variables and another that uses the remaining half-hourly variables.  

Equation 9 Short- and long-run demand model 

log(𝑦𝑡,𝑝) = log(𝑦𝑡,𝑝
∗ ) + log(�̅�𝑖).  

Here, �̅�𝑖 is the average demand for season 𝑖 (in which time period 𝑡 falls) and 𝑦𝑡,𝑝
∗  is the half-hourly 

normalised demand for day 𝑡 and period 𝑝. These two components can be expressed as: 

log (𝑦𝑡,𝑝
∗ )  =  ℎ𝑝(t) + f𝑝(𝒘1,𝑡 , 𝒘2,𝑡) + 𝑒𝑡 

and �̅�𝑖
𝑝𝑐

= ∑ 𝑐𝑗𝑧𝑗,𝑖 + 𝜖𝑖
𝐽
𝑗=1 , 

where: 

 �̅�𝑖
𝑝𝑐

= �̅�𝑖 𝑃𝑖⁄  is the per capita seasonal average demand. 

 𝑃𝑖 is the population in season 𝑖. 
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 ℎ𝑝(𝑡) models calendar effects. 

 𝑓𝑝(𝒘1,𝑡 , 𝒘2,𝑡) models all temperature effects using two locations within each region to represent 

geographical weather diversity (except for Queensland, which uses three locations). 

 𝒘1,𝑡 , and 𝒘2,𝑡 are vectors of current and past temperatures at each location. 

 𝑧𝑗,𝑖 is a variable in season 𝑖 that accounts for seasonal demographic, economic and degree days 

effects. Its impact on demand is measured by the magnitude of coefficient 𝑐𝑗. 

 𝑒𝑡 and 𝜖𝑖 denotes the demand that is left unexplained by the model at day 𝑡. 

The model above separates out the seasonal average demand.  

The half-hourly demand across different years was normalised by dividing the half-hourly demand 

values by the seasonal average demand. Equation 10 represents the normalisation of half-hourly 

demand.  

Equation 10 Normalisation of half-hourly demand 

𝐲𝐭,𝐩
∗  = 𝐲𝐭,𝐩 / �̅�𝐢 

where: 

 yt,p
∗  is the normalised demand for day 𝑡 and period 𝑝. 

 y̅i is the seasonal average demand for season 𝑖 in MW (equal to energy in GWh multiplied by 

1,000/ℎ where ℎ is the number of hours in season 𝑖). 

For half-hourly demand yt,p
∗ , the data were modelled in natural logarithms, as this resulted in the best fit 

to the available data. The model is also easier to interpret, as the temperature and calendar variables 

have a multiplicative effect on demand. 

Some specific features of the model were:  

 Calendar effects were modelled using variables that account for day-of-week, time-of-year, and 

public holidays, including days immediately before and after public holidays.  

 Temperature effects were modelled using additive regression splines. A regression spline is a 

combination of several polynomial curves joined at points known as “knots”. They are used to 

account for non-linear relationships between driver and predictor variables, in this case, the 

relationship between temperature and demand.  

 Temperatures from the last three hours and the same period from the last six days were included, 

as were the maximum and minimum temperature in the last 24 hours and the average temperature 

over the last seven days.  

 Warming trends based on Commonwealth Scientific and Industrial Research Organisation 

(CSIRO) modelling were applied to simulated future temperatures to allow for climate-change 

impacts.  

 A separate rooftop PV model was used to simulate future rooftop PV generation and its effects on 

demand. The rooftop PV model was a nonlinear, nonparametric function that has daily solar 

radiation, maximum temperature and day-of-season as driver variables. 

 Industrial demand was incorporated into the Monash model. Section 3.5 discusses this change in 

more detail.  

3.2.1 Simulation of maximum demand distribution  

Producing forecasts using the half-hourly demand model requires future values for the temperature 

variables and the calendar-dependent effects. Average seasonal demand forecasts are also required, 
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to convert the normalised demand forecasts back to a megawatt figure. Temperature is not random, but 

cannot be predicted on a daily basis more than a few days into the future.  

Monash University addressed this problem by simulating 1,000 seasons of synthetic half-hourly 

temperature data for each season to be forecast. The simulation process used a “seasonal block  

re-sampling approach” which simulated numerous temperature patterns based on historical data.32
 

Each of the 1,000 seasons of simulated temperature data allowed Monash University to obtain a single 

simulated value of maximum demand. This was done by using the half-hourly demand models to 

predict demand at every half-hour period in the season, and taking the maximum of all predicted  

half-hourly demands over the simulated season. This procedure resulted in 1,000 values of simulated 

maximum demand, which were used to forecast the distribution of maximum demand. 

As well as temperature variations, the half-hourly model itself involves a random element (the  

residual 𝑒𝑡). To capture this random element, Monash University also re-sampled the historical model 

residuals to simulate numerous small adjustments to the predicted half-hourly demand in each of the 

simulations.  

For each season, each of the 1,000 simulated maximum demands was scaled by the underlying 

seasonal average demand (as in Equation 10). The seasonal average demand, which is based on the 

annual energy models, has a random element added by simulating future temperatures and residuals. 

To account for the impact of rooftop PV generation, the same 1,000 weather simulations were input into 

the non-parametric PV generation model. This allowed for rooftop PV generation to be subtracted from 

each of the demand simulations. The amount of rooftop PV generation was scaled annually according 

to the rooftop PV installed capacity forecasts that AEMO produces. 

The 10%, 50% and 90% POE MD forecasts were obtained by taking the appropriate percentile of the 

1,000 simulated maximum demands for each season. 

3.2.2 Methodology improvements since 2014 

AEMO and Monash University implemented the following improvements for the 2015 NEFR:  

 Separate models for working and non-working days. This is known as hierarchical modelling and 

allowed the demand model to better account for temperature and day-of-week interactions. 

Hierarchical modelling typically results in more accurate fitting and prediction than single-level 

approaches. 

 Variable selection allowed to vary for morning, afternoon and evening periods. This produced a 

more accurate model fit across the whole day, thereby allowing the model to handle both 

maximum and minimum demand forecasts. 

 Industrial demand incorporated into the Monash model. Previously, the Monash model only 

produced forecasts for non-industrial demand. This year, the industrial component has been 

included directly in the Monash model to improve the accuracy of the POE distributions for 

operational demand.  

A more detailed description of these changes is available in the Monash University technical papers.33  

                                                      
32 For more information about this re-sampling process, see Hyndman, R. J. and S. Fan (2008). Variations on seasonal bootstrapping for 
temperature simulation. Report for Electricity Supply Industry Planning Council (SA) and Victorian Energy Corporation (VenCorp). Monash 
University Business and Economic Forecasting Unit. 
33 Monash University maximum demand technical reports 2015. Available at http://www.aemo.com.au/Electricity/Planning/Forecasting/National-

Electricity-Forecasting-Report/NEFR-Supplementary-Information. 

http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/NEFR-Supplementary-Information
http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/NEFR-Supplementary-Information
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3.3 Rooftop PV  

Similar to the 2014 NEFR, rooftop PV was incorporated directly into the MD modelling developed by 

Monash University. More information on incorporating rooftop PV into the MD forecasts is also provided 

in the supplementary reports written by Monash University and published on AEMO’s website. 

3.4 Energy efficiency 

The 2015 MD savings were calculated based on different methodology to the 2014 NEFR, to calculate 

EE at different POE levels. A sensitivity analysis of the impact of energy efficiency measures at different 

temperatures and demands allowed for a more accurate estimate of savings at different POE levels. 

AEMO calculated the regional EE impacts on summer and winter maximum demand, using annual 

operational consumption EE adjustments and appliance scaling factors. Appliance scaling factors were 

used to represent how appliance energy efficiency may vary at different temperature and demand 

levels. For example, a 10% POE demand which is likely to occur on high temperature days will have 

different EE savings compared to a 90% POE demand event which occurs on milder temperature days. 

