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IMPORTANT NOTICE 

Purpose 
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as at the date of publication.   

Disclaimer 
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are based on that data. 

AEMO has made every effort to ensure the quality of the information in this document but cannot guarantee that 

information and assumptions are accurate, complete or appropriate for your circumstances. This document does 
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might require, and does not amount to a recommendation of any investment.  
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ABOUT THIS INFORMATION PAPER 

The 2014 Forecasting Methodology Information Paper is a companion document to the 2014 National Electricity 

Forecasting Report (NEFR). It is designed to assist in interpreting the electricity consumption forecasts contained  

in the NEFR.  

This paper provides a detailed description of how the 2014 annual energy and maximum demand (MD) forecasts 

were developed. It outlines how AEMO sought to ensure the forecasting processes and assumptions were 

consistently applied and fit for purpose. It details the modelling improvements made since the 2013 NEFR.   

In addition to explaining the methodology behind the forecasts, this paper provides further detail on the customer 

segments used in the 2014 NEFR and AEMO’s approach to developing the forecasts for each forecasting 

component.  

Key improvements since the 2013 NEFR include:  

 A stronger focus on short term forecasts (2013-14 to 2016-17). 

 Greater emphasis placed on recent declining residential and commercial consumption patterns in forecasting 

future trends.  

 Increased sample size of large industrial loads, from 39 in 2013 to 93 in 2014. 

 Impact of rooftop photovoltaic (PV) on MD was incorporated directly into the MD model. 

 

The modelling and forecasting methodology processes for each component have been endorsed and approved by 

both AEMO’s subject matter experts and external reviewer Woodhall Investment Research. 
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CHAPTER 1 – INTRODUCTION 

1.1 National Electricity Forecasting 

In 2012, AEMO changed the way it develops and publishes annual electricity demand forecasts for the electricity 

industry, by developing independent forecasts for each National Electricity Market (NEM) region. In 2014, AEMO 

made further improvements to this process.  

Electricity demand forecasts are used for operational purposes, to calculate marginal loss factors, and as a key 

input into AEMO’s national transmission planning role. Therefore, it is important to understand how the forecasts 

are developed and what assumptions are applied.   

AEMO collaborates with industry to ensure representative and reliable forecasts are consistently produced for each 

region. This report outlines the methodology used in the annual energy and MD forecasting process. 

Table 1 summarises how the component forecasts relate to the 2014 NEFR scenarios  

Table 1:  2014 NEFR component scenario mapping   

2014 
NEFR 
reference 

Related 
economic 
scenario 

Related large 
industrial scenario 

Related rooftop PV 
scenario 

Related energy 
efficiency scenario 

Related small non-
scheduled generation 

scenario 

High  HCO5 High Low uptake Slow uptake High uptake 

Medium  MCO5 Medium Medium uptake Moderate uptake Moderate uptake 

Low  LCO5 Low High uptake Rapid uptake Slow uptake 
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CHAPTER 2 – RESIDENTIAL & COMMERCIAL LOAD 

This chapter provides the methodology used to develop the annual energy and MD forecasts for the residential and 

commercial sector.  

Residential and commercial load is defined as the load on the network attributable to residential and commercial 

consumers. It includes distribution losses incurred in the provision of energy to customers.  

2.1 Annual energy 

Annual energy forecasts are developed using econometric methods which estimate the relationship between 

historical electricity consumption and the key drivers that determine residential and commercial consumption 

(income, price, weather, and population).  

The estimates, also known as coefficients, are then used in conjunction with forecast values for the key drivers, to 

derive energy consumption forecasts. 

The 2014 NEFR methodology is based on the 2013 NEFR, which was peer reviewed by Frontier Economics in 

2013.1 While the general model structure was not changed, several aspects were refined in response to external 

peer review feedback, changes in the market environment, and ongoing internal improvement initiatives.  

The changes include:  

 Incorporating an increased number of economic variables in the model. 

 Emphasising more recent consumption data given the growth trend for electricity consumption has recently 

reversed and consumption has been declining. 

 Incorporating the likelihood of a consumer response to the carbon price repeal. 

 Changing the forecasting basis from native to operational consumption. 

 Incorporating more weather stations in the weather variables. 

 Reducing the size of the residential and commercial component due to a reallocation of customers as large 

industrial.2 

 

As per the 2013 NEFR, AEMO engaged Woodhall Investment Research Ltd to assist in developing the annual 

energy models. The following sections detail the data used in modelling, the development of the model and the 

model specification. 

2.1.1 Data sources and variable selection 

The residential and commercial model uses historical data to estimate a relationship between energy consumption 

and four key drivers of consumption (income, price, weather, and population). It then uses these estimates and 

forecast values for the key drivers to calculate consumption forecasts. Historical and forecast economic variables 

were provided by Independent Economics and Frontier Economics.3  

Historical weather data was provided by the Bureau of Meteorology. This section details the source of historical 

and forecast data and explains how specific variables were selected.  

                                                      
 

1  Frontier Economics. Review of AEMO’s 2013 National Electricity Forecasts. Available at 
http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report-2013. 

2 Residential and commercial load is a derived value; increasing the number of industrial customers decreases the estimated residential and 
commercial load. See below for more details on how residential and commercial load is calculated. 

3 Frontier Economics. Economic Outlook. Available at http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-
Report/NEFR-Supplementary-Information. 

http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report-2013
http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/NEFR-Supplementary-Information
http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/NEFR-Supplementary-Information
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The data for economic variables from Independent Economics included:  

 Real gross state product (GSP). 

 Real state final demand (SFD). 

 Population (POP). 

 

The data for economic variables from Frontier Economics included:  

 Real total price of electricity (TPE). 

 Real residential price of electricity (RPE). 

 Real business price of electricity (BPE). 

 Real residential gas price (RGP). 

 Real business gas price (BGP). 

 Real total gas price (TGP). 

 

AEMO used a combination of theory and testing when selecting which variables to include as drivers in the model. 

Consideration is given to the theoretical relationship between consumption and a range of drivers so that the 

estimated coefficients make theoretical sense. For example, the coefficients for each variable should show that 

energy demand is likely to: 

 Increase with real state-wide income. 

 Decrease with rising electricity prices. 

 Reflect seasonal weather variations throughout the year. 

 

Statistical approaches involve examining the fit and statistical significance of each variable when placed in the 

model, and the reasonableness of the modelling results.  

The data is region specific so unique models were developed for each region. AEMO used quarterly data for 

modelling, commencing September, December, March, and June. Results were then aggregated to financial year.  

Calculating consumption data 

Historical consumption data for the residential and commercial segment is estimated by AEMO using the data it 

collects for market settlements. Data collected every half-hour for each NEM region since January 2000 is 

aggregated to produce quarterly data. AEMO uses a top down approach to derive residential and commercial load 

by subtracting industrial consumption, auxiliary load, and transmission losses from total operational consumption.  

For modelling, estimated rooftop PV consumption is added to the calculated operational residential and commercial 

consumption. See Figure 1 for further explanation of how residential and commercial consumption is defined and 

calculated. 
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Figure 1:  Defining and calculating residential and commercial data  

 

The historical residential and commercial data used in the 2014 NEFR differs to that used in the 2013 NEFR. One 

of the ongoing modelling improvements made was to increase the number of industrial customers for which AEMO 

produced individual forecasts. The 54 additional customers allocated to the industrial sector in the 2014 NEFR 

were previously included in the residential and commercial sector. These customers have now been removed from 

the residential and commercial component, resulting in reduced residential and commercial forecasts. In addition, 

consumption data in 2014 is based on operational rather than native demand.  

Calculating income data 

Historical and forecast income data was provided by Independent Economics.  

The 2013 NEFR used a different income variable per NEM region. In some regions, SFD was used; in others, GSP 

was used. Frontier Economics’ 2013 review recommended creating economic variable driver that combined both 

SFD and GSP. AEMO used Principal Component Analysis (PCA) to create this single income variable for the 2014 

NEFR, as per the 2014 Action Plan.4 

PCA calculates linear weights that are used to combine the two data series to create a single variable. These 

weights maximise the variance explained with the variables, creating a single variable that is representative of the 

trends in both SFD and GSP. The benefit of PCA is that it does not require a priori knowledge of the appropriate 

weights, and instead relies on variation within the data to select the weighting.  

                                                      
 

4 Available at http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-
Report/~/media/Files/Other/planning/NEFR/2014/2014%20Supplementary/2014_NEFR_Action_Plan_Implementation_FINAL.ashx 
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Residential + Commercial load PV Energy Efficiency adjustment

Historical Forecast

The blue area indicates energy consumed 
by households and businesses from the 
distribution network. This is what AEMO 
reports as 'Residential and Commercial' 
in the NEFR. 

The black line indicates energy that is 
consumed by households and businesses 
from the distribution network and from 
installed PV. This measure of 
consumption is used to forecast the 
amount of energy consumers will need in 
the future (red line).

To estimate the amount of energy that 
consumers will use from the grid, AEMO: 

1. Estimates the total amount of energy that 
consumers need (red line).

2. Subtracts the energy needs that are forecast 
to be met by PV (yellow area). 

3. Subtracts an adjustment for ongoing energy 
efficiency adoption (green area). 

The PV and EE forecasts are developed 
separately by AEMO (see Chapters 4 & 5). 
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AEMO used a combination of statistics, coefficient analysis, and residual analysis to assess whether using PCA 

was preferable to using a single income variable. AEMO found that the choice of variable made very little difference 

to the model estimation but chose to proceed with PCA as it:  

 Increases the amount of income information in the model without increasing the number of variables.5 

 Allows a consistent variable to be used in each NEM region. 

Calculating price data 

Historical and forecast price data was provided by Frontier Economics. Based on coefficient and residual analysis, 

AEMO assessed TPE as the most appropriate price variable in all regions.  

Calculating population data 

Historical and forecast population data was provided by Independent Economics. Consumption and income data 

were converted to per capita parameters before modelling.  

Calculating weather data 

Historical average daily temperature data was provided by the Bureau of Meteorology. AEMO used this data to 

estimate historical heating degree days (HDD) and cooling degree days (CDD)6 for each region. In the 2013 NEFR, 

AEMO based the regional HDD and CDD on capital city weather station data. For the 2014 NEFR, as per the 2014 

Action Plan, AEMO used a weighted average of several weather stations in each region.  

During the modelling process, HDD and CDD were found to be significant in New South Wales, Victoria, and South 

Australia. HDD was not significant in Queensland and CDD was not significant in Tasmania7 so these variables 

were omitted from the final models. 

Forecast HDD and CDD were estimated by AEMO using the historical trend in the data. This was done on a 

quarterly basis to allow for differing seasonal trends. HDD were found to be decreasing and CDD to be increasing 

over time in all regions, with the exception of Queensland where CDD was also decreasing.  

Other variables 

Other variables, such as the price of substitute electricity sources (for example gas) were considered; however, 

these were found to be statistically insignificant. 

Table 2:  Summary of final variable selection  

 Electricity consumption Income Price Temperature 

Variable Y = Energy/population * 1000 I = PCA (SFD and 

GSP)/population * 1000 

P = TPE HDD and CDD 

Unit kWh/capita $/capita c/kWh Degree days 

 

Consumption, price and income variables were converted to natural logs to improve ease of coefficient 

interpretation.  

                                                      
 

5 Increasing the number of variables would compromise the degrees of freedom, affecting the integrity of statistical tests used for model 
assessment. 

6  HDD and CDD are a measure of how much (in degrees) and for how long (in days) the outside air temperature is lower/higher than a threshold 
temperature.  

7  This is because there are few heating degree days for Queensland and few cooling degree days for Tasmania. 
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2.1.2 Model development 

The model used in the 2014 NEFR is based on the 2013 NEFR model. It is developed in two stages, which allows 

AEMO to produce long-run and short-run coefficients.8 A summary of the methodology is provided below; for more 

details refer to the 2013 NEFR Methodology.9 

There are two changes in the 2014 NEFR methodology: 

 Using an intercept correction as per the 2014 Action Plan to correct an upward forecast bias.  

 Using a Maximum Price Model in modelling the consumer response to the proposed carbon price repeal.  

 

These are further detailed below.  

Estimating the long-run relationship: Dynamic Ordinary Least Squares 

The long-run response estimates the relationship between energy consumption and a number of long-run drivers 

(such as income and electricity prices).  

As per the 2013 NEFR, AEMO adopted the Dynamic Ordinary Least Squares10 (DOLS) approach. This involves 

estimating the cointegrating11 long-run equation and adding sufficient leads and lags12 of the first differences13 of 

the explanatory variables. The specification of the DOLS equation is shown below in Equation 1. 

Equation 1:  Dynamic Ordinary Least Squares 

𝑦𝑡 =  c0  + 𝑐1𝑥𝑡 + ∑ 𝑐𝑖2∆𝑥𝑡+𝑖

𝑛

𝑖=−𝑛

+ 𝑢𝑡 

AEMO adopted this approach because it:  

 Enables a valid and consistent approach to be applied across all NEM regions.  

 Provides an efficient estimator for the long-run relationship in the presence of variables with differing and 

higher orders of integration. Additionally, if a Newey-West14 correction is applied, it is reasonable to apply 

standard tests on the coefficients. 

 Is known to be effective when working with small datasets where endogeneity15 may be present. 

 

The statistical package EVIEWS was used to estimate the DOLS equation for each region, with income and price 

variables entering the equation as the cointegrating regressors. All regional DOLS models also include constant 

temperature variables (to model the contemporaneous weather impact on consumption) and seasonal dummy 

variables (to account for seasonality) as deterministic regressors or covariates. 

                                                      
 

8 Coefficients can be used to describe the change in energy that can be expected due to a change in a given variable. Estimating long-run and 
short-run coefficients allows AEMO to analyse the long-term and short-term impact of a change in a variable. 

9  AEMO. Forecasting Methodology Information Paper. Available at http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-
Forecasting-Report-2013/NEFR-Supplementary-Information-2013. 

10  As proposed by Saikkonen (1991). 
11 Based on work undertaken for the 2013 NEFR, the variables used in the forecast models may be cointegrated, indicating a long-run relationship 

between price and income which can be used to forecast energy consumption. 
12  Leads and lags are transformations of existing time series data that are added to the equation to improve the fit of the model. They are created 

by delaying or bringing forward the data series by a specified number of time periods. AEMO determined the appropriate number of leads and lags 
of the differenced variables by assessing the stability of the coefficients under different leads and lags structures in DOLS. See NEFR 2013 for 
more info on the method used to select leads and lags.  

13  Differences are a transformation of a data series, usually adopted to deal with time series data that exhibits strong increasing (or decreasing) 
trends i.e. data with a non-zero mean, also known as non-stationary data. This technique allows the underlying variation in the time series to 
become more apparent. They are created by taking the difference of data points in consecutive observations (e.g. incomet – incomet-1). When the 
first difference of non-stationary data achieves stationarity, as is the case for AEMO’s data, then the time series is said to be integrated to order 1. 

14 A Newey-West correction is used to correct autocorrelation in the standard errors of a regression model and is generally used for time series data 
where the standard assumption of regression analysis does not apply. 

15  AEMO’s data set is small and endogeneity is suspected.  
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Carbon price assumptions 

In 2013, the Federal Government announced its intention to repeal the Clean Energy Act 2011. The price series 

produced by Frontier Economics included a decline in electricity prices from July 2014. 

However, AEMO has assumed that consumers will not respond to the price decrease. AEMO’s energy models are 

based on historical data during a period in which prices have been continually rising; they provide limited 

information about how consumers may respond to price decreases.  

Consumer response to changes in electricity prices is asymmetric. While consumers may reduce consumption in 

response to price rises, they do not necessarily revert to previous levels of consumption when prices later fall, due 

to permanent changes in behaviour, or momentum. To reflect this, AEMO applied a Maximum Price Model which 

assumes that rather than responding to the carbon price repeal, customers will continue to respond to the highest 

prices they have experienced in recent years.  

Estimating the short-run response: Integrated Dynamic Model 

The short-run response estimates how much demand can deviate in the short run, from the long-run demand 

forecast in response to a change in a variable. As per the 2013 NEFR, AEMO adopted the Integrated Dynamic 

Model (IDM) approach. 

The standard approach when estimating a short-run response within a cointegrating long-run equation is to place 

the lagged error correction (EC) term within a dynamic system, such as an error correction model (ECM). See 

Equation 2 below. The ECM describes how the dependent variable and explanatory variables behave in the short-

run, and the speed at which the system will adjust back to the long-run equilibrium consistent with the long-run 

cointegrating relationship.  

Equation 2:  Error Correction Model with long-run estimates 

∆𝑦𝑡  =  δ(𝑦𝑡−1 − 𝑐𝑜  +  𝑐1𝑥𝑡−1) + ∑ 𝛼𝑖∆𝑦𝑡−𝑖

𝑛

𝑖=1

+ ∑ 𝛽𝑖∆𝑥𝑡−𝑖

𝑛

𝑖=0

+ 𝑢𝑡 

 

However, when using AEMO’s data, the contemporaneous coefficients estimated in the ECM were problematic to 

interpret as they were unusually large due to seasonality in the data.  

Consequently, in the 2013 NEFR, AEMO adopted an Integrated Dynamic Model (IDM). The IDM integrates the 

long-run relationship between the variables (assuming cointegration) while allowing for short-run fluctuations 

consistent with the long-run equilibrium. The IDM integrates the lagged EC term (the residuals estimated from the 

DOLS) into the model. It also includes fourth lagged differences of all the main economic and temperature 

variables.  

Equation 3:  Integrated Dynamic Model 

∆4𝑦𝑡  =  𝑐0  + ∑ 𝑐𝑖1∆4𝑥𝑡−𝑖

4

𝑖=1

 +  𝑐2EC(−1)  +  𝑐3EC(−2) +  𝑐4EC(−3)  + 𝑐5EC(−4)  + u𝑡 

where ∆4 is the fourth-difference operator such that ∆4y = y – y(-4), where c is the estimate of the annual difference 

of 𝑥 for each quarter, c2 through c5 are the estimates of the EC term and u is the error term. 

Initially, four lags of the EC term were used, representing an equilibrium adjustment for each quarter. However, 

based on further analysis, AEMO found that in each region, only the fourth lagged EC term was statistically 

significant.  
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AEMO considers IDM as superior to a standard ECM in modelling seasonal data.16 Advantages include:  

 Similar to an ECM, the IDM imposes constant elasticities for each variable across all seasons. (By taking the 

fourth differences of the main variables, the IDM can account for seasonal differences so that short-run effects 

are seasonally adjusted). IDM allows for an equilibrium adjustment to vary across seasons so that the 

adjustment to the long run will also be seasonally corrected.  

 An integrated model that produces both short-run and long-run forecasts where a transition from short-run to 

long-run does not need to be specialised and can be gradual.  

Intercept correction  

To assess the forecasts, AEMO checks the “fit” of the model; the difference between actual historical consumption 

and an estimate for past consumption calculated by the model. For both the 2013 and 2014 NEFR, the estimated 

historical values were above actual consumption for the last few years of data.  

The annual energy models are based on over 10 years of data during which the dominant trend has been rising 

consumption. This leads to an upwards bias in estimated values. As it appears the trend has shifted with a 

consumption decline observed in recent years, the “overestimation” observed in the historical data could lead to 

over-forecasting. 

In the 2014 NEFR17, AEMO tested the inclusion of an intercept correction18 around the turning point in the historical 

consumption data. The intercept correction adds emphasis to recent data where a change in the consumption trend 

has been observed. The inclusion of the intercept correction reduced the magnitude of the overestimation in the 

last few periods of historical data. A statistical assessment showed that including an intercept correction was 

statistically significant and added more information to the model in all regions except Tasmania. Consequently, 

AEMO has applied an intercept correction to all regions except Tasmania. The starting point of the intercept 

correction varies by NEM region.  

2.1.3 Model specification 

For each region, a DOLS equation was estimated to produce the long-run income and price elasticities. An IDM 

was then estimated and used to produce the residential and commercial forecast. 

The DOLS equation used is shown in Equation 4. The same equation was used for each region with the exception 

of Queensland and Tasmania, where HDD and CDD, respectively, were omitted as they were found to not be 

significant. 

Equation 4:  Dynamic Ordinary Least Squares, regional model structure 

𝐿𝑜𝑔(𝑦) =  𝑐1 +  c2𝐿𝑜𝑔(𝐼) + 𝑐3Log(P) + 𝑐4HDD + 𝑐5CDD + 𝑐6S2 +  𝑐7𝑆3 +  𝑐8𝑆4 

Table 3 shows the values for the estimated coefficients in each region. 

  

                                                      
 

16 Based on impulse response functions for short-run demand response to innovations in the variables. 
17 The application of an intercept correction, starting in 2012, was tested in the 2013 NEFR. However, there was insufficient evidence to support 

including an intercept correction in the final model specification. 
18 An intercept correction is a simple method that adds a dummy variable to a particular period of time. 
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Table 3:  DOLS coefficients  

 Constant Log(I) Log(P) HDD CDD S2 S3 S4 

 c1 c2 c3 c4 c5 c6 c7 c8 

Qld 6.83844 0.14073 -0.28362 N/A 0.00042 0.08761 0.12688 0.01533 

NSW 4.05751 0.41962 -0.31291 0.00031 0.00045 0.02516 0.04159 0.01092 

SA 6.31810 0.14294 -0.14055 0.00032 0.00047 0.02359 0.03890 -0.00424 

Tas 6.22143 0.23181 -0.40688 0.00035 N/A 0.01931 0.05203 -0.00744 

Vic 6.16080 0.17361 -0.20751 0.00025 0.00042 0.03343 0.04515 0.00633 

 

The coefficients (c2 – c5) for the cointegrating long-run equation can be interpreted as follows:   

 Per capita consumption has a long-run income elasticity of c2. As the value for c2 is positive for all NEM 

regions, this means that the long-run response to an increase of 1% in income per capita is a c2% increase in 

electricity consumption.  

 Per capita consumption has a long-run price elasticity of c3. As the value for c3 is negative for all NEM regions, 

this means that the long-run response to an increase of 1% in price is a c3% decrease in electricity 

consumption. 

 HDDs and CDDs are significant in explaining energy consumption in the long run, but only at the time of each 

heating or cooling event. 

As the forecasts are developed on a per capita basis, population has an implied elasticity of 0.01, meaning that the 

long-run response to an increase of 1% in population is a 1% increase in electricity consumption. 

Using Queensland as an example:  

 A 1% increase in income per capita would lead to a 0.14% increase in electricity consumption. 

 A 1% increase in price would lead to a 0.28% decrease in electricity consumption. 

 

The long-run income and price elasticities that were estimated for each NEM region are statistically significant and, 

most importantly, are consistent with the general literature for income and price effects on electricity consumption. 

Residual plots from the model are in Appendix D. 

The IDM equation that was used is shown in Equation 5. The same equation was used for each NEM region except 

Tasmania, where the intercept correction was not found to be significant. 

Equation 5:  Integrated Dynamic Model, regional model structure 

∆4y =  𝑐1 +  c2∆4𝐼𝑠 +  𝑐3∆4𝑃𝑠 + 𝑐4∆4𝐻𝐷𝐷𝑠 + 𝑐5∆4𝐶𝐷𝐷𝑠 + 𝑐6EC(−4) +  𝑐7T  
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Table 4 shows the values for the estimated coefficients in each region. 

Table 4:  IDM coefficients  

 Constant ∆𝟒𝑰𝒔 ∆𝟒𝑷𝒔 ∆𝟒𝑯𝑫𝑫𝒔 ∆𝟒𝑪𝑫𝑫𝒔 𝐄𝐂(−𝟒) T1 

 c1 c2 c3 c4 c5 c6  

Qld 0.00683 0.11201 -0.09490 N/A 0.00034 -0.53201 -0.01943 

NSW 0.00607 0.14584 -0.13741 0.00033 0.00043 -0.50524 -0.01854 

SA 0.00255 0.14110 -0.01088 0.00035 0.00047 -0.81671 -0.01174 

Tas -0.00267 0.39761 -0.48674 0.00032 N/A -1.13559 N/A 

Vic -0.00238 0.29240 -0.07866 0.00028 0.00047 -0.71982 -0.00728 

 

The coefficients for the IDM equation can be interpreted as follows:   

 The instantaneous response to a 1% increase in income is a c2% increase in electricity consumption. 

 The instantaneous response to a 1% increase in price is a c3% decrease in electricity consumption. 

 The adjustment to the new long-run, following a short-run response to a change in a driver, takes place at a 

rate of c6*100% after four quarters.   

 

Using Queensland as an example:  

 A 1% increase in income per capita would lead to an instantaneous electricity consumption increase of 

0.11%. 

 A 1% increase in price would lead to an instantaneous decrease in electricity consumption of 0.09%. 

 The adjustment to the long-run, following short-run disequilibria, takes place at a rate of 53% after four 

quarters.  
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2.2 Maximum demand 

This section outlines the methodology used to develop MD forecasts for residential and commercial consumption. 

These forecasts were prepared by Monash University’s Business and Economic Forecasting Unit. Monash 

University prepared maximum demand reports for each NEM region and these reports are available on AEMO’s 

website.19 

MD is the single highest demand that occurs in any half-hour period over an entire season. As this is the most 

extreme event that occurs in a season, and is highly dependent on weather, there is substantial uncertainty 

inherent in MD forecasts. For this reason a probabilistic distribution of MD is forecast, and 10%, 50%, and 90% 

probability of exceedance (POE) levels are also provided. 

For each NEM region, MD forecasts are developed using separate models for summer (October to March) and 

winter (April to September). A semi-parametric model of half-hourly demand was developed as a series of 48 

models relating to each period of the day.20 These models include calendar-dependent effects (e.g., day of week, 

public holiday) and weather effects, as well as half-yearly (for each season) demographic and economic effects, 

based on AEMO’s annual energy forecasts.  

The models are used together with simulated half-hourly temperature data and residual re-sampling to develop 

POE forecasts of MD. Residual re-sampling accounts for any serial correlation in the residuals. 

An overview of the MD forecast methodology used in the 2014 NEFR is shown in Figure 2. 

Figure 2:  Maximum demand forecast methodology diagram 

 

  

                                                      
 

19  Monash University MD technical reports 2014. Available at http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-
Forecasting-Report/NEFR-Supplementary-Information. 

20  See Rob J Hyndman & Shu Fan, 2008. Density forecasting for long-term peak electricity demand, Monash Econometrics and Business Statistics 
Working Papers 6/08, Monash University, Department of Econometrics and Business Statistics. 
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2.2.1 Maximum demand model  

For each summer and winter period, 48 separate models were built (one for each half-hourly period). The historical 

data used to build the models is half-hourly non-large industrial demand.21 This demand is equivalent to potential 

residential and commercial consumption plus transmission network losses and generator auxiliary loads. 

The semi-parametric model developed by Monash University to model demand (after a log-transform) is presented 

in Equation 6. It is split into two separate models, one that uses demographic, economic and cooling/heating 

degree day variables and another that uses the remaining half-hourly variables. 

Equation 6:  Short- and long-run demand model 

log (𝑦𝑡,𝑝) = log(𝑦𝑡,𝑝
∗ ) + log(�̅�𝑖). 

Here, �̅�𝑖 is the average demand for season 𝑖 (in which time period 𝑡 falls) and 𝑦𝑡,𝑝
∗  is the half-hourly normalised 

demand for time 𝑡 and period 𝑝. These two components can be expressed as: 

log (𝑦𝑡,𝑝
∗ )  =  ℎ𝑝(t) + f𝑝(𝒘1,𝑡 , 𝒘2,𝑡) + 𝑒𝑡  

and �̅�𝑖
𝑝𝑐

= ∑ 𝑐𝑗𝑧𝑗,𝑖 + 𝜖𝑖
𝐽
𝑗=1 , 

where: 

 �̅�𝑖
𝑝𝑐

= �̅�𝑖 𝑃𝑖⁄  is the per-capita seasonal average demand. 