To calculate POE scaling factors, a sensitivity analysis was conducted to assess each appliance 

category with new or in-train MEPS standards. Each category was assessed as having either low, 

medium, high or no impact on a given POE level for both summer and winter. Low impact appliances 

had a scaling factor of 0.5 applied, medium impact had 1 assigned and high impact appliances had 1.25 

assigned. The assessed impact for each appliance group is given in Appendix E. 

Appliance scaling factors were then aggregated using a weighted average based on the total EE 

savings from each appliance group. The annual energy appliance EE adjustment was then converted to 

an hourly average, and multiplied by the appliance scaling factor, to obtain the appliance EE savings for 

maximum demand. 

As it is difficult to assess how building standards affect energy efficiency savings at different 

temperature and demand levels, AEMO took a conservative approach when estimating these savings. 

Building EE savings for maximum demand were calculated by converting the annual energy building EE 

adjustment to an hourly average.  

The building and appliance EE savings for maximum demand were then aggregated to produce the EE 

adjustment for maximum demand. 

3.5 Large industrial load 

Forecast maximum demand and capacity values were requested in the large industrial load 

questionnaire. Where maximum demand values were not provided or determined to be reasonable, 

AEMO estimated the forecast industrial site maximum demand.  

Annual operational consumption values obtained from the questionnaire and historical maximum 

demand values were used to estimate missing maximum demand forecasts. Maximum demand was 

grown in line with annual consumption, using the below formula: 

𝑀𝐷𝐼𝑁𝐷,𝑦,𝑠 =
𝐴𝐸𝐼𝑁𝐷,𝑦,𝑠 − 𝐴𝐸𝐼𝑁𝐷,𝑦−1,𝑠

8760
+ 𝑀𝐷𝐼𝑁𝐷,𝑦−1,𝑠 

where 𝑀𝐷𝐼𝑁𝐷,𝑦,𝑠 is the estimated maximum demand for the industrial site IND, in the year y, season s. 

Diversity factors needed to be calculated to find the coincident peak of each of the industrial sites. 

Historical daily data for large industrial loads was used to estimate diversity factors.  

Diversity factors for each industrial site, year and season were calculated using the top system peaks 

from a particular year and season. This was undertaken for two POE levels: 
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𝐷𝐹𝐼𝑁𝐷,𝑦,𝑠 =
1

𝑛
∑

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑝𝑒𝑎𝑘 𝑖𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑠, 𝑦𝑒𝑎𝑟 𝑦

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑠, 𝑦𝑒𝑎𝑟 𝑦

𝑛

𝑖=1

 

where DFIND,y,s is the diversity factor for the industrial site IND, in the year y, season s, and n is the 

number of system peaks. 

Separate diversity factors were calculated for the 10% and 50% POEs. Three and ten system peaks 

were chosen for the 10% POE and 50% POE, respectively, as they appeared to provide the best 

reconciliation of forecasts with historical data. 

The diversity factor for each year was then weighted to allow for a greater contribution from more recent 

years: 

𝐷𝐹𝐼𝑁𝐷,𝑠
∗ =

∑ 𝐷𝐹𝐼𝑁𝐷,𝑦,𝑠 × 𝑤𝑦,𝑠𝑦∈{𝑌𝑒𝑎𝑟𝑠}

∑ 𝑤𝑦,𝑠𝑦∈{𝑌𝑒𝑎𝑟𝑠}

 

where 𝐷𝐹𝐼𝑁𝐷,𝑠
∗  is the weighted diversity factor for the industrial site IND and season s.  

The coincident maximum demand34 for each industrial site was then calculated using the maximum 

demand forecasts and weighted diversity factors: 

𝑀𝐷𝐼𝑁𝐷,𝑦,𝑠
∗ = 𝑀𝐷𝐼𝑁𝐷,𝑦,𝑠 × 𝐷𝐹𝐼𝑁𝐷,𝑠

∗  

where 𝑀𝐷𝐼𝑁𝐷,𝑦,𝑠
∗  is the coincident maximum demand for the industrial site IND, in the year y, season s. 

Individual industrial forecasts were then aggregated to give regional forecasts for industrial maximum 

demand.  

These aggregated 10% and 50% POE forecasts were incorporated into Monash University’s demand 

model. Monash University’s model calculated an industrial maximum demand distribution using a 

bootstrapping methodology. This demand distribution was forecast forward by scaling to AEMO’s 10% 

and 50% POE forecasts. For more information on how AEMO’s forecasts were incorporated into the 

Monash model, see the Monash Technical papers in the 2015 NEFR supplementary documentation.35 

3.6 Small non-scheduled generation 

SNSG maximum demand forecasts represent the forecast contribution to demand of SNSG at the time 

of operational maximum demand. 

The forecast contribution of SNSG to operational maximum demand was calculated using historical 

operational demand, generation data and installed capacity information. Each existing SNSG’s output 

during the top 10 highest operational demand intervals for both summer and winter over the past five 

years was compared with its installed capacity, to calculate summer and winter peak demand 

contribution factors. 

Contribution factors for existing projects were calculated using actual historical data and installed 

capacity information. Future output across the forecast period was then estimated, using the average of 

the historical contribution factors for each project, based on the past five years of data. Contribution 

factors in the low scenario were calculated using the lowest three historical contribution factors over the 

past five years, and the contribution factors in the high scenario were calculated using the highest three. 

                                                      
34 Coincident maximum demand is the demand of a particular site at the time of the operational demand. In other words, it is the contribution of a 

particular site to operational maximum demand. The sum of the coincident maximum demands for each site is the contribution of the large 
industrial load segment to operational maximum demand. 

35 Monash University MD technical reports 2015. Available at http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-
Forecasting-Report/NEFR-Supplementary-Information. 
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The summer and winter contribution factors were assumed to be constant over the 20-year outlook 

period, and were applied to each individual SNSG to develop summer and winter SNSG maximum 

demand forecasts. 

For new SNSG projects, AEMO estimated the contribution to maximum demand factors by averaging all 

generators from the same NEM region and generator class (fuel source), as it did for annual operational 

consumption. 
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CHAPTER 4. MINIMUM DEMAND 

This chapter should be read in parallel with the operational consumption and maximum demand 

chapters, which provide more information on each segment.  

4.1 Introduction 

AEMO published minimum demand forecasts for the first time in the 2015 NEFR, for South Australia. 

The methodology for each component was similar to the maximum demand modelling approach, but 

with some key differences.  

4.2 Residential and commercial load 

The residential and commercial component of the minimum demand forecasts was produced using the 

Monash University demand model. Monash University implemented several changes to allow for 

minimum demand forecasts to be calculated. 

In the 2014 NEFR demand forecasts, the Monash University maximum demand model was tuned to 

best fit demand during the afternoon, when maximum demand is expected to occur. As minimum 

demand occurs at different times to maximum demand, the model was recalibrated to fit demand across 

all times of the day. To achieve this, the data was grouped into morning, afternoon and evening periods 

and different variable selection was used for each time period. This improved the fit of the model, 

especially during low demand periods. 

To produce minimum demand forecasts instead of maximum demand forecasts, each of the 1,000 

seasonal demand simulations had the minimum value recorded instead of the maximum. This gave 

1,000 minimum demand values from which a minimum demand distribution could be produced. The 

10%, 50% and 90% POEs could then be produced from this minimum demand distribution. 

As with maximum demand, the 1,000 simulated minimum demands were scaled by the underlying 

seasonal average demand forecasts for each year. 

4.3 Rooftop PV 

Similar to maximum demand, rooftop PV was incorporated directly into the minimum demand modelling 

developed by Monash University. More information on incorporating rooftop PV into the minimum 

demand forecasts is also provided in the supplementary reports written by Monash University and 

published on AEMO’s website. 