 𝑃𝑖 is the population in season 𝑖. 

 ℎ𝑝(𝑡) models calendar effects. 

 𝑓𝑝(𝒘1,𝑡, 𝒘2,𝑡) models all temperature effects using two locations within each region to represent geographical 

weather diversity (except for Queensland which uses three locations). 

 𝒘1,𝑡, and 𝒘2,𝑡 are vectors of current and past temperatures at each location. 

 𝑧𝑗,𝑖 is a variable in season 𝑖 that accounts for seasonal demographic, economic and degree days effects. Its 

impact on demand is measured by the magnitude of coefficient 𝑐𝑗. 

 𝑒𝑡 and 𝜖𝑖 denotes the demand that is left unexplained by the model at time 𝑡. 

 

The model above separates out the seasonal average demand. The half-hourly demand across different years is 

normalised by dividing the half-hourly demand values by the seasonal average demand. Equation 7 represents the 

normalisation of half-hourly demand. 

Equation 7:  Normalisation of half-hourly demand  

yt,p
∗  = yt,p / y̅i 

where: 

 yt,p
∗  is the normalised demand for day 𝑡 and period 𝑝. 

 y̅i is the seasonal average demand for season 𝑖 in MW (equal to energy in GWh multiplied by ℎ/1,000 where ℎ 

is the number of hours in season 𝑖). The seasonal average demand y̅i is equal to log (g(𝒛𝑡)) in Equation 6. 

For half-hourly demand 𝑦𝑡,𝑝
∗ , the data were modelled in natural logarithms, as this resulted in the best fit to the 

available data. The model is also easier to interpret, as the temperature and calendar variables have a 

multiplicative effect on demand.  

                                                      
 

21 Operational as-generated demand with large industrial loads subtracted. 
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Some specific features of the model are: 

 Variable selection was done by assessing out-of-sample forecasting performance based on the root mean 

squared error. 

 Calendar effects are modelled using variables that account for day-of-week, time-of-year, and public holidays, 

including days immediately before and after public holidays. 

 Temperature effects f𝑝(𝒘1,𝑡, 𝒘2,𝑡) are modelled using additive regression splines. A regression spline is a 

combination of several polynomial curves joined at points known as “knots”. They are used to account for 

non-linear relationships between driver and predictor variables, in this case, the relationship between 

temperature and demand. 

 Temperatures from the last three hours and the same period from the last six days are included, as are the 

maximum and minimum temperature in the last 24 hours and the average temperature over the last seven 

days. 

 Warming trends based on Commonwealth Scientific and Industrial Research Organisation (CSIRO) modelling 

were applied to simulated future temperatures to allow for climate-change impacts. 

 Separate rooftop PV model used to simulate future rooftop PV generation and its effects on demand. The 

rooftop PV model is a nonlinear, nonparametric function that has daily solar radiation, maximum temperature 

and day-of-season as driver variables. 

2.2.2 Simulation of maximum demand distribution  

Producing forecasts using the half-hourly demand model requires future values for the temperature variables and 

the calendar-dependent effects. Average seasonal demand forecasts are also required to convert the normalised 

demand forecasts back to a megawatt figure. Temperature is not random but cannot be predicted on a daily basis 

more than a few days into the future.  

Monash University addressed this problem by simulating 1,000 seasons of synthetic half-hourly temperature data 

for each season to be forecast. The simulation process used a “seasonal block re-sampling approach” which 

simulates numerous temperature patterns based on historical data.22  

Each of the 1,000 seasons of simulated temperature data allowed Monash University to obtain a single simulated 

value of MD. This was done by using the half-hourly demand models to predict demand at every half-hour period in 

the season and taking the maximum of all predicted half-hourly demands over the simulated season. This 

procedure results in 1,000 values of simulated MD, which were used to forecast the distribution of MD. 

As well as temperature variations, the half-hourly model itself involves a random element (the residual e𝑡). To 

capture this random element, Monash University also re-sampled the historical model residuals to simulate 

numerous small adjustments to the predicted half-hourly demand in each of the simulations. 

For each season, each of the 1,000 simulated MDs was re-constituted with the underlying seasonal average 

demand (as in Equation 7). The seasonal average demand, which is based on the annual energy models, also has 

a random element added in for each simulation to represent the uncertainty in the seasonal average demand 

forecast. 

The 10%, 50% and 90% POE MD forecasts were obtained by taking the appropriate percentile of the 1,000 

simulated MDs for each season. A 10% POE MD forecast has a 1-in-10 chance of being met or exceeded in any 

season. A 50% POE forecast has a 1-in-2 chance of being met or exceeded, and a 90% POE forecast has a 9-in-

10 chance of being met or exceeded. 

                                                      
 

22  For more information about this re-sampling process, see Hyndman, R. J. and S. Fan (2008). Variations on seasonal bootstrapping for 
temperature simulation. Report for Electricity Supply Industry Planning Council (SA) and Victorian Energy Corporation (VenCorp). Monash 
University Business and Economic Forecasting Unit. 
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2.2.3 Methodology improvements since 2013   

As per the 2014 Action Plan, Monash University implemented the following improvements to the modelling and 

forecasting work: 

 Conducted structural break analysis to test if the normalised demand (conditional on temperature and 

calendar effects) changes over time. No statistical evidence of structural change in the demand distribution 

was found over the historical data years. This means that no evidence was found for changing load factors or 

residual distributions and so no further action was required. 

 Used a boosting algorithm (an automatic step in the model) to improve the model fitting performance by 

removing the need to manually adjust for extreme temperature bias after the model is developed. Evaluations 

of the model with and without boosting shows that this significantly improves forecast accuracy. 

 Developed a separate model to produce rooftop PV distributions. This model is used to simulate future rooftop 

PV generation to account for future demand that will be met by rooftop PV. 
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CHAPTER 3 – LARGE INDUSTRIAL LOAD 

3.1 Forecasting large industrial load 

This chapter outlines the methodology used to develop the annual energy and MD forecasts for large industrial 

loads. The large industrial load forecast comprises a relatively small number of customers who account for a 

relatively large proportion of consumption in each NEM region. 

Customers typically include aluminium and steel producers, liquefied natural gas (LNG) export and related facilities, 

paper and chemical producers, large grid-connected mines, and water desalination plants.  

The half-hourly demand for these customers is not typically temperature sensitive, although desalination and water 

pumping loads are affected by rainfall. While significant changes to large industrial consumption can substantially 

affect regional consumption, such changes are rare. They typically occur when plants open, expand, close, or 

partially close.  

Given the relatively small number of customers, AEMO forecasts each individual customer’s electricity consumption 

and forecasts are aggregated for confidentiality. 

3.2 Data sources 

AEMO forecasts large industrial electricity consumption based on the following data sources:  

 Information/questionnaire responses from large industrial customers.  

 Information from the relevant distribution network service providers (DNSPs) or transmission network service 

providers (TNSPs). 

 Publicly available information or announcements. 

 Historical data from AEMO’s Metering Settlements and Transfer Solution (MSATS) system. 

3.3 Approach used for the 2014 NEFR 

Step 1: Selecting large industrial customers 

As per the 2014 NEFR Action plan the selection of large industrial customers was expanded from 2013 to include: 

 All transmission-connected loads.  

 All distribution loads with MD greater than 10 MW. 

 Key customers identified by TNSPs and DNSPs (including past customers and new customers with potential 

of significant change). 

 

Electricity consumption associated with several committed LNG trains was also included in the large industrial 

segment for 2014 NEFR. Their electricity consumption forecasts were completed by AEMO’s external consultant, 

Jacobs. Details are available in the 2014 NEFR supplementary information.23  

                                                      
 

23 Available at: http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/NEFR-Supplementary-Information. 
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Step 2: Information gathering  

Questionnaire 

AEMO distributed a questionnaire to all large industrial customers identified in Step 1 requesting information about 

their historical and forecast electricity consumption. 

Each customer was asked to provide three annual energy and MD estimates: 

 High: Reflecting increased electricity consumption from the network following favourable economic conditions 

such as high GDP. This would see increased production, increased operations/additional shifts, decreased 

onsite generation and increased demand for exports.  

 Medium: Reflecting the most likely forecast levels of electricity consumption and MD. 

 Low: Reflecting decreased electricity consumption from the network following non-favourable economic 

conditions (e.g., low GDP). This would see lower production levels, lower output and shifts, increased onsite 

generation, and decreased demand for exports. 

 

Consultation 

After receiving the questionnaire responses, AEMO contacted each customer directly to discuss the information 

and further clarify any likely changes to future operations. Individual company information collected from these 

interviews and questionnaires is confidential so the total from all customers was aggregated into regional forecasts.  

Where the information provided was insufficient, AEMO sought additional information from the relevant TNSP or 

DNSP, and confirmed findings with the customer. 

Step 3: Analysis 

AEMO reviewed all information obtained to ensure consistency across responses and incorporate any additional 

public announcements. Responses were then mapped to the appropriate NEFR high, medium, or low scenario.  

Estimating 2013-14 electricity consumption  

The 2013-14 electricity consumption was estimated from nine months of actual data from July 2013 to March 2014, 

combined with three months of forecast data from April to June 2014, as April to June data was unavailable at the 

time of forecast development.  

Where customers were unable to provide information, AEMO estimated consumption based on actual data plus 

historical data (2012-13 actuals), scaled to take into account recent trends in consumption.  

Short- and medium-term forecasts 

In most cases, the questionnaire responses provided enough information to construct forecasts that directly 

reflected the customer views over the next 10 years. 

Where customers were unable to provide information, AEMO assumed that consumption in the medium scenario 

would continue at the 2013-14 value. 

Long-term forecasts 

Longer-term forecasts are inherently more uncertain. Where customers were unable to provide expected electricity 

consumption in the long term, AEMO consulted with them and agreed to assume that consumption forecasts for 

the medium scenario would continue at the last indicated value. 

Forecasting for the three scenarios 

Where customers were unable to provide information for the high and low scenarios, this was forecast based on 

information provided from external consultants, Independent Economics and Frontier Economics.  

AEMO identified industry-specific indicators in consultation with industry to develop the following variances to the 

medium scenario: 
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Table 5:  Variance in the low and high scenarios from the medium scenario for difference industries  

Customer type Low scenario variance from 
medium by 2033-34 

High scenario variance from medium 
by 2033-34 

Mining 9.7% below 8.5% above 

Manufacturing   4.0% below 0% above 

All others   6.0% below 6.3% above 

 

For the low scenario, AEMO adopted a probabilistic approach to reflect the increased risk of reduced production or 

closure of aluminium smelters in response to less favourable economic conditions. This assumed a 50% reduction 

in operations across all NEM-connected aluminium smelters from 2015 to 2017, followed by closure once current 

arrangements with the respective state governments or electricity providers expire.   

Desalination and water-supply pumping loads vary due to rainfall rather than economic conditions, so the economic 

scenarios were equalised to reflect this. AEMO estimated electricity consumption in the initial years of the outlook 

period using information about likely short-term weather conditions. Long-term electricity consumption was forecast 

based on information received from customers.  

To determine each customer’s contribution to forecast MD, AEMO reviewed several years of historical consumption 

at times of regional summer and winter peak. From these, AEMO calculated a diversity factor per customer, 

indicating the alignment between each customer’s MD and peak load on the network. This was then applied to 

each customer’s corresponding forecasts for the high, medium, and low scenarios and was aggregated to estimate 

their contribution to forecast MD.  

To further improve forecast accuracy, the range of peak loads used to determine the diversity factor for summer 

and winter were based on the 10 most significant events in each season. In 2013, a single event was used. 

3.4 Modelling limitations and exclusions 

Individual customer forecasting is subject to a number of limitations, including: 

 Information provided from non-public sources is sensitive and cannot be made publicly available so AEMO’s 

public forecasts are aggregated per NEM region. 

 AEMO depends on large industrial customers proactively advising of new projects. Given some projects may 

be speculative and not eventuate, there is inherent uncertainty in estimating the timing and magnitude of 

future consumption (e.g. for LNG projects). 

Longer-term forecasts (20 years) are particularly difficult to obtain given the uncertainty some industries face in 

terms of commercial pressures (such as exchange rates and changes in taxation). Changes to commercial 

operations are also difficult to predict and can be abrupt (especially with regard to plant closures) and are often 

highly confidential. 

Non-industrial loads (such as casinos, shopping centres, hospitals, stadiums, and universities) were excluded from 

this segment, and were incorporated into the commercial and residential segment. 
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3.5 Methodology improvements since 2013 

Changes in the large industrial load methodology from the approach used in 2013 include: 

 The 2013 selection of large industrial loads was derived from a list compiled from each TNSP of all 

transmission-connected customers, plus additions based on large customers with significant consumption 

identified by TNSPs, DNSPs and AEMO. The 2014 selection was extended and based on a consumption 

threshold. Refer to Table 6 below for details. 

 The questionnaire design was changed to obtain more information, including onsite generation capacity and 

demand response expectations. 

 AEMO excluded specific pumped-storage loads that were included in the 2013 NEFR. Pumped-storage hydro 

pumping operation varies due to electricity market price volatility. Pumping loads are generally shut down at 

the time of peak demand and therefore do not contribute to MD. They are excluded as the energy is being 

stored for additional generation. In the 2013 NEFR, New South Wales pumped-storage hydro pumping was 

included in the large industrial segment, but Queensland pumped-storage was not. 

 Where limited or no data was provided from customers, AEMO forecast electricity consumption in the high 

and low scenarios based on information provided from the economic consultants using industry-specific 

indicators to calibrate the high and low scenarios relative to the medium scenario. In 2013, industry-specific 

indicators were not used. 

 The range of peak loads used to determine the diversity factor for summer and winter maximum demand was 

been increased to cover the 10 most significant events in each season. In 2013 a single event was used. 

 Energy efficiency (EE) savings were applied to the forecasts based on the EE work carried out as part of the 

NEFR (see Chapter 5). In 2013, no EE savings were applied to the large industrial segment. 

 

Table 6 below shows the difference in the number of customers included in the large industrial segment in the 2013 

and 2014 NEFRs.  

Table 6:  Large industrial load numbers per NEM region in the 2013 and 2014 NEFRs 

Region Number of customers % of 2012-13 annual energy (GWh) 

 2013  
NEFR 

2014 
NEFR 

Movement 2013 
NEFR 

2014 
NEFR 

Movement 

NSW 13 23 10 17% 19% 2% 

Qld 6 25 19 22% 27% 5% 

SA 9 16 7 16% 22% 6% 

Tas 4 14 10 53% 57% 4% 

Vic 7 15 8 18% 20% 2% 

Total NEM 39 93 54 19% 22% 3% 
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CHAPTER 4 – ROOFTOP PV 

4.1 Introduction 

This chapter provides the methodology used to develop the 2014 NEFR rooftop PV forecasts.  

Similar to previous editions of the NEFR, the rooftop PV forecast for both annual energy and MD rests on two 

fundamental components: installed capacity forecasts and half-hourly traces of rooftop PV generation. This is 

shown below in Figure 3. 

Figure 3:  Overview of rooftop PV methodology  

 

 

The yellow blocks highlight areas where there have been major improvements to the model. In particular:  

 The installed capacity forecast now uses system prices and installation information from the Clean Energy 

Regulator (CER) and demographic information from the 2011 Australian Bureau of Statistics (ABS) Census. 

Furthermore, the methodology now better accounts for historical spikes in installations due to policy changes 

by adopting behavioural economic models. 

 Half-hourly traces of rooftop PV were incorporated directly into the MD forecasts developed by Monash 

University. This major improvement allowed the MD models to capture the impact of rooftop PV on the MD 

timing, producing more accurate and informative MD forecasts.   

The following sections focus primarily on the methodology used to forecast installed capacity. Detailed information 

on incorporating rooftop PV into the MD forecasts is provided in the supplementary reports written by Monash 

University and published on AEMO’s website.24  

                                                      
 

24  Available at: http://aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-
Report/~/media/Files/Other/planning/NEFR/2014/2014%20Supplementary/Monash_Electricity_Forecasting_Model_Technical_Report.ashx. 

Installed capacity
PV generation

(Half-hourly traces)

Annual Energy
Maximum Demand

(Monash MD model)
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4.2 Data sources 

The rooftop PV forecasts rely on several data sources. The main sources are provided below in Table 7:  

Table 7:  Main data sources used for rooftop PV forecasts  

Data source Description Use 

CER A list of all installations registered with the CER to 

December 2013. This included size of 

installations and system costs. 

This dataset was used extensively to model the 

uptake of rooftop PV.  

DNSPs Information about rooftop PV installations. 

Varying degrees of detail were provided. 

AEMO cross- validated the installed capacity 

with CER data and found they matched closely. 

Given this, AEMO used the CER dataset to be 

consistent across all NEM regions. 

Bureau of 

Meteorology (BOM) 

Solar radiation data and temperature data. Used to extrapolate half-hourly PV traces 

described in Section 4.5. 

 

4.3 Rooftop PV scenarios 

Three rooftop PV uptake scenarios were developed, each one relating to the economic scenarios developed by 

AEMO and Independent Economics.25 A mapping of the economic scenarios and underlying drivers of the rooftop 

PV uptake scenarios are shown below in Table 8. 

Table 8:  Mapping of PV uptake scenarios and the economic scenarios 

Driver Low PV uptake Moderate PV uptake High PV uptake 

Economic scenario High centralised energy 

demand. 

Medium centralised energy 

demand. 

Low centralised energy demand. 

Rooftop PV system 

costs 

Increases up to 2016 then 

remains flat with ranges 

between $2.62/Watt and 

$2.99/Watt depending on 

region. 

Continues falling at historical 

rates until 2016 then remains flat 

with ranges between $1.92/Watt 

and $2.17/Watt depending on 

region. 

Continues declining until $1/Watt.  

Government 

incentives 

Feed-in tariff and SRES remain unchanged. 

 

Note that in all three uptake scenarios, the Small-scale Renewable Energy Scheme (SRES) was assumed to 

remain unchanged meaning that rooftop PV consumers will continue receiving a rebate for installing rooftop PV 

systems via the sale of small-scale technology certificates (STC).  

However, if the current Renewable Energy Target (RET) review26 removes or modifies the SRES, the out-of-pocket 

expenses borne by customers will likely increase; this is reflected to some extent by the low uptake scenario.   

 

  

                                                      
 

25  Available at:http://aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-
Report/~/media/Files/Other/planning/NEFR/2014/2014%20Supplementary/Independent_and_Frontier_Economic_and_Energy_Market_Forecasts
_final.ashx. 

26 More information available at https://retreview.dpmc.gov.au/. 
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AEMO assumes that some form of feed-in tariff will remain via retailers even though governments might remove or 

reduce a mandated feed-in tariff in the future. For example, the Queensland Government removed its guaranteed 

8-c feed in tariff on 30 June 2014 but consumers still have some ability to negotiate a feed-in tariff via retailers.  

4.4 Installed capacity forecast 

This section describes the methodology used to develop the rooftop PV installed capacity forecasts. These reflect 

the maximum output capacity of all systems in the NEM regions. These forecasts were used as inputs to develop 

the annual energy forecasts and the contribution to MD forecasts. 

AEMO developed the installed capacity forecasts for each NEM region and for each uptake scenario as follows:  

1. Derive historical and future payback periods for typical rooftop PV systems in each NEM region. 

2. Develop and calibrate a relationship between payback period and installed capacity uptake rate using 

historical data.  

3. Develop forecast payback periods based on a variety of economic and demographic variables. The 

installed capacity forecast is then derived using the forecast payback period. 

4. Apply saturation levels to the installed capacity forecasts. 

 

While these steps are broadly consistent with the 2013 NEFR methodology, a number of changes were made to 

improve resulting forecasts. Key components of each step are described in more detail below. 

Step 1: Modelling the payback period 

AEMO developed a payback calculator to forecast the number of years required to repay initial rooftop PV system 

costs (the payback period). The payback period results were converted to installed capacity growth rates (kilowatts 

per month), which were then applied to existing installed capacity to generate the forecasts. 

Table 9 below outlines the parameters modelled in the payback period calculator and the values used. 

Table 9:  Payback period calculator parameters and assumptions 

Parameter Description Value 

Feed-in tariff  Rate (cents per kWh) paid to customer for surplus electricity sent 

back to the grid. This value is based on the actual rates as reported 

by local regulatory determinations or policies in each NEM region. 

Varies by NEM region 

System size The average solar rooftop PV system size for new installations. 4 kW 

System cost per 

watt 

The estimated average installed cost per watt of a solar rooftop PV 

panel before a rebate is provided, for systems at the average 

system size. 

$2.60 – $2.40 depending 

on the NEM region27 

Percentage of 

energy exported 

Represents the energy exported to the grid as a percentage of the 

energy generated by rooftop PV. 

50% 

Number of STCs The number of small-scale technology certificates (STCs) eligible to 

be created for the system depending on region. 

Varies by postcode zone28 

STC price The estimated market price for STCs. $35.00 

STC multiplier A factor between 1 and 5 that enables additional STCs to be 

created per installation.  

1.0 per current legislation29 

                                                      
 

27 As at December 2013, in nominal dollars. 
28 The calculation of STC numbers is available at http://ret.cleanenergyregulator.gov.au/ArticleDocuments/205/solar-stc-calculations-1212.pdf.aspx. 
29 See http://www.comlaw.gov.au/Details/F2014C00241, Subdivision 2.3.3 

http://ret.cleanenergyregulator.gov.au/ArticleDocuments/205/solar-stc-calculations-1212.pdf.aspx
http://www.comlaw.gov.au/Details/F2014C00241
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Parameter Description Value 

STC deeming period The deeming period defines the number of years for which system 

owners can access the annual rebate.  

15 years, with a decrease 

beginning in 2017 and 

reaching one in 2030 as 

per current legislation30 

Abolishment year of 

STC rebate 

The year when the STC rebate for new systems is expected to be 

abolished. After this, no rebate would be provided for new rooftop 

PV systems. 

2030 

Retail electricity 

price31 

The nominal electricity price to be paid by consumers for electricity 

consumed from the grid. 

Varies by NEM region. 

 

Step 2: Modelling the uptake rate as a function of the payback period 

For the 2014 methodology, AEMO redeveloped the relationship between the uptake rate and payback period used 

in 2013.  

Analysis of monthly historical uptake rates showed that large increases occurred shortly before changes to feed-in 

tariffs or the STC multiplier. This was observed in all NEM regions. The analysis confirmed that historical monthly 

uptake was related to both the payback period (driving underlying growth) and changes in financial incentives 

(driving short-term growth).  

To account for the short-term increases in the forecasts, AEMO developed a method that artificially decreases the 

payback period in the months leading up to a change in STC multiplier or feed-in tariff.  In so doing, AEMO was 

able to more accurately reflect the underlying demand for rooftop PV which is then used to forecast future installed 

capacity.  

Prospect Theory 

In the context of AEMO’s rooftop PV uptake modelling it can be useful to consider the following hypothetical 

situation.  

A decision can be made between a rooftop PV installation happening either now or later, and a feed-in tariff 

decrease occurs somewhere in between those two dates. From a consumer’s perspective, the incentive to capture 

the higher feed-in tariffs by bringing forward the installation of a system can be seen as a potential financial gain 

relative to the alternative of waiting and missing out on the opportunity to secure a higher rate.  Although these 

patterns were clearly evident from the historical data, previous modelling did not attempt to account for this.   

With this in mind, AEMO adapted a component of Prospect Theory32 to capture the additional installations being 

brought forward in time.  

Prospect Theory is a behavioural economic theory that describes the way people choose between alternatives. 

Broadly, it states that people make decisions based on the perceived value of losses and gains rather than the final 

outcome, and that losses and gains of the same value are not treated equally. At the core of the theory is the value 

function which relates an actual loss or gain to a perceived loss or gain. 

Figure 4 shows a typical curve of a value function, and indicates that a loss (relative to present status) equates to a 

greater perceived loss. Similarly, gains (relative to present status) equate to perceived gains that are not actually 

that high.  

                                                      
 

30  See http://www.comlaw.gov.au/Details/F2014C00241, Subdivision 2.3.3 
31  Retail electricity prices and forecasts were produced by Independent Economics and Frontier Economics.  More information can be found in the 

Economic and Energy Market Forecasts (economic outlook) on AEMO’s website.  http://aemo.com.au/Electricity/Planning/Forecasting/National-
Electricity-Forecasting-Report/NEFR-Supplementary-Information. 

32  Prospect Theory: An Analysis of Decision under Risk, by Daniel Kahneman and Amos Tversky, Econometrica, 47(2), pp. 263-291, March 1979. 



FORECASTING METHODOLOGY INFORMATION PAPER 

© AEMO 2014  28 

This implies that losses are valued more strongly than gains, and suggests that people are more sensitive to 

losses. In the rooftop PV context, a consumer would perceive an exaggerated loss if they missed out on the higher 

feed-in tariff. If the perceived loss was large enough, the consumer would decide to bring forward the installation of 

the rooftop PV system to secure the higher feed-in tariff. 

AEMO applied the value function to the relative losses that were derived from STC multiplier and feed-in tariff 

changes to give estimated perceived losses on a monthly basis. These were then considered to act as additional 

financial incentives for bringing forward installations. They were then incorporated into the payback calculation to 

produce an adjusted payback period (for modelling purposes).   

The perceived losses and adjusted paybacks were calculated for the three months leading up to changes in 

financial incentives. This date range was set to capture a build-up of the installation rate in those months preceding 

the change. The adjusted payback was lower than the regular payback, linking these “pre-change” periods to 

greater rooftop PV uptake rates.  

The value function is a two-part function and is expressed as follows: 

Equation 8:  The value function 

𝑉(𝑥) = 𝑥𝛼              for 𝑥 ≥ 0 

𝑉(𝑥) = −𝜆(−𝑥)𝛽    for 𝑥 < 0 

where 𝑉(𝑥) is the perceived value of 𝑥, 𝑥 is a relative gain or loss, and 𝛼, 𝜆, and 𝛽 set the shape of the curve. 

AEMO applied 𝛼 = 0.5, 𝜆 = 2.5, and 𝛽 = 0.5. Figure 4 plots the function. 

Figure 4:  The value function 
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AEMO developed a linear relationship linking the adjusted payback period to monthly rooftop PV system uptake for 

each NEM region using historical data extending back to January 2012. Data before this date was considered to be 

less relevant for current and future uptake estimates given significant differences in financial incentives. The form 

of the linear relationships is described in Equation 9.  

Equation 9:  Payback–uptake relationship 

𝑦 = 𝑎𝑥 + 𝑏 

where 𝑦 is monthly uptake, 𝑥 is the adjusted payback period, 𝑎 is a coefficient connecting adjusted payback to 

monthly uptake and 𝑏 is a constant reflecting uptake not sensitive to payback period. This relationship was 

determined for each NEM region. 

Step 3: Forecast of installed capacity 

Unsaturated forecast of installed capacity 

The payback–uptake relationship, described in step 2, was applied to future estimates of the payback period in 

each NEM region. This provided the unsaturated installed capacity forecast.  

AEMO developed the future payback estimates using the information summarised in Table 9. This included 

forecasts of retail electricity price, system costs, and financial incentives such as feed-in tariffs and the SRES.  