4.4 Energy efficiency 

The energy efficiency post-model adjustment (PMA) for minimum demand was calculated from the 

annual consumption post-model adjustment to get the average hourly energy savings. This is shown in 

Equation 11. 

Equation 11 Energy efficiency post-model adjustment for minimum demand 

𝐸𝐸𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑒𝑚𝑎𝑛𝑑 𝑃𝑀𝐴 =
𝐸𝐸𝐴𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑃𝑀𝐴

365 × 24
 

AEMO intends to further investigate how the impact of energy efficiency may vary during minimum 

demand days. 
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4.5 Large industrial load 

Minimum demand was not requested by AEMO during the questionnaire process with large industrial 

customers, so minimum demand for industrial loads was calculated in aggregate. Minimum demand 

forecasts for industrial load were produced using a similar method as for the industrial load maximum 

demand forecasts. 

Combined regional annual consumption values and historical, coincident industrial minimum demand 

values were used to estimate the minimum demand forecasts. Minimum demand was grown in line with 

annual consumption using the below formula: 

𝑀𝑖𝑛𝐷𝐼𝑁𝐷,𝑦,𝑠 =
𝐴𝐸𝐼𝑁𝐷,𝑦,𝑠 − 𝐴𝐸𝐼𝑁𝐷,𝑦−1,𝑠

8760
+ 𝑀𝑖𝑛𝐷𝐼𝑁𝐷,𝑦−1,𝑠 

where 𝑀𝑖𝑛𝐷𝐼𝑁𝐷,𝑦,𝑠 is the estimated minimum demand for the industrials IND, in the year y, season s. 

To estimate diversity factors, aggregated historical half-hourly data for large industrial loads and the 

system were used. Diversity factors for industrial loads, by year and season were calculated using the 

lowest system consumption from a particular year and season. This was undertaken for two POE 

levels: 

𝐷𝐹𝐼𝑁𝐷,𝑦,𝑠 =
1

𝑛
∑

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑠𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑟𝑜𝑢𝑔ℎ 𝑖𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑠, 𝑦𝑒𝑎𝑟 𝑦

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑠, 𝑦𝑒𝑎𝑟 𝑦

𝑛

𝑖=1

 

where DFIND,y,s is the diversity factor for industrials IND, in the year y, season s, and n is the number of 

system troughs.   

Ten and three system troughs were chosen for the 50% POE and 90% POE, respectively, as they 

appeared to provide the best reconciliation of forecasts with historical data. 

A weighted diversity factor was then calculated to allow recent years to provide a stronger contribution: 

𝐷𝐹𝐼𝑁𝐷,𝑠
∗ =

∑ 𝐷𝐹𝐼𝑁𝐷,𝑦,𝑠 ×𝑦∈{𝑌𝑒𝑎𝑟𝑠} 𝑤𝑦,𝑠

∑ 𝑤𝑦,𝑠𝑦∈{𝑌𝑒𝑎𝑟𝑠}

 

where 𝑤𝑦,𝑠 are the weights for each year and season and 𝐷𝐹𝐼𝑁𝐷,𝑠
∗  is the adjusted diversity factor for the 

industrial IND and season s.  

The coincident minimum demand36 for industrial load was then calculated using the forecasted 

minimum demand and weighted diversity factor, as demonstrated in the formula below: 

𝑀𝑖𝑛𝐷𝐼𝑁𝐷,𝑦,𝑠
∗ = 𝑀𝑖𝑛𝐷𝐼𝑁𝐷,𝑦,𝑠 × 𝐷𝐹𝐼𝑁𝐷,𝑠

∗  

where 𝑀𝑖𝑛𝐷𝐼𝑁𝐷,𝑦,𝑠
∗  is the diversified minimum demand for the industrial IND, in the year y, season s. 

Individual industrial forecasts were then aggregated to give regional forecasts for industrial minimum 

demand. 

These aggregated 50% and 90% POE forecasts for industrial minimum demand were used to scale the 

Monash model’s industrial demand distribution. Further information on the Monash forecasting 

methodology is available from the Monash technical papers.  

                                                      
36 The coincident minimum demand is the demand of a particular site at the time of the operational minimum demand. In other words, it is the 

contribution of a particular site to operational minimum demand. The sum of the coincident minimum demands for each site is the contribution of 
the large industrial load segment to operational minimum demand. 
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4.6 Small non-scheduled generation 

The forecast contribution of SNSG to operational minimum demand was calculated using historical 

operational demand, generation data and installed capacity information. Each existing SNSG’s output 

during the 10 lowest operational demand intervals for both summer and winter over the past five years 

was compared with its installed capacity to calculate summer and winter peak demand contribution 

factors. 

Contribution factors for existing projects were calculated using actual historical data and installed 

capacity information. Future output across the forecast period was then estimated using the average of 

the historical contribution factors for each project, based on the past five years of data.  Contribution 

factors in the low scenario were calculated using the lowest three historical contribution factors over the 

past five years, and the contribution factors in the high scenario were calculated using the highest three. 

The summer and winter contribution factors were assumed to be constant over the 20-year outlook 

period, and were applied to each individual SNSG to develop summer and winter SNSG minimum 

demand forecasts. 
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APPENDIX A. AEMO DATA SOURCES 

Calculations for annual energy57 and MD calculations, transmission losses and auxiliary load used in the 

National Electricity Forecast Report (NEFR) use data which AEMO obtains from the following systems:  

System Data used for: 

Market Management System (MMS): the wholesale market 
system (containing the database WARE) used for operating the 
NEM, including dispatch, determining the regional spot price, 
and ancillary services. 

 Operational data for annual energy and MD calculations  

 Transmission losses  

 Auxiliary loads  

Metering Settlements and Transfer Solution (MSATS): the retail 
market system (containing the database MDM) used for financial 
settlement of the NEM.  

 Individual SNSG for annual energy and MD calculations  

 Industrial loads  
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APPENDIX B. TRANSMISSION LOSSES AND 

AUXILIARY LOAD FORECASTS 

B.1 Transmission losses forecast methodology 

Transmission losses represent energy lost due to electrical resistance and the heating of conductors as 

electricity flows through the transmission network. 

Analysis – annual losses  

Similar to the 2014 NEFR, AEMO forecast annual transmission losses (Table 22) by using the historical 

normalised transmission losses averaged over the last five years. Annual transmission losses were 

normalised by electricity consumption by large industrial customers as well as residential and 

commercial customers. 

Analysis – maximum demand  

AEMO forecast transmission losses during maximum demand (Table 23) by averaging historical 

normalised transmission losses during the 10 highest operational demand intervals for both summer 

and winter over the past five years. A weighting factor was applied to ensure the trend of the forecast 

was more reflective of the more recent historical years. 

Analysis – minimum demand (SA only) 

AEMO forecast transmission losses during minimum demand (Table 23) by averaging historical 

normalised transmission losses during the 10 lowest operational demand intervals for both summer and 

winter over the past five years. A weighting factor was applied to ensure the trend of the forecast was 

more reflective of the more recent historical years. 

Changes since 2014 NEFR 

Methodology for transmission loss forecasts during maximum demand has been revised. In 2014, 

transmission losses during maximum demand were forecast by averaging the losses during the highest 

operational demand interval in each of the previous five years. This year the analysis was extended to 

include the 10 highest operational demand intervals for both summer and winter in each year. A 

weighting factor was also applied to better reflect more recent trends. 