Application of saturation levels to installed capacity forecasts 

AEMO’s approach to saturation of installed capacity did not change from the 2013 NEFR. The impact of saturation 

on the installed capacity growth is applied at the last stage of installed capacity forecast development using the 

following limit equation: 

Equation 10:  Saturation growth rate equation 

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 
𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒

=  
𝑈𝑛𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 
𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒

× [1 − (

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 
𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑔𝑟𝑜𝑤𝑡ℎ

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 
𝑙𝑒𝑣𝑒𝑙

)] 

AEMO assumed that the effects of saturation would only appear once the cumulative growth had reached a 

threshold percentage of the saturation level. As a result, the formula above was only applied to growth rates above 

this threshold. The threshold values were set to 40%, 50% and 60% for the low, moderate, and high uptake 

scenarios respectively.   

Estimating saturation levels 

Saturation levels place an upper limit on installed capacity. They primarily reflect the amount of suitable roof space 

available for rooftop PV installations.  

AEMO’s approach to estimating saturation levels for the 2014 NEFR was consistent with the 2013 NEFR in that: 

 The City of Port Phillip’s (Victoria) study33 on rooftop PV saturation capacity was used as a basis for relating 

numbers of dwellings to saturation capacity in megawatts.   

 The average residential system size per dwelling for saturation was 3.5 kW. This was calculated 

independently using the study and ABS dwelling data for the City of Port Phillip. 

 The saturation capacity as estimated in the City of Port Phillip study was decreased by 25% to account for 

considerations such as building restrictions by authorities (e.g., heritage overlays), aesthetic considerations, 

and lack of incentive for rental properties.  

                                                      
 

33 City of Port Philip. Urban Solar Atlas, Port Philip solar mapping; 2011. Available at http://www.enviroehub.com.au/index.php?nodeId=404. 
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 The capacity, including the 25% adjustment, was extrapolated to each NEM region based on number of 

dwellings. 

Key changes from 2013 were: 

 Before extrapolating the saturation capacity to each NEM region, AEMO linked the number of dwellings to 

population using a linear relationship. This was done because the 2014 NEFR economic outlook provided 

population growth for the forecast period, rather than number of dwellings (as per 2013). The extrapolation 

was a two-step process: estimate dwellings from population and then estimate the capacity limit from the 

dwellings. A strong relationship between population and dwellings was found, so the final extrapolated 

saturation capacity estimates were comparable to the 2013 estimates.  

 AEMO included the following types of dwellings as available for rooftop PV installation: separate houses, 

semi-detached row or terrace houses, townhouses, blocks of flats, units and blocks of apartments. Dwellings 

such as structures attached to a building and caravans were excluded.  

4.5 Historical estimates 

Estimates of a historical, 30-minute interval data trace of rooftop PV generation from January 2009 to February 

2014 were prepared as per the 2013 NEFR. This includes using the ROAM Consulting rooftop PV estimates34 and 

the Bureau of Meteorology’s solar exposure observation.35 The process is detailed in the 2013 Forecasting 

Methodology Information paper.36  

AEMO used the half-hourly trace estimates to derive monthly average estimates of rooftop PV generation for a 1 

MW system, enabling estimation of annual energy production (Section 4.6). 

AEMO sourced historical installed capacity data for January 2009 to January 2014 from the CER, who provided 

anonymous installation data for each registered system. AEMO evaluated this data against DNSP data and 

confirmed the CER data as reliable. As per the 2013 NEFR, the CER data was used to estimate historical installed 

capacity. An inherent lag exists in the CER data as installations take up to 12 months to be registered. The lag is 

most pronounced in the last three to four months of the dataset, so only data to September 2013 was used.   

4.6 Rooftop PV energy forecasts 

AEMO derived the rooftop PV forecasts for the 2014 NEFR using the installed capacity forecasts (Section 4.4) and 

average monthly rooftop PV energy distribution profiles (Section 4.5).  

The average monthly energy distribution profiles were calculated using the average monthly aggregated energy 

data from ROAM Consulting. No adjustment was made to these estimates as the average energy calculated from 

the ROAM Consulting traces closely matched the CER generation estimates. This resulted in the predicted 

generation per kilowatt of installed capacity being slightly higher than in the 2013 NEFR. 

The current rooftop PV energy forecasts do not assume any future improvements in EE or any technological 

improvements to solar panels that may affect the amount of energy generated from a given amount of installed 

capacity.  

                                                      
 

34 This was done as part of the 100% renewable electricity scenarios for the Department of the Environment. For more information, see 
http://www.climatechange.gov.au/reducing-carbon/aemo-report-100-renewable-electricity-scenarios. 

35 According to the BOM, “Global solar exposure is the total amount of solar energy falling on a horizontal surface. The daily global solar exposure is 

the total solar energy for a day.” For more information see http://www.bom.gov.au/climate/austmaps/solar-radiation-

glossary.shtml#globalexposure.  
36 Available at: http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report-

2013/~/media/Files/Other/planning/NEFR/2013/Forecast%20Methodology%20Information%20Paper.pdf.ashx. 

http://www.bom.gov.au/climate/austmaps/solar-radiation-glossary.shtml#globalexposure
http://www.bom.gov.au/climate/austmaps/solar-radiation-glossary.shtml#globalexposure
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The output of a rooftop PV system will reduce as the system degrades over time. There are also expected 

improvements in rooftop PV efficiency over the forecast period for new installations. AEMO modelled neither of 

these effects explicitly and has assumed instead that the degeneration of existing systems over 10 years or more 

are offset by efficiency gains of new systems being installed. 

4.7 Rooftop PV contribution to maximum demand 

As a result of the 2014 Action Plan, rooftop PV was incorporated directly into the MD modelling developed by 

Monash University.  

To inform Monash University's models, AEMO provided historical rooftop PV output estimates (described in  

Section 4.5) and historical daily solar radiation data, in addition to historical and forecast installed capacity.   

Unlike previous NEFRs, which applied a static contribution factor as a post-model adjustment, incorporating half-

hourly rooftop PV traces directly into the MD model allows more accurate estimates of rooftop PV’s impact on MD 

throughout the day.  

As such, AEMO was able to capture the shift in MD times in several regions due to rooftop PV’s output pattern that 

peaks around midday and has no output at night.  

Appendix C contains snapshots of the load profiles over the forecast period. AEMO has also published the data37 

behind the load profiles. 

More information about Monash University’s model development is available in the reports on AEMO’s website.38 

4.8 Modelling limitations and exclusions 

The following items are not considered in the rooftop PV forecasts: 

 Network limitations  

 As the size of installed capacity continues to rise, certain portions of the network could start facing stability 

issues due to the high penetration rates of rooftop PV.   

 To maintain network stability, limitations, or restrictions on system sizes might be introduced.   

 This could take the form of outright limitations or via additional costs of connection or higher network 

charges to support upgrades.   

 AEMO does not consider this in its modelling of rooftop PV uptake but is monitoring the market.  

 The market impact of rooftop PV increasing total generating capacity in the NEM. 

 Commercial installations were not included in the capacity limit 

 Commercial installations have been, until recently, a negligible portion of installed capacity.   

 AEMO has noticed a recent upward trend in commercial installations and will investigate this for the 2015 

NEFR.  

 Different financing methods 

 AEMO is aware of new financing methods, such as leasing, being introduced into the market. These will 

reduce the upfront costs of installing a rooftop PV system. 

 In most cases, these have targeted commercial installations but extension to the residential sector is 

possible. AEMO is monitoring this development.  

                                                      
 

37Available at http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report/NEFR-Supplementary-Information. 
38 Available at http://aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-

Report/~/media/Files/Other/planning/NEFR/2014/2014%20Supplementary/Monash_Electricity_Forecasting_Model_Technical_Report.ashx. 
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 Storage 

 At present, AEMO assumes no storage is combined with PV systems. 

 AEMO is continually monitoring market trends in storage, including prices, policy, and uptake. 

 PV panel degradation and efficiency improvements 

 AEMO modelled neither system degradation nor system efficiency gains and assumed the offsetting effect 

one would have on the other would make a negligible impact on the forecasts. 

4.9 Methodology improvements since 2013 

The following table summarise the changes from the 2013 methodology: 

Table 10:  Summary of methodology differences for rooftop PV forecasts  

Item 2013 Methodology 2014 Methodology 

Installed capacity Used payback versus uptake relationship. 

Based on public CER data. 

Implicitly assumes commercial installations. 

Calculated an adjusted payback period to 

account for rush in installations due to policy 

changes. 

Based on anonymous data of all rooftop PV 

installations in the NEM from the CER. 

Explicitly excludes commercial installations. 

Saturation rates Based on Port Phillip study and extended to all 

NEM regions. 

Combined Port Phillip study with ABS census 

data to reflect more accurate dwelling 

proportions in each NEM region. 

Average energy Scaled down to match a subset of PVoutput.org 

data. 

No scaling applied as ROAM traces were found 

to match CER estimates quite closely. 

Maximum demand Constant factor used as post model adjustment.   

Unable to account for changes in MD times. 

Half-hourly profiles incorporated in the Monash 

University MD model. 

Able to account for shifts in MD time due to half 

hourly rooftop PV output pattern. 
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CHAPTER 5 – ENERGY EFFICIENCY 

5.1 Introduction 

This chapter provides the methodology used to develop the 2014 NEFR energy efficiency (EE) forecasts.  

Methodology changes since the 2013 NEFR improve the transparency of the forecast approach and the quality of 

the results. These changes are summarised in Section 5.7.  

Two key changes implemented were including the impact of industrial EE measures and a new methodology to 

develop load factors for different POE levels when calculating EE for MD. 

An overview of the EE forecast methodology used in the 2014 NEFR is shown in Figure 5. 

Figure 5:  Energy efficiency forecasting methodology 

 

5.2 Energy efficiency uptake scenarios 

This section describes the three EE uptake scenarios used for the 2014 NEFR forecasts. The three scenarios 

represent uncertainties about the number of new EE programs to be implemented in the long-term forecast period.  

The slow uptake scenario assumes no additional EE programs beyond those already implemented. It assumes no 

additional EE savings above the existing long-term trend. This corresponds with the NEFR high scenario. 



FORECASTING METHODOLOGY INFORMATION PAPER 

© AEMO 2014  34 

The moderate uptake scenario assumes that all EE programs already implemented and those currently being 

implemented remain. This incorporates assumed implementation delays for some programs (such as phasing out 

carbon-intensive water heaters) and uncertainty about whether some programs will be implemented (such as 

Residential Mandatory Disclosure). This corresponds to the NEFR medium scenario. 

The rapid uptake scenario assumes implementation of additional EE programs beyond those already approved and 

assumes all potential savings are realised. This corresponds to the NEFR low scenario. 

5.3 Data sources 

AEMO estimated EE savings from three broad categories:  

 Appliances. 

 Buildings. 

 Industrial. 

The estimated savings are based on three key data sources: 

 Appliances: George Wilkenfeld and Associates. Review of Impact Modelling for E3 Work Program. 

Unpublished report to the Department of Climate Change and Energy Efficiency (DCCEE), May 2014. 

 Buildings: Pitt & Sherry. Qualitative Assessment of Energy Savings from Building Energy Efficiency Measures 

Final Report. Unpublished report prepared for DCCEE, February 2013. 

 Industrial: ClimateWorks. Industrial Energy Efficiency Data Analysis Project. Unpublished report, February 

2014. 

These sources provide recent assessments of EE savings across programs initiated by the Federal Government. 

The first two sources listed used information from Regulation Impact Statements (RIS) undertaken before programs 

are initiated. 

5.3.1 Appliance energy efficiency savings 

Savings across the NEM from appliance energy rating labelling and Minimum Energy Performance Standards 

(MEPS)–collectively referred to in some studies as E3–are estimated by George Wilkenfeld and Associates to be 

38 TWh by 2030. Over half of this comes from programs already in place. 

The George Wilkenfeld and Associates report does not provide a regional breakdown. AEMO determined regional 

values using information from a more comprehensive version of the report published in 200939. Potential savings 

from Western Australia and Northern Territory are excluded. 

The report includes forecast values to 2029-30, which AEMO extended to 2033-34 using linear extrapolation from 

the last five years (2024-25 to 2029-30). 

Figure 6 shows the projected savings across the NEM. Stable growth between 2024-25 and 2029-30 suggests the 

extrapolation is a reasonable approximation of savings beyond 2030. 

                                                      
 

39 http://www.energyrating.gov.au/wp-content/uploads/Energy_Rating_Documents/Library/Equipment_Energy_Efficiency_Program_(E3)/200901-
projected-impacts.pdf 
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Figure 6:  Projected energy efficiency savings for appliances, E3 modelling categories 

 

Source: George Wilkenfeld and Associates (2014) 

The 2009 chiller MEPS program was excluded from the appliance savings because it is also treated as an existing 

project in the building EE savings (as part of the baseline for the Pitt & Sherry assessment). 

5.3.2 Building energy efficiency savings 

The estimated savings from building-related EE measures were based on the Pitt & Sherry study. AEMO 

determined total savings for the NEM based on the report’s savings for each state.  

Figure 7 shows these projected savings. Savings across the NEM from building-related EE measures are 

estimated to be 17 TWh by 2033. 
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Figure 7:  Projected energy efficiency savings for buildings 

 

Source: Pitt and Sherry (2013) 

5.3.3 Industrial energy efficiency savings 

The estimated industrial savings were identified using data reported under the Energy Efficiency Opportunities 

(EEO) program and collated by ClimateWorks. The ClimateWorks data is sourced from industry reporting potential 

EE savings under the EEO program.  

The EEO Program is a Federal Government initiative encouraging large energy-consuming businesses to increase 

EE by mandating the identification of cost-effective energy savings opportunities and then invest in those 

opportunities.  

5.4 Calculating energy efficiency impact for annual energy 

forecasts 

5.4.1 Approach 

AEMO estimated EE savings and incorporated this as a post model adjustment (PMA) to annual energy and MD.  

To determine residential and commercial consumption AEMO applied a PMA to the non-industrial40 consumption 

for appliances and building EE. To determine large industrial load consumption, AEMO applied a PMA to account 

for industrial EE savings caused by equipment and building upgrades, improved process controls and 

measurements, improved process design and changes in behaviour and maintenance. 

                                                      
 

40 Non-industrial defined as operational consumption minus large industrial consumption. 



FORECASTING METHODOLOGY INFORMATION PAPER 

© AEMO 2014  37 

5.4.2 Calculation for appliances and building savings  

AEMO developed forecasts for the three EE uptake scenarios, (rapid, moderate, and slow) defined in Section 5.1, 

using a three step approach: 

1. Estimate the expected EE savings for annual energy using EE policy measures identified for the period 

2000 to 2034.  

2. Calculate the long-term efficiency trend41 observed in the regression period (2000-13) for all NEM regions 

(aggregated) and project this trend to 2034. The difference between this projected trend (grey line in 

Figure 8 and 9) and the expected savings over the forecast period (2014-34) is the EE PMA for annual 

energy. 

3. Disaggregate into forecasts for each region based on region-specific savings identified in 5.3.1 and 5.3.2 

and account for distribution losses (detailed below). 

EE forecasts for measures that target appliances and buildings are shown in Figure 8 and Figure 9 respectively. 

Figure 8:  Energy efficiency forecasts for appliances  

 

Source: George Wilkenfeld and Associates (2014) 

  

                                                      
 

41 The long-term efficiency trend is approximated using a least-square fit for calendar years within the regression period. This calendar year-based 
trend is extended into the forecast period (2014-34), which uses financial years, as AEMO considers the financial year and calendar year trends to 
be sufficiently similar. 
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Figure 9:  Energy efficiency forecasts for building 

 

Source: Pitt and Sherry (2013) 

The savings in the previous two figures identify electricity that is not needed due to EE savings at the end-user 

premises42 i.e., if there was no EE, this electricity would be required. Since the PMA is modelled on transmission 

delivered consumption, distribution network losses that would have occurred when transmitting the electricity need 

to be accounted for.   

𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑀𝐴 𝑓𝑜𝑟 𝐸𝐸 =  𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠𝑒𝑠 +  𝐸𝐸 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 𝑎𝑡 𝑒𝑛𝑑 𝑢𝑠𝑒. 

The distribution losses used in this analysis are shown in Table 11. These are generally from recent losses 

reported to the Australian Energy Regulator (AER) by distribution companies as part of the distribution loss factor 

approvals process.  

Table 11:  Estimated distribution losses in Australia (% of transmitted energy)  

NSW Qld SA Tas Vic 

4.8% 5.4% 6.1% 5.4% 5.2% 

 

                                                      
 

42  Households, businesses. 
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5.4.3 Calculation for industrial savings  

AEMO developed industrial forecasts for each EE uptake scenario by identifying projects to be implemented under 

business-as-usual (BAU) and non-BAU conditions43 and estimating the rate at which these projects would be 

implemented. 

Potential industrial energy savings are identified in ClimateWorks’ data. The expected implementation rate of 

potential projects is based on a discussion paper by ClimateWorks.44 The moderate uptake EE scenario includes 

EE savings identified by industry under BAU conditions. The rapid uptake EE scenario includes BAU and non-BAU 

EE savings identified by industry. Distribution losses are not applied to industrial savings as the larger industrial 

loads are mostly transmission-connected. 

Although the EEO Program was scrapped as part of the 2014 Federal Budget, AEMO has not adjusted the EE 

forecasts. The forecasts assume that having already identified the opportunities to reduce energy costs, these EE 

savings will be implemented regardless of the program status.  

5.5 Calculating the energy efficiency forecasts for 

maximum demand 

AEMO calculates the regional EE impacts on summer and winter forecast MD from the regional EE forecasts for 

annual energy described in Section 5.4, using daily load factors (LF). 

The daily LF is the ratio of the average hourly demand savings for a particular day, to the savings at the time of that 

day’s system MD. This is calculated as follows: 

LF = [Daily energy savings (MWh)/24 hours]/savings at system MD (MW) 

The LF for appliances that operate constantly, such as refrigerators, is approximately one. Appliances used heavily 

at the time of summer MD, such as air conditioners, generally have very low summer LFs. Other appliances, such 

as off-peak electrical water heaters without an override function, never contribute to MD.  

AEMO uses regional summer and winter system LFs instead of individual appliance LFs to account for the diversity 

of appliances contributing to the forecast EE. This reduces potential overstatement of savings at times of MD, as 

large annual energy savings can lead to unrealistically large MD savings if the LFs are low.  

In the 2013 NEFR, a single EE contribution was used at all POE levels and was based on data from only one year. 

AEMO’s 2014 NEFR Action Plan identified that EE contribution to MD should vary at different POE levels. In the 

2014 NEFR, seasonal LFs for the 10%, 50% and 90% POE levels are calculated for each region.  

This is done by first deriving quadratic polynomial regression models to find the relationship between daily LFs and 

non-industrial MD. The load factor that corresponds to a certain POE level demand can then be calculated using 

these regression models.  

Table 12 shows the regional 10% POE load factors used for the NEFR EE forecasts. 

  

                                                      
 

43 BAU and non-BAU EE conditions have been identified by ClimateWorks using barriers analysis. See: ClimateWorks. Inputs to the Energy 

Savings Initiative modelling from the Industrial Energy Efficiency Data Analysis Project. (2012). Available: 

http://www.climateworksaustralia.org/sites/default/files/documents/publications/climateworks_esi_ieedap_report_jul2012.pdf. Viewed 9 July 

2014. 

44 ClimateWorks. Tracking Progress Towards a Low Carbon Economy. (2012). Available: 
http://www.climateworksaustralia.org/sites/default/files/documents/publications/climateworks_tracking_progress_discussion_paper_nov2012.pdf. 
Viewed 9 July 2014. 
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Table 12:  Regional 10% POE load factors for MD savings assessment 

2012-13 data Qld NSW Vic SA Tas 

Annual energy (GWh) 47,160 67,627 46,508 13,319 10,033 

Summer  MD (MW) 8,479 13,892 9,774 3,095 1,317 

Winter MD (MW) 7,469 12,213 7,966 2,408 1,599 

Summer load factor 69.3% 67.7% 65.8% 70.8% 72.7% 

Winter load factor 74.8% 75.8% 82.3% 72.3% 75.6% 

 

5.6 Modelling limitations and exclusions 

5.6.1 Modelling limitations 

The EE forecasts are based on existing and planned policies and measures, and include consideration of currently 

identified future programs. Pitt & Sherry consider the potential for additional savings to be large, some of which 

could be achieved by future policies. AEMO has not considered future polices that have not been identified due to 

the uncertainty involved in such an approach. 

The two data sources45 used for the residential and commercial forecasts include all programs being run by the 

Department of Industry (DOI). The EEO Program targeting industrial EE is the only program included to account for 

potential energy savings in industry. 

As per the 2013 methodology, only savings from Federal Government measures are included. This reduces the 

risk of double-counting savings given that state government programs tend to target similar EE savings and bring 

their impact forward. Any risk of materially understating potential savings is low because state government 

measures are comparatively small. 

The forecasts do not include rebound effects, where a portion of cost savings from EE measures are spent on 

additional energy services. EE savings in lighting, space conditioning (air conditioning and heating), and hot water 

use are likely to have rebound effects. EES (2011)46 estimated rebound to be approximately 15%; this means that 

per 1 GWh of energy savings, 0.15 GWh of additional consumption would occur leading to a net EE saving of  

0.85 GWh.  

The effect of any interaction between electricity price response, EE, and the uptake of distributed generation such 

as rooftop PV is not considered in the annual energy and MD forecasts, and the potential overlap is not measured. 

The forecasts consider electricity only, and doe not include the gas consumption impacts considered in the George 

Wilkenfeld and Associates and Pitt & Sherry reports. 

5.7 Methodology improvements since 2013 

Changes made to the 2014 methodology improve the transparency of the forecast approach and the quality of the 

results.  

The 2014 forecasts are based on two recent studies for DOI, providing consistent assumptions and information that 

specifically address the potential for EE savings for a range of EE programs. In addition to the studies used in the 

2013 methodology, the 2014 methodology also considered industrial EE savings using EEO data obtained from 

ClimateWorks. Updated appliance EE data from DOI was also incorporated. 

                                                      
 

45  See Section 5.3. 
46  Energy Efficient Strategies. “The Value of Ceiling Insulation”, report to ICANZ, September 2011. Available http://icanz.org.au/wp-

content/uploads/2013/04/ICANZ-CeilingInsulationReport-V04.pdf. Viewed 9 July 2014. 
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The 2013 MD savings were calculated using a single system load factor for each POE level. The 2014 approach 

calculates system load factors for each POE level using linear models based on daily load factor values. This 

means EE savings are allowed to vary at different MD levels to improve accuracy. 

In 2013, load factors were based on the 2011-12 financial year only. The 2014 forecast uses data from 2006 to 

2014 to obtain more realistic load factor estimates. 
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CHAPTER 6 – SMALL NON-SCHEDULED 

GENERATION 

6.1 Introduction 

This chapter provides the methodology used to forecast annual energy and contribution to MD for small non-

scheduled generation (SNSG).47  

Forecasts include existing SNSG projects as well as future potential SNSG projects. Forecasts for existing, 

operational SNSG projects are based on characteristics such as generation capacity and historical data. Forecasts 

for future SNSG projects (committed, advanced, and prospective) are developed based on characteristics of 

similar, existing SNSGs such as location and generator class (fuel source). 

A list of existing SNSG projects used for the forecasts is available in Appendix B. 

6.2 SNSG scenarios 

SNSG forecasts are developed for three scenarios that correspond to the 2014 NEFR high, medium, and low 

scenarios.   

Based on AEMO’s generator information pages48, company or Australian Securities Exchange (ASX) releases, and 

other publicly available information, AEMO categorised all SNSG projects according to the criteria below:  

 Category A (operational): SNSG has previously generated, and is currently generating. 

 Category B (committed): A final investment decision has been made and the project is moving to, or currently 

in, construction phase. 

 Category C (advanced): A final investment decision has not been made, but the project is in the later stages 

of the development approval process. 

 Category D (prospective): A final investment decision has not been made, and the project is in the 

intermediate stages of the approval process. 

Inclusion of projects from each of these categories in each of the 2014 NEFR scenarios is listed below in table 13: 

Table 13:  Categories of SNSG projects included in the high, medium and low scenarios. 

2014 NEFR scenario Related SNSG scenario Categories included  

High High uptake A, B, C and D 

Medium Moderate uptake A, B and C 

Low Slow uptake A and B 

 

  

                                                      
 

47 Defined as non-scheduled generating units that generally have a capacity of less than 30 MW. 
48 Available at: http://aemo.com.au/Electricity/Planning/Related-Information/Generation-Information. 
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6.3 Data sources 

AEMO forecast SNSG generation based on the following data sources:  

 AEMO’s generation information pages.  

 Publicly available information and company or ASX releases. 

 Historical data. 

6.4 Calculating SNSG forecasts for annual energy 

SNSG installed capacity and future capacity factors are calculated using up to five years of historical data, ending 

December 2013. AEMO assumes that the installed capacity of existing projects remains unchanged over the  

10-year outlook period unless a site has been decommissioned.  

All new projects are also assumed to commence operation at the mid-point of the calendar year in which they are 

due for completion, at their full capacity, and likewise remain at this level over the 10-year outlook period.  

Capacity factors49 for existing projects are calculated using actual historical generation data and installed capacity 

information. Future output across the forecast period is then estimated using a weighted average of the historical 

capacity factors for each project, with emphasis placed on more recent years. 

For future SNSG projects, where historical output is not available, AEMO estimates capacity factors using the 

following methods:  

 Where similar projects already exist—in terms of NEM region and generator class (fuel source)—AEMO uses 

the total historical output from all similar, existing projects, divided by their combined rated capacity.  

 Where no similar projects exist—typically a new generator class in a particular NEM region—AEMO either 

uses the region average for all existing SNSG projects or applies the capacity factor of similar SNSG projects 

from another region. 

AEMO then combines the resulting capacity factor profile with the expected capacities of all future SNSG projects, 

and uses this to forecast the expected generation per project over the outlook period.  

Finally, total generation per scenario (high, medium, low) is determined as outlined in Section 6.2. 

6.5 Calculating SNSG contribution to maximum demand 

SNSG MD forecasts represent the forecast contribution to demand of SNSG at the time of operational MD.     

The forecast contribution of SNSG to operational MD is calculated using historical operational demand, generation 

data and installed capacity information.  Each existing SNSG’s output during the top 10 highest operational 

demand intervals for both summer and winter over the past five years is compared with its installed capacity to 

calculate summer and winter peak demand contribution factors. 

A similar weighting function as for annual energy is applied when estimating contribution factors, emphasising more 

recent years and any developing trends.  

Contribution factors for the summer and winter MD profile over the 10-year outlook period for MD were held 

constant, regardless of any observed trend or change in contribution levels. The summer and winter contribution 

factors are then applied to the each individual SNSG’s annual energy forecast to develop summer and winter 

SNSG MD forecasts. 

                                                      
 

49 The ratio of actual output to maximum output. 
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For new SNSG projects, AEMO estimates the contribution to MD factors by averaging all generators from the same 

NEM region and generator class (fuel source), as per the process for annual energy. 

6.6 Modelling limitations and exclusions 

AEMO constructs SNSG forecasts based on publicly available information on potential project development.  

While information on projects planned in the early part of the forecast period is adequate, it diminishes in quality 

and quantity for projects scheduled later in the forecast period.  

There is no reliable information regarding SNSG project development towards the end of the forecast period. As 

such, no new projects are assumed, and contribution factors and capacity factors remain constant.  

While this may underestimate future SNSG generation levels, a similar lack of reliable information on SNSG 

retirement rates mean possible overestimation of future generation from existing projects. 