Further, transmission losses during minimum demand were forecast for the first time for South 

Australia.  
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Table 22 Historical normalised transmission losses (annual energy)   

Financial Year NSW QLD VIC SA TAS 

2000-01 
2.15% 3.79% 3.16% 2.30% 

- 

2001-02 
2.28% 4.34% 3.00% 2.01% 

- 

2002-03 
2.23% 3.92% 3.70% 2.31% 2.22% 

2003-04 
2.51% 3.78% 3.51% 2.44% 2.35% 

2004-05 
2.59% 3.56% 3.19% 2.32% 2.39% 

2005-06 
2.77% 3.36% 2.99% 2.34% 2.86% 

2006-07 
2.75% 3.45% 2.71% 2.10% 2.34% 

2007-08 
2.92% 3.39% 2.43% 1.88% 2.44% 

2008-09 
2.68% 3.19% 2.68% 2.21% 2.61% 

2009-10 
2.78% 3.24% 2.88% 2.35% 3.01% 

2010-11 
2.47% 3.08% 2.90% 2.32% 3.00% 

2011-12 
2.42% 3.11% 3.00% 2.37% 2.73% 

2012-13 
2.14% 3.24% 2.72% 2.40% 3.21% 

2013-14 1.99% 2.90% 2.97% 2.67% 4.48% 

5-year average 2.36% 3.11% 2.89% 2.42% 3.29% 

 

Table 23 Forecasts of normalised transmission losses for each NEM region during maximum and 

minimum demand 

 

Demand Type Duration NSW QLD SA TAS VIC 

Maximum Demand 

(Summer) 

2015-16 to 

 2034-35 
3.27% 3.60% 1.73% 3.14% 2.76% 

Maximum Demand 

(Winter) 

2015 to 

 2034 
2.24% 3.10% 2.28% 3.66% 2.41% 

Minimum Demand 

(Summer) 

2015-16 to 

 2034-35 
- - 3.05% - - 

Minimum Demand 

(Winter) 

2015 to 

 2034 
- - 2.99% - - 

 
 

B.2 Auxiliary loads forecast methodology 

Auxiliary loads forecast 

Auxiliary loads account for energy used within power stations (the difference between “as generated” 

energy and “sent-out” energy). 
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Historical data  

Analysis for auxiliary loads required historical data obtained from the wholesale market system – Market 

Management System (MMS). Since auxiliary loads were not directly measured, auxiliary loads were 

assumed to be equal to the difference between total generation as measured at generator terminals 

and that sent-out. 

Analysis – annual energy  

Similar to the 2014 NEFR, the annual auxiliary factor in each region was forecast based on historical 

data and the anticipated changes in the future generation mix37 (Table 24). The auxiliary factor is 

defined as: 

 

 
 

The annual auxiliary loads were then estimated by multiplying the expected auxiliary factor by 

operational consumption as forecast by the annual energy model. 

Analysis – maximum demand  

Auxiliary load forecasts during maximum demand (Table 25) were based on the average auxiliary 

factor. This factor was calculated by first determining the average of the historical auxiliary loads during 

the 10 highest operational demand intervals for both summer and winter over the past five years. A 

weighting factor was then applied to ensure the trend of the forecast was more reflective of the more 

recent historical years.   

Analysis – minimum demand (SA only) 

Auxiliary load forecasts during minimum demand (Table 25) were based on the average auxiliary factor. 

This factor was calculated by first determining the average of the historical auxiliary loads during the 10 

lowest operational demand intervals for both summer and winter over the past five years. A weighting 

factor was then applied to ensure the trend of the forecast was more reflective of the more recent 

historical years.   

Changes since 2014 NEFR  

The methodology for auxiliary load forecasts during maximum demand has been revised since last 

year. In 2014, auxiliary loads during maximum demand were forecast by averaging the auxiliary factor 

during the highest operational demand interval in each of the previous five years. This year the analysis 

was extended to include the 10 highest operational demand intervals for both summer and winter in 

each year. The weighting factor to better reflect more recent trends is also new in 2015. 

Further, auxiliary loads during minimum demand were forecast for the first time for South Australia.  

  

                                                      
37 Forecasts of the future generation mix were obtained from the 2014 National Transmission Network Development Plan (NTNDP). 
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Table 24 Forecasts of the auxiliary factor for each NEM region (annual energy)  

Financial Year NSW QLD SA TAS VIC 

2015-16 
4.36% 6.73% 4.34% 2.00% 8.93% 

2016-17 
4.39% 6.73% 4.46% 2.00% 8.93% 

2017-18 
4.33% 6.72% 2.09% 2.00% 8.87% 

2018-19 
3.98% 6.55% 1.47% 2.00% 8.83% 

2019-20 
3.95% 6.55% 1.39% 2.00% 8.82% 

2020-21 
3.97% 6.53% 1.47% 2.00% 8.82% 

2021-22 
3.88% 6.53% 1.46% 2.00% 8.82% 

2022-23 
3.88% 6.53% 1.49% 2.00% 8.82% 

2023-24 
3.89% 6.53% 1.56% 2.00% 8.82% 

2024-25 
3.90% 6.52% 1.64% 2.00% 8.82% 

2025-26 
3.92% 6.52% 1.72% 2.00% 8.79% 

2026-27 
3.93% 6.52% 1.39% 2.00% 8.79% 

2027-28 
3.93% 6.51% 1.39% 2.00% 8.78% 

2028-29 
3.95% 6.51% 1.40% 2.00% 8.79% 

2029-30 
3.97% 6.51% 1.40% 2.00% 8.79% 

2030-31 
3.97% 6.49% 0.96% 2.00% 8.78% 

2031-32 
3.97% 6.49% 0.95% 2.00% 8.78% 

2032-33 
3.98% 6.49% 0.95% 2.00% 8.78% 

2033-34 
3.98% 6.49% 0.96% 2.00% 8.78% 

2034-35 
3.99% 6.48% 0.96% 2.00% 8.78% 

Table 25 Forecasts of the auxiliary factor for each NEM region during maximum and minimum demand 

Demand Type Duration NSW QLD SA TAS VIC 

Maximum Demand 

(Summer) 

2015-16 to 

 2034-35 
3.95% 5.32% 4.68% 1.65% 5.31% 

Maximum Demand 

(Winter) 

2015 to 

 2034 
4.27% 5.67% 3.53% 1.50% 6.67% 

Minimum Demand 

(Summer) 

2015-16 to 

 2034-35 
- - 5.36% - - 

Minimum Demand 

(Winter) 

2015 to 

 2034 
- - 4.1% - - 
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APPENDIX C. GENERATORS INCLUDED 

This appendix provides two lists of power stations for each NEM region, to separately identify the 

scheduled, semi-scheduled and non-scheduled generators that contribute to these forecasts:  

 The first lists the power stations used to develop operational consumption forecasts. 

 The second lists the additional power stations used to develop native consumption forecasts. 

C.1 Queensland 

C.1.1 Power stations used for operational consumption forecasts for Queensland 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Barcaldine 37 OCGT Natural Gas Pipeline Scheduled 

Barron Gorge 66 Run of River Water 
Scheduled 

Braemar 504 OCGT Coal Seam Methane 
Scheduled 

Braemar 2 519 OCGT Coal Seam Methane 
Scheduled 

Callide B 700 Steam Sub Critical Black Coal 
Scheduled 

Callide C 900 Steam Super Critical Black Coal 
Scheduled 

Condamine A 144 CCGT Coal Seam Methane 
Scheduled 

Darling Downs 644 CCGT Coal Seam Methane 
Scheduled 

Gladstone 1680 Steam Sub Critical Black Coal 
Scheduled 

Kareeya 88 Run of River Water 
Scheduled 

Kogan Creek 744 Steam Super Critical Black Coal 
Scheduled 

Mackay Gas Turbine 34 OCGT Diesel 
Scheduled 

Millmerran Power Plant 856 Steam Super Critical Black Coal 
Scheduled 

Mt Stuart 424 OCGT 
Kerosene Aviation fuel 
used for stationary energy  

Scheduled 

Oakey 282 OCGT Diesel 
Scheduled 

Roma Gas Turbine 80 OCGT Natural Gas Pipeline 
Scheduled 

Stanwell 1460 Steam Sub Critical Black Coal 
Scheduled 

Swanbank E GT 385 CCGT Coal Seam Methane 
Scheduled 

Tarong 1400 Steam Sub Critical Black Coal 
Scheduled 

Tarong North 450 Steam Super Critical Black Coal 
Scheduled 

Townsville Gas Turbine (Yabulu) 242 CCGT Coal Seam Methane 
Scheduled 

Wivenhoe 500 Pump Storage Water 
Scheduled 

Yarwun38 154 CCGT Natural Gas Pipeline Scheduled 

                                                      
38 The NEM registration classification of Yarwun Power Station Unit 1 (dispatchable unit ID: YARWUN_1) is market non-scheduled generating 

unites. However, it is a condition of the registration of this unit that the Registered Participant complies with some of the obligations of a 
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C.1.2 Power stations (existing, SNSG) used for native consumption forecasts for 

Queensland – in addition to those in Table C.1.1. 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Browns Plains Power Station 2.0 
Spark Ignition Reciprocating 
Engine 

Landfill 
Methane/Landfill Gas 

Non-scheduled 

Callide A4 30.0 Steam Sub Critical Black Coal 
Non-scheduled 

Daandine 33.0 
Compression Reciprocating 
Engine 

Coal Seam Methane 
Non-scheduled 

Roghan Road  2.0 Steam Sub Critical Bagasse 
Non-scheduled 

German Creek 45.0 
Spark Ignition Reciprocating 
Engine 

Waste Coal Mine Gas 
Non-scheduled 

ISIS Central Sugar Mill 25.0 Steam Sub Critical Bagasse 
Non-scheduled 

Kareeya Power Station 7.0 Run of River Water 
Non-scheduled 

KRC Cogen 5.0 Steam Sub Critical Natural Gas Pipeline 
Non-scheduled 

Moranbah North 63.0 
Spark Ignition Reciprocating 
Engine 

Waste Coal Mine Gas 
Non-scheduled 

Moranbah 13.0 
Compression Reciprocating 
Engine 

Waste Coal Mine Gas 
Non-scheduled 

Oaky Creek 20.0 
Compression Reciprocating 
Engine 

Coal Seam Methane 
Non-scheduled 

Rochedale Renewable Energy 4.0 
Spark Ignition Reciprocating 
Engine 

Landfill 
Methane/Landfill Gas 

Non-scheduled 

Rocky Point 30.0 Steam Sub Critical 
Green and air dried 
wood 

Non-scheduled 

Southbank Institute of Tech 1.0 
Compression Reciprocating 
Engine 

Diesel 
Non-scheduled 

Suncoast Gold Macadameias 1.0 Steam Sub Critical Macadamia Nut Shells 
Non-scheduled 

Veoilia Ti Tree Bioreactor 2.0 
Compression Reciprocating 
Engine 

Landfill 
Methane/Landfill Gas 

Non-scheduled 

Windy Hill 12.0 Wind Onshore Wind 
Non-scheduled 

Whitwood Road Renewable 
Energy Facility 

1.0 
Compression Reciprocating 
Engine 

Landfill 
Methane/Landfill Gas 

Non-scheduled 

Wivenhoe Small Hydro 5.0 Run of River Water 
Non-scheduled 

Invicta 50.0 Steam Sub Critical Bagasse 
Non-scheduled 

Pioneer 68.0 Steam Sub Critical Bagasse 
Non-scheduled 

Victoria Mill 24.0 Steam Sub Critical Bagasse 
Non-scheduled 

Tully Sugar Mill 10.0 Steam Sub Critical Bagasse 
Non-scheduled 

South Johnstone Sugar Mill 12.0 Steam Sub Critical Bagasse 
Non-scheduled 

Cloncurry Solar Farm 2.1 Solar Solar 
Non-scheduled 

Fraser Coast Community 
Solar system 

0.4 Solar Solar 
Non-scheduled 

Windorah Solar Farm 0.1 Solar Solar 
Non-scheduled 

                                                      
scheduled generator. This unit is dispatched as a scheduled generating units with respect to its dispatch offers, targets and generation outputs. 
Accordingly, information about YARWUN_1 is reported as scheduled generating unit information.  



FORECASTING METHODOLOGY INFORMATION PAPER 

© AEMO 2015  51 

 

C.2 New South Wales 

C.2.1 Power stations used for operational consumption forecasts for New South 

Wales 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Bayswater 2640 Steam Sub Critical Black Coal Scheduled 

Boco Rock Wind Farm  113 Wind - Onshore Wind Semi-Scheduled 

Blowering 70 Hydro - Gravity Water Scheduled 

Capital Wind Farm 140.7 Wind - Onshore Wind Non-scheduled 

Colongra 724 OCGT Natural Gas Pipeline Scheduled 

Cullerin Range Wind Farm 30 Wind - Onshore Wind Non-scheduled 

Eraring 2880 Steam Sub Critical Black Coal Scheduled 

Gullen Range Wind Farm 165 Wind - Onshore Wind 
Semi-Scheduled 

Gunning Wind Farm 46.5 Wind - Onshore Wind 
Semi-Scheduled 

Guthega 60 Hydro - Gravity Water 
Scheduled 

Hume NSW 29 Hydro - Gravity Water 
Scheduled 

Hunter Valley GT 50 OCGT Fuel Oil 
Scheduled 

Liddell 2000 Steam Sub Critical Black Coal 
Scheduled 

Mt Piper 1400 Steam Sub Critical Black Coal 
Scheduled 

Nyngan Solar Farm   Solar Solar Semi-Scheduled 

Redbank 143.8 Steam Sub Critical Black Coal 
Scheduled 

Shoalhaven 240 Hydro - Gravity Water 
Scheduled 

Smithfield Energy Facility 170.9 CCGT Natural Gas Pipeline 
Scheduled 

Tallawarra 420 CCGT Natural Gas Pipeline 
Scheduled 

Taralga Wind Farm 106.7  Wind - Onshore Wind Semi-Scheduled 

Tumut 3 1500 Hydro - Gravity Water 
Scheduled 

Upper Tumut 616 Hydro - Gravity Water 
Scheduled 

Uranquinty 664 OCGT Natural Gas Pipeline 
Scheduled 

Vales Point B 1320 Steam Sub Critical Black Coal 
Scheduled 

Wallerawang C 1000 Steam Sub Critical Black Coal 
Scheduled 

Woodlawn Wind Farm 48.3 Wind - Onshore Wind Semi-Scheduled 
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C.2.2 Power stations (existing, SNSG) used for native consumption forecasts for 

New South Wales – in addition to those in Table C.2.1. 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

West Nowra Landfill Gas Power 
Generation Facility 

1.0 
Compression 
Reciprocating Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Awaba PS 1.1 
Spark Ignition 
Reciprocating Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Bankstown Sports Club 2.0 
Compression 
Reciprocating Engine 

Diesel 
Non-scheduled 

Burrendong Hydro 18.0 Hydro - Gravity Water 
Non-scheduled 

Brown Mountain 5.4 Hydro - Gravity Water 
Non-scheduled 

Broken Hill GT 50.0 Diesel OCGT 
Non-scheduled 

Burrinjuck  27.2 Hydro - Gravity Water 
Non-scheduled 

Broadwater Power Station 38.0 Steam Sub Critical Bagasse 
Non-scheduled 

Capital East Solar Farm 1.0 Solar Solar 
Non-scheduled 

Condong PS 30.0 Steam Sub Critical Bagasse 
Non-scheduled 

Copeton Hydro 20.0 Hydro - Gravity Water 
Non-scheduled 

Cullerin Range Wind Farm 30.0 Wind - Onshore Wind 
Non-scheduled 

Eastern Creek PS 5.0 
Spark Ignition 
Reciprocating Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Glenbawn Hydro 6.0 Hydro - Gravity Water 
Non-scheduled 

Grange Avenue 2.0 
Compression 
Reciprocating Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Hunter Economic Zone 29.0 
Compression 
Reciprocating Engine 