To address this, AEMO effectively assumes that the installation rate over the second half of the forecast period 

equals the retirement rate, resulting in generation profiles that do not vary beyond the initial five years of the 

outlook period.  

6.7 Methodology improvements since 2013 

The 2014 methodology incorporates changes that improve the reliability of the forecast approach and the quality of 

the results. Major improvements include: 

 Better use of historical data to inform capacity factors and contribution to MD factors. This included using a 

weighted average over both time (five years historical data was used, but with more emphasis on recent 

years) and installed capacity (using all plant of a similar class in a given region, weighted by installed 

capacity). 

 Using the 10 highest load intervals (half-hourly average load) over summer and winter to determine 

contribution factors to MD.  The 2013 NEFR used the single highest interval. 
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CHAPTER 7 – DEMAND-SIDE PARTICIPATION 

7.1 Introduction 

This chapter provides the methodology used to develop the demand-side participation (DSP) forecasts presented 

in the 2014 NEFR Demand-side Participation.50 

The term DSP generally covers a wide range of short-term demand responses by customers to electricity price 

and/or reliability signals. In this report it specifically means: 

 Occasional DSP responding to different levels of high prices (market-driven response). 

 Occasional DSP responding to critical system conditions (reliability-driven response). 

It does not include daily or common changes in consumption such as electric hot water heaters being controlled by 

distribution companies or customer responses to time-of-use (TOU) tariff structures.  

The DSP forecast excludes DSP from scheduled loads in the market, as these are accounted for in market 

clearing. However, currently the only scheduled loads are those associated with pumped storage facilities, which 

would not be pumping at times when DSP is needed. (DSP is required when prices are high; pumped storage 

facilities would always be generating—not pumping—at such times.) 

7.2 DSP methodology 

AEMO produces forecasts of the available DSP for winter 2014 and summer 2014-15 separately for two segments:  

 DSP from large industrial loads (based on the same loads as the large industrial load forecast outlined in 

Chapter 3.  

 DSP from non-industrial load.  

The estimated DSP from large industrial loads is calculated based on historically observed responses at various 

price levels. This is explained in detail in Section 7.3. The estimated response from the remaining load is based on 

a survey of network businesses and market participants, and is explained in Section 7.4.  

These estimates are added together for each NEM region to give the total expected DSP available for different 

price levels. 

The totals are then projected into the future to produce forecasts for three possible DSP uptake scenarios: slow 

uptake, moderate uptake, and rapid uptake. The approach for these projections is explained in Section 7.6 

All three energy consumption scenarios used for the 2014 NEFR use the moderate uptake DSP scenario, as 

AEMO considers this to be the most likely uptake scenario of DSP. The low and high DSP uptake scenarios are 

provided to support sensitivity studies for different DSP growth rates. 

  

                                                      
 

50 Available at: http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-
Report/~/media/Files/Other/planning/NEFR/2014/2014%20Supplementary/2014_NEFR_Demand_Side_Participation.ashx.  
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7.3 Estimate of current DSP from large industrial loads 

To calculate the DSPcurrently available as of 2014, AEMO calculates the expected DSP response (reduction in 

consumption) for large industrial loads based on half-hourly metered data from January 2000 to March 2014. The 

response is assessed for different regional wholesale price levels: 

 Prices above $300/MWh. 

 Prices above $500/MWh. 

 Prices above $1,000/MWh. 

 Prices above $7,500/MWh. 

The response is calculated as the difference between the demand observed in the hours where prices were as 

listed above, compared to the average daytime demand for the same day.  

For average daytime demand, AEMO only considers the hours from 7.00 am to 8.00 pm with prices below 

$300/MWh as this is when high price events generally occur (as shown for Victoria in Figure 10). Night-time 

industrial demand tends to be slightly higher, driven by lower night-time electricity prices, so comparing against a 

daily average that included price events outside 7.00 am to 8.00 pm would have introduced a bias which would 

lead to less accurate results.  

Figure 10:  Time of day with prices above $300/MWh in Victoria (Jan 2000 – Mar 2014) 

  

AEMO calculates the DSP response for each high price occasion. The number of high-price events enabled a 

reasonable estimate of the probability distribution of responses, as shown in Figure 11. This figure shows the 

historically observed probability of response in megawatts. For example, 90% of the time when prices have been at 

or above $1,000/MWh, the historically observed DSP response has been at most 80 MW. 
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This assessment shows that DSP, at least from large industrial loads, is a probable resource rather than a firm 

resource51; customer response depends on a range of factors, such as their production commitment to customers 

and production flexibility. For these reasons, the same customer may respond differently at different times.  

Figure 11:  Probability of DSP response in NSW based on historical responses52 (Jan 2000 - Mar 2014) 

 

Due to the limited data available because of the rarity of such events, it is not possible to reliably estimate the DSP 

response for prices above $7,500 using this approach. For use in reliability assessments, discussed later in Section 

7.5, AEMO had to estimate DSP response during system crises—just before involuntary load shedding is required.  

Prices would at that point equal the market price cap (MPC). AEMO assumes that DSP response during system 

crises would be equal to the response seen in the 90–98% interval of the $7,500/MWh curve Figure 11 (the  

98–100% interval is excluded from the analysis as it includes outliers, including mandated load shedding).  

So the lowest expected response equals the plotted value for 90% (corresponding to 10% probability of 

exceedance) and the highest expected response equals the value for 98%, with the midpoint (50% probability of 

exceedance) equal to the 94% value.  

These regional estimates align with DSP forecasts for the 2013 NEFR and are consistent with actual responses 

seen in extreme pricing events.53 

                                                      
 

51  Note that DSP aggregators can and do provide “firm” DSP products by offering the aggregated response from a number of non-firm resources, 
levelling out the uncertainty of individual responses.  

52  This excludes any historical response from the Kurri Kurri smelter.  
53  See Attachment 1 (pages 13 & 14) of AER’s submission to AEMC’s Power of Choice review - Direction paper. Available at: 

http://www.aemc.gov.au/Media/docs/AER---120508-af5529b8-d12f-40d9-98f1-6546921c645c-0.PDF. Viewed 7 July 2014. 

http://www.aemc.gov.au/Media/docs/AER---120508-af5529b8-d12f-40d9-98f1-6546921c645c-0.PDF
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Following this assessment, AEMO evaluates the impact of large industrial load on the MD forecast to see if any 

historical price response might have interfered with the MD forecast calculations. This avoids double-counting of 

price impacts already accounted for in the MD forecast. AEMO found that no DSP price response was present in 

the estimated MD for any NEM region and therefore the DSP forecasts should not be lowered. 

7.4 Estimate of current DSP from smaller loads 

As per the 2013 NEFR methodology, the DSP response from smaller loads is based on a survey undertaken by 

AEMO. In early 2013 AEMO surveyed network service providers (transmission and distribution), retailers, and DSP 

aggregators about the DSP available to them for 2013-14. Refer to the 2013 NEFR Forecast Methodology 

Information Paper54 for details. 

7.5 The combined DSP forecast for 2014-15 

AEMO added the results from the large industrial analysis and the survey responses to produce the combined DSP 

forecast, which is presented in the 2014 NEFR Demand-side Participation report.55  

7.6 Assumed growth of DSP in the future 

The assumed growth of DSP in the 20-year outlook period for the 2014 NEFR is the same as the 2013 NEFR. 

Refer to Chapter 7 of the 2013 NEFR Forecast Methodology Information Paper56 for details.   

7.7 Modelling limitations and exclusions 

The DSP forecast is subject to the following limitations and exclusions: 

 The large industrial analysis is based on historical responses, which may change over time. With electricity 

prices rising, AEMO expects that DSP responses would be higher today than in previous years, so the DSP is 

potentially underestimated.  

 To ensure confidentiality of the capabilities and bidding behaviour of individual DSP resources (retailers, 

NSPs, large industrial loads), results have been presented in aggregate, without the level of detail available to 

AEMO. AEMO has sought to ensure that the aggregation has not introduced any bias into the forecasts.  

 Estimating the growth (or decline) of the DSP resource into the future is difficult due to lack of data for 

potential DSP growth. AEMO arrives at estimates of future DSP levels, presented in Section 7.6, by making 

assumptions guided by policy objectives, and verifying the estimates against achieved levels of DSP in other 

electricity markets.  

 The DSP forecast excludes any daily or common customer response (whether voluntary or through load 

control enabled by tariff type).  

7.8 Methodology improvements since 2013 

The 2014 methodology is not significantly different from the 2013 methodology. Some minor revisions to the 

industrial DSP calculations were made to attempt to capture all historical DSP.  

  

                                                      
 

54  Available at: http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report-
2013/~/media/Files/Other/planning/NEFR/2013/Forecast%20Methodology%20Information%20Paper.pdf.ashx. 

55  Available at: http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-
Report/~/media/Files/Other/planning/NEFR/2014/2014%20Supplementary/2014_NEFR_Demand_Side_Participation.ashx. 

56  Available at: http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report-
2013/~/media/Files/Other/planning/NEFR/2013/Forecast%20Methodology%20Information%20Paper.pdf.ashx. 

http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report-2013/~/media/Files/Other/planning/NEFR/2013/Forecast%20Methodology%20Information%20Paper.pdf.ashx
http://www.aemo.com.au/Electricity/Planning/Forecasting/National-Electricity-Forecasting-Report-2013/~/media/Files/Other/planning/NEFR/2013/Forecast%20Methodology%20Information%20Paper.pdf.ashx
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APPENDIX A –  INPUT DATA, CHANGES, AND 

ESTIMATED COMPONENTS  

Calculations for annual energy57 and MD calculations, transmission losses and auxiliary load used in the National 

Electricity Forecast Report (NEFR) use data which AEMO obtains from the following systems:  

System Data used for: 

Market Management System (MMS): the wholesale market 

system (containing the database WARE) used for operating 

the NEM, including dispatch, determining the regional spot 

price, and ancillary services. 

 Operational data for annual energy and MD calculations  

 Transmission losses 

 Auxiliary loads 

Metering Settlements and Transfer Solution (MSATS): the 

retail market system (containing the database MDM) used for 

financial settlement of the NEM. 

 Individual SNSG for annual energy and MD calculations 

 Industrial loads 

 

Data for rooftop PV is estimated based on data provided by various government departments and distribution 

businesses. 

A.1 Changes to historical data 

Except for Metering Settlements and Transfer Solution (MSATS) data, which is subject to revisions as part of the 

settlement process, historical data should never change. While the individual component data used to create 

AEMO’s datasets does not change, certain elements of this data have been included or excluded in response to 

inconsistencies revealed by detailed analysis.  

Changes to historical data compared to the 2013 NEFR are outlined below. 

A.1.1 All NEM regions 

The historical record of rooftop PV installed capacity was extended in the 2014 NEFR, to be as up-to-date as 

possible. This gave a more complete history of installed capacity. This revision did not impact any other numbers, 

as rooftop PV is added to AEMO’s dataset to forecast total usage, and is then removed as a post-model 

adjustment. 

A.1.2 New South Wales 

SNSG was revised due to changes in methodology. 

The number of large industrial loads included in this year’s analysis increased by 10 compared to the 2013 NEFR. 

This resulted in a decrease in demand for the residential and commercial sector over the historical period. 

A.1.3 Queensland 

SNSG was revised due to changes in methodology.  

The number of large industrial loads included in the 2014 analysis increased by 19 compared to the 2013 NEFR. 

This resulted in a decrease in demand for the residential and commercial sector over the historical period. 

  

                                                      
 

57  Annual energy refers to operational consumption. 
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A.1.4 Victoria 

SNSG was revised due to changes in methodology. The number of large industrial loads included in this year’s 

analysis increased by eight compared to the 2013 NEFR. This resulted in a decrease in demand for the residential 

and commercial sector over the historical period. 

A.1.5 South Australia 

SNSG was revised due to changes in methodology. 

The number of large industrial loads included in this year’s analysis increased by seven compared to the 2013 

NEFR. This resulted in a decrease in demand for the residential and commercial sector over the historical period. 

A.1.6 Tasmania 

SNSG was revised due to changes in methodology. 

The number of large industrial loads included in this year’s analysis increased by 10 compared to the 2013 NEFR. 

This resulted in a decrease in demand for the residential and commercial sector over the historical period. 

A.2 Estimated components for the forecasts 

A.2.1 Transmission loss forecasts 

Transmission losses represent energy lost due to electrical resistance and the heating of conductors as electricity 

flows through the transmission network.  

Transmission losses were forecast based on historical data and were normalised by the large industrial and 

residential and commercial annual energy. Analysis of historical data showed that the normalised transmission 

losses were fairly consistent over the years (Table 14). As such, AEMO forecast transmission losses by using the 

historical normalised transmission losses averaged over the last five years.  

Table 14 shows the historical normalised transmission losses in each NEM region. Of note is that historical data 

was revised slightly due to changes in the calculations of the normalised transmission losses. 

Table 14:  Historical normalised transmission losses 

 NSW Qld Vic SA Tas 

2000-01 2.15% 3.79% 3.16% 2.30% - 

2001-02 2.28% 4.34% 3.00% 2.01% - 

2002-03 2.23% 3.92% 3.70% 2.31% 2.22% 

2003-04 2.51% 3.78% 3.51% 2.44% 2.35% 

2004-05 2.59% 3.56% 3.19% 2.32% 2.39% 

2005-06 2.77% 3.36% 2.99% 2.34% 2.86% 

2006-07 2.75% 3.45% 2.71% 2.10% 2.34% 

2007-08 2.92% 3.39% 2.43% 1.88% 2.44% 

2008-09 2.68% 3.19% 2.68% 2.21% 2.61% 

2009-10 2.78% 3.24% 2.88% 2.35% 3.01% 

2010-11 2.47% 3.08% 2.90% 2.32% 3.00% 

2011-12 2.42% 3.11% 3.00% 2.37% 2.73% 

2012-13 2.14% 3.24% 2.72% 2.40% 3.21% 

5-year average 2.50% 3.17% 2.84% 2.33% 2.91% 
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Changes since 2013 

The methodology has been changed from that in 2013. 

Transmission losses were forecast using historical data averaged over the last five years, in contrary to the 10-year 

average used in 2013. This better captures the changes in the network and generation mix in more recent years. 

A.2.2 Auxiliary loads forecast 

Auxiliary loads account for energy used within power stations (the difference between “as generated” energy and 

“sent-out” energy). 

Historical data 

Analysis for auxiliary loads required historical data obtained from the wholesale market system – Market 

Management System (MMS). Since auxiliary loads were not directly measured, auxiliary loads were assumed to be 

equal to the difference between total generation as measured at generator terminals and that as metered. 

Analysis – Annual energy 

Since auxiliary loads vary proportionally with total generation, forecasts were based on the auxiliary factor, i.e, 

auxiliary loads normalised by total generation: 

generationTotal

loadAuxiliary 
factorAuxiliary 

 

The auxiliary factor was forecast based on the expected auxiliary loads as a percentage of total generation. The 

expected percentage was determined by historical data and anticipated changes in the future generation mix. 

Forecasts of the future generation mix were obtained from the 2013 National Transmission Network Development 

Plan (NTNDP).  

The annual auxiliary loads were then estimated by multiplying the auxiliary factor by the total demand/generation 

as forecast by the annual energy model.   

Analysis – Maximum demand 

The auxiliary loads during MD were forecast using a different approach to that for annual energy. Analysis of 

historical data showed auxiliary loads varied significantly during past MD periods, suggesting that auxiliary loads 

correlated poorly with the generation mix for most regions. 

Therefore, for the 2014 NEFR, auxiliary load forecasts during MD were based on the average auxiliary factor. This 

factor was calculated from the average of the auxiliary loads during the MD periods over the past five years.  

Changes since 2013 

The methodology has been changed from the approach used in 2013, as detailed below: 

 Contrary to the 2013 forecasts which factored in carbon price, the 2014 forecasts assumed no carbon price. 

 The 2013 forecasts were based on ACIL Allen’s estimates of the auxiliary load factor for each individual 

generator. For the 2014 NEFR, these estimates were revised for several generators, e.g., Northern Power 

Station in South Australia, based on more recent historical data. This improved the auxiliary load forecasts.    

 Methodology for auxiliary load forecasts during maximum demand has been revised. Details can be found in 

the section above. 

 The 2013 auxiliary factor forecasts were averaged by a specific number of years. For the 2014 NEFR, no 

averaging was applied to the forecasts.  

Tables 15 to 17 show the expected estimated percentages for the annual energy and maximum demand forecasts 

following the historical percentages and anticipated changes in the generation mix. 
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Table 15:  Auxiliary load expected percentages for the annual energy demand forecasts 

Annual Energy NSW QLD SA TAS VIC 

2013-14 5.31% 6.22% 3.70% 1.52% 8.02% 

2014-15 5.38% 6.66% 3.39% 1.52% 8.31% 

2015-16 5.00% 6.67% 2.38% 1.36% 8.18% 

2016-17 4.81% 6.68% 2.39% 1.37% 7.87% 

2017-18 4.58% 6.65% 2.55% 1.29% 7.78% 

2018-19 4.53% 6.59% 2.29% 1.23% 7.71% 

2019-20 4.41% 6.46% 2.29% 1.23% 7.49% 

2020-21 4.40% 6.29% 2.28% 1.23% 7.41% 

2021-22 4.41% 6.29% 2.35% 1.23% 7.44% 

2022-23 4.41% 6.28% 2.34% 1.23% 7.45% 

2023-24 4.42% 6.28% 2.32% 1.23% 7.46% 

2024-25 4.42% 6.27% 2.31% 1.23% 7.46% 

2025-26 4.45% 6.26% 2.32% 1.23% 7.47% 

2026-27 4.62% 6.25% 2.35% 1.23% 7.48% 

2027-28 4.61% 6.23% 2.35% 1.24% 7.49% 

2028-29 4.63% 6.22% 2.30% 1.23% 7.50% 

2029-30 4.63% 6.21% 2.30% 1.23% 7.50% 

2030-31 4.63% 6.19% 1.58% 1.23% 7.50% 

2031-32 4.62% 6.17% 1.59% 1.23% 7.51% 

2032-33 4.62% 6.14% 1.58% 1.23% 7.50% 

2033-34 4.62% 6.12% 1.59% 1.23% 7.50% 
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Table 16:  Auxiliary load expected percentages for the summer maximum demand forecasts 

Summer MD NSW QLD SA TAS VIC 

2014-15 4.28% 5.58% 4.10% 1.40% 5.70% 

2015-16 4.28% 5.58% 4.10% 1.40% 5.70% 

2016-17 4.28% 5.58% 4.10% 1.40% 5.70% 

2017-18 4.28% 5.58% 4.10% 1.40% 5.70% 

2018-19 4.28% 5.58% 4.10% 1.40% 5.70% 

2019-20 4.28% 5.58% 4.10% 1.40% 5.70% 

2020-21 4.28% 5.58% 4.10% 1.40% 5.70% 

2021-22 4.28% 5.58% 4.10% 1.40% 5.70% 

2022-23 4.28% 5.58% 4.10% 1.40% 5.70% 

2023-24 4.28% 5.58% 4.10% 1.40% 5.70% 

2024-25 4.28% 5.58% 4.10% 1.40% 5.70% 

2025-26 4.28% 5.58% 4.10% 1.40% 5.70% 

2026-27 4.28% 5.58% 4.10% 1.40% 5.70% 

2027-28 4.28% 5.58% 4.10% 1.40% 5.70% 

2028-29 4.28% 5.58% 4.10% 1.40% 5.70% 

2029-30 4.28% 5.58% 4.10% 1.40% 5.70% 

2030-31 4.28% 5.58% 4.10% 1.40% 5.70% 

2031-32 4.28% 5.58% 4.10% 1.40% 5.70% 

2032-33 4.28% 5.58% 4.10% 1.40% 5.70% 

2033-34 4.28% 5.58% 4.10% 1.40% 5.70% 
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Table 17:  Auxiliary load expected percentages for the winter maximum demand forecasts 

Winter MD NSW QLD SA TAS VIC 

2014 4.29% 5.77% 4.09% 0.81% 6.76% 

2015 4.29% 5.77% 4.09% 0.81% 6.76% 

2016 4.29% 5.77% 4.09% 0.81% 6.76% 

2017 4.29% 5.77% 4.09% 0.81% 6.76% 

2018 4.29% 5.77% 4.09% 0.81% 6.76% 

2019 4.29% 5.77% 4.09% 0.81% 6.76% 

2020 4.29% 5.77% 4.09% 0.81% 6.76% 

2021 4.29% 5.77% 4.09% 0.81% 6.76% 

2022 4.29% 5.77% 4.09% 0.81% 6.76% 

2023 4.29% 5.77% 4.09% 0.81% 6.76% 

2024 4.29% 5.77% 4.09% 0.81% 6.76% 

2025 4.29% 5.77% 4.09% 0.81% 6.76% 

2026 4.29% 5.77% 4.09% 0.81% 6.76% 

2027 4.29% 5.77% 4.09% 0.81% 6.76% 

2028 4.29% 5.77% 4.09% 0.81% 6.76% 

2029 4.29% 5.77% 4.09% 0.81% 6.76% 

2030 4.29% 5.77% 4.09% 0.81% 6.76% 

2031 4.29% 5.77% 4.09% 0.81% 6.76% 

2032 4.29% 5.77% 4.09% 0.81% 6.76% 

2033 4.29% 5.77% 4.09% 0.81% 6.76% 
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APPENDIX B –  GENERATORS INCLUDED 

This appendix provides two lists of power stations for each NEM region: 

 The first lists the power stations used to develop operational consumption forecasts. 

 The second lists the additional power stations used to develop native consumption forecasts. 

These lists separately identify the scheduled, semi-scheduled and non-scheduled generators that contribute to 

these forecasts. 

B.1 Queensland 

B.1.1 Power stations used for operational consumption forecasts for Queensland 

Power station Installed 
capacity (MW) 

Plant type Fuel Dispatch 
type 

Barcaldine 55 CCGT Natural Gas Pipeline Scheduled 

Barron Gorge 66 Run of River Water Scheduled 

Braemar 504 OCGT Coal Seam Methane Scheduled 

Braemar 2 519 OCGT Coal Seam Methane Scheduled 

Callide B 700 Steam Sub Critical Black Coal Scheduled 

Callide C 900 Steam Super Critical Black Coal Scheduled 

Collinsville 190 Steam Sub Critical Black Coal Scheduled 

Condamine A 144 CCGT Coal Seam Methane Scheduled 

Darling Downs 644.5 CCGT Coal Seam Methane Scheduled 

Gladstone 1,680 Steam Sub Critical Black Coal Scheduled 

Kareeya 86.4 Run of River Water Scheduled 

Kogan Creek 744 Steam Super Critical Black Coal Scheduled 

Mackay Gas Turbine 34 OCGT Diesel Scheduled 

Millmerran Power Plant 852 Steam Super Critical Black Coal Scheduled 

Mt Stuart  423.5 OCGT Kerosene Aviation fuel used 

for stationary energy  

Scheduled 

Oakey 282 OCGT Diesel Scheduled 

Roma Gas Turbine 80 OCGT Natural Gas Pipeline Scheduled 

Stanwell 1,460 Steam Sub Critical Black Coal Scheduled 

Swanbank E GT 385 CCGT Coal Seam Methane Scheduled 

Tarong 1,400 Steam Sub Critical Black Coal Scheduled 

Tarong North 450 Steam Super Critical Black Coal Scheduled 

Townsville Gas Turbine (Yabulu)  244 CCGT Coal Seam Methane Scheduled 
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Power station Installed 
capacity (MW) 

Plant type Fuel Dispatch 
type 

Wivenhoe 500 Pump Storage Water Scheduled 

Yarwun58 154 CCGT Natural Gas Pipeline Scheduled 

 

B.1.2 Power stations (existing, SNSG) used for native consumption forecasts for 

Queensland – in addition to those in Table B.1.1 

Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Callide A4 30 Steam Sub Critical Black Coal Non-scheduled  

Daandine 30 Compression 

Reciprocating Engine 

Coal Seam Methane Non-scheduled  

German Creek 45 Spark Ignition 

Reciprocating Engine 

Waste Coal Mine Gas Non-scheduled  

Invicta 50.3 Steam Sub Critical Bagasse Non-scheduled  

ISIS Central Sugar Mill Cogen 25 Steam Sub Critical Bagasse Non-scheduled  

KRC Cogen 5 Steam Sub Critical Natural Gas Pipeline Non-scheduled  

Moranbah North PS 45.6 Spark Ignition 

Reciprocating Engine 

Waste Coal Mine Gas Non-scheduled  

Moranbah PS 12.6 Compression 

Reciprocating Engine 

Waste Coal Mine Gas Non-scheduled  

Oaky Creek 20.8 Compression 

Reciprocating Engine 

Coal Seam Methane Non-scheduled  

Pioneer 67.8 Steam Sub Critical Bagasse Non-scheduled  

Rochedale Renewable Energy 4.2 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Rocky Point 30 Steam Sub Critical Green and air dried 

wood 

Non-scheduled  

Roghan Road LFG Plant 1.2 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Somerset Dam 4 Run of river Water Non-scheduled  

Southbank Institute of Tech 1 Compression 

Reciprocating Engine 

Diesel Non-scheduled  

Suncoast Gold Macadamias 1.4 Steam Sub Critical Macadamia Nut Shells Non-scheduled  

Veolia Ti Tree Bioreactor 3.3 Compression 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Victoria Mill 24 Steam Sub Critical Bagasse Non-scheduled  

                                                      
 

58 The National Electricity Market registration classifications of Anglesea Power Station Unit 1 (dispatchable unit ID: APS) and Yarwun Power Station 
Unit1 (dispatchable unit ID: YARWUN_1) are market non-scheduled generating units. However, it is a condition of the registration of these units 
that the Registered Participants comply with some of the obligations of a scheduled generator. Both units are dispatched as scheduled generating 
units with respect to their dispatch offers, targets and generation outputs. Accordingly, information about APS and YARWUN_1 is reported as 
scheduled generating unit information. 
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Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Whitwood Road Renewable 1.1 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Windy Hill 12 Wind - Onshore Wind Non-scheduled  

Wivenhoe Small Hydro 4.5 Hydro - Gravity Water Non-scheduled  

 

B.2 New South Wales 

B.2.1 Power stations used for operational consumption forecasts for New South 

Wales (including ACT) 

Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Bayswater 2640 Steam Sub Critical Black Coal Scheduled 

Blowering 80 Hydro - Gravity Water Scheduled 

Capital Wind Farm 140.7 Wind - Onshore Wind Non-scheduled  

Colongra 724 OCGT Natural Gas Pipeline Scheduled 

Cullerin Range Wind Farm 30 Wind - Onshore Wind Non-scheduled  

Eraring 2880 Steam Sub Critical Black Coal Scheduled 

Gullen Range Wind Farm 165.5 Wind - Onshore Wind Semi-scheduled 

Gunning Wind Farm 46.5 Wind - Onshore Wind Semi-scheduled 

Guthega 60 Hydro - Gravity Water Scheduled 

Hume NSW 29 Hydro - Gravity Water Scheduled 

Hunter Valley GT 50 OCGT Fuel Oil Scheduled 

Liddell 2000 Steam Sub Critical Black Coal Scheduled 

Mt Piper 1400 Steam Sub Critical Black Coal Scheduled 

Munmorah 600 Steam Sub Critical Black Coal Scheduled 

Redbank 143.8 Steam Sub Critical Black Coal Scheduled 

Shoalhaven 240 Pump Storage Water Scheduled 

Smithfield Energy Facility 170.9 CCGT Natural Gas Pipeline Scheduled 

Tallawarra 420 CCGT Natural Gas