Diesel 
Non-scheduled 

Jacks Gully 2.0 
Spark Ignition 
Reciprocating Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Jindabyne 1.0 Hydro - Gravity Water 
Non-scheduled 

Jounama 14.0 Hydro - Gravity Water 
Non-scheduled 

Keepit 6.0 Hydro - Gravity Water 
Non-scheduled 

Kincumber  1.0 Landfill gas Landfill gas 
Non-scheduled 

Lucas Heights I 5.0 
Compression 
Reciprocating Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Lucas Heights II 13.0 
Compression 
Reciprocating Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Nine Network Willoughby 3.0 
Compression 
Reciprocating Engine 

Diesel 
Non-scheduled 

Pindari Hydro 6.0 Hydro - Gravity Water 
Non-scheduled 

Royalla Solar Farm 20.0 Solar PV Solar 
Non-scheduled 

St Georges League Club 1.0 
Compression 
Reciprocating Engine 

Diesel 
Non-scheduled 

Teralba 3.0 
Compression 
Reciprocating Engine 

Waste Coal Mine 
Gas 

Non-scheduled 

The Drop Hydro 3.0 Run of river Water 
Non-scheduled 

Woodlawn Bioreactor Energy 7.0 
Compression 
Reciprocating Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 
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Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Western Suburbs League 1.0 
Compression 
Reciprocating Engine 

Diesel 
 

Non-scheduled 

West Illawarra Leagues Club 1.0 
Compression 
Reciprocating Engine 

Diesel 
Non-scheduled 

Wilga Park B 6.0 
Spark Ignition 
Reciprocating Engine 

Natural Gas - 
Unprocessed 

Non-scheduled 

Woy Woy 1.1 
Compression 
Reciprocating Engine 

Landfill / Biogas 
Non-scheduled 

Wyangala A 20.0 Hydro - Gravity Water 
Non-scheduled 

Wyangala B 4.0 Hydro - Gravity Water 
Non-scheduled 

Ledday's Creek Rd 0.3 Hydro - Gravity Other renewable 
Non-scheduled 

Lostock 2.0 Hydro - Gravity Hydro 
Non-scheduled 

Oaky River Dam Hydro 5.0 Hydro - Gravity Hydro 
Non-scheduled 

Nymbodia 5.0 Run of river Hydro 
Non-scheduled 

Dubbo 0.3 Solar PV Solar 
Non-scheduled 

Yass Rd 0.1 Other renewable Other renewable 
Non-scheduled 

Crookwell Wind Farm 4.8 Wind - Onshore Wind 
Non-scheduled 

Lake Cargelligo 3.0 Solar Thermal Solar 
Non-scheduled 

Renewable Energy Facility - 
Albury Landfill 

1.1 Renewable 
Landfill Methane / 
Landfill Gas 

Non-scheduled 

Teralba Power Station  3.0 Renewable 
Landfill Methane / 
Landfill Gas 

Non-scheduled 

Kooragang Island Wind Farm 0.6 Wind - Onshore Wind 
Non-scheduled 

Singleton Solar Generator 1 0.2 Solar PV Solar 
Non-scheduled 

Summerhill Generator 2.2 

Spark 
Ignition  Reciprocating 
Engine 
 

Landfill Methane / 
Landfill Gas 
 

Non-scheduled 

Sydney Water North Head 
WWTP 

1.4 Other renewable Other renewable 
Non-scheduled 

Newcastle Foreshore Park PV 0.0 Solar PV Solar 
Non-scheduled 

Singleton Solar Generator 2 0.2 Solar PV Solar 
Non-scheduled 

ButtonDerry Waste Facility 2.3 Other renewable 
Landfill Methane / 
Landfill Gas 

Non-scheduled 

Earth Power Grand Av 3.8 
Spark 
Ignition  Reciprocating 
Engine 

Biomass recycled 
municipal and 
industrial material 

Non-scheduled 

Eastern Creek 2 10.0 
Spark 
Ignition  Reciprocating 
Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Toonumbar Dam  0.0 Hydro Hydro 
Non-scheduled 

Short St Dungog 0.1 Hydro Hydro 
Non-scheduled 

Stromlo Mini Hydro 0.8 Hydro Hydro 
Non-scheduled 

EDL Belconnen Tip 1.0 Other renewable Other renewable 
Non-scheduled 

EDL Mugga Tip 3.0 Other renewable Other renewable 
Non-scheduled 
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Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Appin 55.0 
Spark 
Ignition  Reciprocating 
Engine 

Waste Coal Mine 
Gas 

Non-scheduled 

Tower 41.0 
Spark 
Ignition  Reciprocating 
Engine 

Waste Coal Mine 
Gas 

Non-scheduled 

Chichester Dam 0.1 Hydro Hydro 
Non-scheduled 

Wilga Park 10.0 
Spark Ignition 
Reciprocating Engine 

Natural Gas - 
Unprocessed 

Non-scheduled 

 

C.3 South Australia 

C.3.1 Power stations used for operational consumption forecasts for South 

Australia 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Angaston 50 
Compression 
Reciprocating Engine 

Diesel 
Non-scheduled 

Canunda Wind Farm 46 Wind - Onshore Wind 
Non-scheduled 

Cathedral Rocks Wind Farm 66 Wind - Onshore Wind 
Non-scheduled 

Clements Gap Wind Farm 56.7 Wind - Onshore Wind Semi-scheduled 

Dry Creek Gas Turbine Station 156 OCGT Natural Gas Pipeline Scheduled 

Hallett 1 (Brown Hill) 94.5 Wind - Onshore Wind 
Semi-scheduled 

Hallett 2 (Hallett Hill) 71.4 Wind - Onshore Wind 
Semi-scheduled 

Hallett 4 (Nth Brown Hill) 132.3 Wind - Onshore Wind 
Semi-scheduled 

Hallett 5 (The Bluff) 52.5 Wind - Onshore Wind 
Semi-scheduled 

Hallett GT 228.3 OCGT Natural Gas Pipeline 
Scheduled 

Ladbroke Grove Power Station 80 OCGT Natural Gas Pipeline 
Scheduled 

Lake Bonney Stage 2 Wind Farm 159 Wind - Onshore Wind 
Semi-scheduled 

Lake Bonney Stage 3 Wind Farm 39 Wind - Onshore Wind 
Semi-scheduled 

Lake Bonney Wind Farm 80.5 Wind - Onshore Wind Non-scheduled 

Mintaro Gas Turbine Station 90 OCGT Natural Gas Pipeline Scheduled 

Mt Millar Wind Farm 70 Wind - Onshore Wind Non-scheduled 

Northern Power Station 530 Steam Sub Critical Brown Coal 
Scheduled 

Osborne Power Station 180 CCGT Natural Gas Pipeline 
Scheduled 

Pelican Point Power Station 478 CCGT Natural Gas Pipeline 
Scheduled 

Playford B Power Station 240 Steam Sub Critical Brown Coal 
Scheduled 

Port Lincoln Gas Turbine 73.5 OCGT Diesel 
Scheduled 
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Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Pt. Stanvac 57.6 
Compression 
Reciprocating Engine 

Diesel   

Quarantine Power Station 224 OCGT Natural Gas Pipeline Scheduled 

Snowtown Wind Farm Units 1 And 
47 

98.7 Wind - Onshore Wind 
Semi-scheduled 

Snowtown S2 North Wind Farm 144 Wind - Onshore Wind 
Semi-scheduled 

Snowtown S2 South Wind Farm 126 Wind - Onshore Wind 
Semi-scheduled 

Snuggery Power Station 63 OCGT Diesel Scheduled 

Starfish Hill Wind Farm 34.5 Wind - Onshore Wind Non-scheduled 

Torrens Island A 480 Steam Sub Critical Natural Gas Pipeline Scheduled 

Torrens Island B 800 Steam Sub Critical Natural Gas Pipeline Scheduled 

Waterloo Wind Farm 111 Wind - Onshore Wind Semi-scheduled 

Wattle Point Wind Farm 90.8 Wind - Onshore Wind Non-scheduled 

 

C.3.2 Power stations (existing, SNSG) used for native consumption forecasts for 

South Australia – in addition to those in Table C.3.1. 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Amcor Glass 4.0 
Compression Reciprocating 
Engine 

Diesel 
Non-scheduled 

Blue Lake Milling Power Plant 1.0 
Compression Reciprocating 
Engine 

Diesel 
Non-scheduled 

Highbury 2.0 
Spark Ignition Reciprocating 
Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Lonsdale 20.0 
Compression Reciprocating 
Engine 

Diesel 
Non-scheduled 

Pedler Creek 3.0 
Spark Ignition Reciprocating 
Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Tatiara 1.0 
Compression Reciprocating 
Engine 

Diesel 
Non-scheduled 

Tea Tree  1.0 
Spark Ignition Reciprocating 
Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Terminal Storage Mini Hydro 2.0 Hydro - Gravity Water 
Non-scheduled 

Wingfield 1 5.0 
Spark Ignition Reciprocating 
Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Wingfield 2 5.0 
Spark Ignition Reciprocating 
Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Seacliff 1.4 Hydro - Gravity Water 
Non-scheduled 
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C.4 Victoria 

C.4.1 Power stations used for operational consumption forecasts for Victoria 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Anglesea 150 Steam Sub Critical Brown Coal Non-scheduled 

Bairnsdale 94 OCGT Natural Gas Pipeline Scheduled 

Bald Hills Wind Farm  106.6 Wind - Onshore Wind Semi-scheduled 

Bogong / Mckay 300 Hydro - Gravity Water Scheduled 

Challicum Hills Wind Farm 52.5 Wind - Onshore Wind Non-scheduled 

Dartmouth 185 Hydro - Gravity Water 
Scheduled 

Eildon 135 Hydro - Gravity Water 
Scheduled 

Energy Brix Complex 
(Morwell) 

189 Steam Sub Critical Brown Coal 
Scheduled 

Hazelwood 1600 Steam Sub Critical Brown Coal 
Scheduled 

Hume VIC 29 Hydro - Gravity Water 
Scheduled 

Jeeralang A 212 OCGT Natural Gas Pipeline 
Scheduled 

Jeeralang B 228 OCGT Natural Gas Pipeline 
Scheduled 

Laverton North 312 OCGT Natural Gas Pipeline 
Scheduled 

Loy Yang A 2180 Steam Sub Critical Brown Coal 
Scheduled 

Loy Yang B 1000 Steam Sub Critical Brown Coal 
Scheduled 

Macarthur Wind Farm 420 Wind - Onshore Wind Semi-scheduled 

Mortlake Units 566 OCGT Natural Gas Pipeline Scheduled 

Morton's Lane Wind Farm 19.5 Wind - Onshore Wind Non-scheduled 

Mt. Mercer Wind Farm 131.2 Wind - Onshore Wind Semi-scheduled 

Murray 1 950 Hydro - Gravity Water 
Scheduled 

Murray 2 552 Hydro - Gravity Water 
Scheduled 

Newport 500 Steam Sub Critical Natural Gas Pipeline 
Scheduled 

Oaklands Hill Wind Farm 67.2 Wind - Onshore Wind Semi-scheduled 

Portland Wind Farm 102 Wind - Onshore Wind Non-scheduled 

Somerton 160 OCGT Natural Gas Pipeline 
Scheduled 

Valley Power Peaking 
Facility 

300 OCGT Natural Gas Pipeline 
Scheduled 

Waubra Wind Farm 192 Wind - Onshore Wind Non-scheduled 

West Kiewa 60 Hydro - Gravity Water 
Scheduled 

Yallourn W 1480 Steam Sub Critical Brown Coal 
Scheduled 

Yambuk Wind Farm 30 Wind - Onshore Wind Non-scheduled 
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C.4.2 Power stations (existing, SNSG) used for native consumption forecasts for 

Victoria – in addition to those in Table C.4.1. 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Banimboola Power Station 13.0 Hydro - gravity Water 
Non-scheduled 

Ballarat Base hospital 3.0 
Spark Ignition Reciprocating 
Engine 

Natural Gas Pipeline 
Non-scheduled 

Brooklyn Landfill 3.0 Spark Ignition Landfill Gas  
Non-scheduled 

Clayton 11.0 Spark Ignition Landfill Gas  
Non-scheduled 

Codrington Wind Farm 18.0 Wind - Onshore Wind 
Non-scheduled 

Corio 1.0 
Spark Ignition Reciprocating 
Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Eildon 5.0 Hydro - Gravity Water 
Non-scheduled 

Glenmaggie 4.0 Run of river Water 
Non-scheduled 

Hallam Road 9.0 
Spark Ignition  Reciprocating 
Engine 

Water 
Landfill Methane / 
Landfill Gas 

Hepburn Wind Farm 4.0 Wind - Onshore Wind 
Non-scheduled 

South East Water - Hallam 
Plant 

0.3 Hydro - gravity Water 
Non-scheduled 

Longford 31.0 OCGT Natural Gas Pipeline 
Non-scheduled 

Mornington Waste 
Disposal 

1.0 
Spark Ignition Reciprocating 
Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Shepparton  1.0 
Spark Ignition Reciprocating 
Engine 

Non-biomass recycled 
municipal and 
industrial mate 

Non-scheduled 

Springvale Landfill Gas 
Power Station 

5.0 
Spark Ignition Reciprocating 
Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Tatura Biogas 1.0 
Spark Ignition Reciprocating 
Engine 

Sewerage / Waste 
Water 

Non-scheduled 

Traralgon Network 
Support Station 

10.0 
Spark Ignition Reciprocating 
Engine 

Natural Gas Pipeline 
Non-scheduled 

Toora Wind Farm 21.0 Wind - Onshore Wind 
Non-scheduled 

William Hovell Hydro 
Power Station 

2.0 Run of river Water 
Non-scheduled 

Wollert Renewable Energy 
Facility 

7.0 
Spark Ignition Reciprocating 
Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Wonthaggi 12.0 Wind - Onshore Wind 
Non-scheduled 

Wyndham Renewable 
Energy Facility 

1.9 
Spark Ignition Reciprocating 
Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Yarrawonga Hydro 9.0 Hydro - Gravity Water 
Non-scheduled 

Clover 29 Hydro - Gravity Water 
Non-scheduled 

Rubicon 11.6 Hydro - Gravity Water 
Non-scheduled 

Broadmeadows Landfill 5.0 
Spark Ignition Reciprocating 
Engine 

Landfill Methane / 
Landfill Gas 

Non-scheduled 

Olinda Mini Hydro 0.9 Hydro - gravity Water 
Non-scheduled 

Melbourne Water Number 
2 

6.5 Other renewable Other renewable 
Non-scheduled 
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Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Dandenong Hospital 5.8 Other renewable Other renewable 
Non-scheduled 

Dandenong PEP 2.0 Other renewable Other renewable 
Non-scheduled 

Pacific Hydro Eildon 
Pondage 

4.5 Hydro Hydro 
Non-scheduled 

Cardinia Hydro Power 
Station 

3.2 Hydro Hydro 
Non-scheduled 

Berwick Landfill 6.8 Other renewable Other renewable 
Non-scheduled 

Mt Beauty 1 15.0 Hydro Hydro 
Non-scheduled 

Mt Beauty 2 15.0 Hydro Hydro 
Non-scheduled 

Ballarat Solar Farm 0.3 Solar Solar 
Non-scheduled 

Bendigo Solar Farm 0.3 Solar Solar 
Non-scheduled 

Bridgewater  0.1 Solar Solar 
Non-scheduled 

 

C.5 Tasmania 

C.5.1 Power stations used for operational consumption forecasts for Tasmania 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Bastyan 79.9 Hydro - Gravity Water 
Scheduled 

Bell Bay Three 120 OCGT Natural Gas Pipeline 
Scheduled 

Catagunya / Liapootah / Wayatinah 170.1 Hydro - Gravity Water 
Scheduled 

Cethana 85 Hydro - Gravity Water 
Scheduled 

Devils Gate 60 Hydro - Gravity Water 
Scheduled 

Fisher 43.2 Hydro - Gravity Water 
Scheduled 

Gordon 432 Hydro - Gravity Water 
Scheduled 

John Butters 144 Hydro - Gravity Water 
Scheduled 

Lake Echo 32.4 Hydro - Gravity Water 
Scheduled 

Lemonthyme / Wilmot 81.6 Hydro - Gravity Water 
Scheduled 

Mackintosh 79.9 Hydro - Gravity Water 
Scheduled 

Meadowbank 40 Hydro - Gravity Water 
Scheduled 

Poatina 300 Hydro - Gravity Water 
Scheduled 

Reece 231.2 Hydro - Gravity Water 
Scheduled 

Tamar Valley Combined Cycle 208 CCGT Natural Gas Pipeline 
Scheduled 

Tamar Valley Peaking 58 OCGT Natural Gas Pipeline 
Scheduled 

Tarraleah 90 Hydro - Gravity Water 
Scheduled 
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Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Trevallyn 93 Hydro - Gravity Water 
Scheduled 

Tribute 82.8 Hydro - Gravity Water 
Scheduled 

Tungatinah 125 Hydro - Gravity Water Scheduled 

Woolnorth Studland Bay / Bluff 
Point Wind Farm 

140 Wind - Onshore Wind Non-scheduled 

 

C.5.2 Power stations (existing, SNSG) used for native consumption forecasts for 

Tasmania – in addition to those in Table C.5.1. 

Power station 
Installed 
capacity 

(MW) 
Plant type Fuel Dispatch type 

Butlers Gorge 14.0 Hydro - Gravity Water 
Non-scheduled 

Cluny  17.0 Hydro - Gravity Water 
Non-scheduled 

Paloona 28.0 Hydro - Gravity Water 
Non-scheduled 

Remount 2.0 
Spark Ignition 
Reciprocating Engine 

Landfill Methane / Landfill 
Gas 

Non-scheduled 

Repulse 28.0 Hydro - Gravity Water 
Non-scheduled 

Rowallan 11.0 Hydro - Gravity Water 
Non-scheduled 

King Island Solar 0.1 Solar Solar 
Non-scheduled 
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APPENDIX D. DOLS RESIDUALS 

This appendix provides the residual plots for the DOLS models used to produce the residential and 

commercial consumption forecasts. Residual plots are commonly used to assess how well the 

econometric models explain historical consumption. The residual is consumption that is unexplained by 

the model, calculated as the difference between actual electricity consumption and historical 

consumption as estimated by the model. Ideally, the data in residual plots will appear random with no 

discernible pattern or time trend and no change in mean or variance over time.  

D.1 DOLS residuals for Queensland 
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D.2 DOLS residuals for New South Wales 

 

 

D.3 DOLS residuals for Victoria 
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D.4 DOLS residuals for South Australia 

 

 

D.5 DOLS residuals for Tasmania 
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APPENDIX E. APPLIANCE ENERGY EFFICIENCY 

IMPACTS ON MAXIMUM DEMAND 

Appliance Season 10% POE 50% POE 90% POE 

Heat pump water heaters Summer None None None 

Storage water heaters  Summer None None None 

Solar-electric water heaters Summer None None None 

Distribution transformers Summer High Medium Medium 

Standby Summer Medium Medium Medium 

Swimming pool pump-units Summer Low Low Low 

Air conditioned chillers Summer Medium Medium Medium 

Air conditioners – residential  Summer Medium Medium Medium 

Battery chargers Summer Low Medium Medium 

Air conditioners – non-residential Summer Medium Medium Medium 

Ballasts Summer Low Low Low 

Linear fluorescent lamps Summer Low Medium Medium 

Motors Summer Low Medium Medium 

Residential refrigeration Summer Medium Medium Medium 

Commercial refrigeration Summer Medium Medium Medium 

Portable air conditioners Summer Low Low Low 

Commercial refrigeration compressors Summer Low Medium Medium 

Self-contained food-service Summer Low Medium Medium 

Commercial refrigeration products Summer Low Medium Medium 

Process & industry equipment Summer Low Medium Medium 

Commercial catering Summer Low Medium Medium 

Commercial electronics & lighting Summer Low Medium Medium 

Heat pump water heaters Winter None None None 

Storage water heaters  Winter Low None None 

Solar-electric water heaters Winter Low None None 

Distribution transformers Winter High Medium Medium 

Standby Winter Medium Medium Medium 

Swimming pool pump-units Winter Low Low Low 

Air conditioned chillers Winter Low Medium Medium 

Air conditioners – residential Winter Low Low Low 

Battery chargers Winter Low Medium High 

Air conditioners – non-residential Winter Low Medium High 

Ballasts Winter Medium Medium Medium 

Linear fluorescent lamps Winter Medium Medium Medium 

Motors Winter Low Medium High 

Residential refrigeration Winter Low Medium High 
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Appliance Season 10% POE 50% POE 90% POE 

Commercial refrigeration Winter Low Medium High 

Portable air conditioners Winter Low Medium Medium 

Commercial refrigeration compressors Winter Low Medium Medium 

Self-contained food-service Winter Low Medium Medium 

Commercial refrigeration products Winter Low Medium Medium 

Process and industry equipment Winter Low Medium Medium 

Commercial catering Winter Low Medium Medium 

Commercial electronics and lighting Winter Low Medium Medium 
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MEASURES AND ABBREVIATIONS 

Units of measure 

Abbreviation Unit of measure 

c cents 

CDD cooling degree days 

GWh gigawatt hour 

HDD heating degree days 

kW kilowatt 

kWh kilowatt hour 

MW megawatt 

 

Abbreviations 

Abbreviation Expanded name 

ABS Australian Bureau of Statistics 

AE Annual energy 

AEMO Australian Energy Market Operator 

AER Australian Energy Regulator 

ANZSIC Australian and New Zealand Standard Industrial Classification 

BOM Bureau of Meteorology 

BPE Business price of electricity 

CCGT Combined cycle gas turbine 

CER Clean Energy Regulator 

CSIRO Commonwealth Scientific and Industrial Research Organisation 

DCCEE Department of Climate Change and Energy Efficiency (Commonwealth) 

DF Diversity factor 

DNSP Distribution network service provider 

DOI Department of Industry (New South Wales) 

DOLS Dynamic ordinary least squares 

EC Error correction 

ECM Error correction model 

EE Energy efficiency 

EEO Energy Efficiency Opportunities 

EES Energy Efficient Strategies 

ESP Energy Saver Program 

ESS Energy Savings Scheme 

ESSBP Energy Efficiency for Small Business Program 

GDP Gross domestic product 

GSP Gross state product 

IDM Integrated dynamic model 

Ind Industrial 

LNG Liquefied natural gas 

MD Maximum demand 
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Abbreviation Expanded name 

MDM Metering Data Management 

MEPS Minimum Energy Performance Standards 

MMS Market Management System 

MSATS Metering Settlements and Transfer Solution 

NEFR National Electricity Forecasting Report 

NEM National Electricity Market 

NSW New South Wales 

OCGT Open cycle gas turbine 

PCA Principal component analysis 

PMA Post model adjustment 

POE Probability of exceedance 

POP Population 

PV Photovoltaic 

Qld Queensland 

RIS Regulation Impact Statements 

RPE Retail price of electricity 

SA South Australia 

SFD State final demand 

SNSG Small non-scheduled generation 

SRES Small-scale Renewable Energy Scheme 

STC Small-scale technology certificates 

Tas Tasmania 

TNSP Transmission network service provider 

TPE Total price of electricity 

Vic Victoria 

 


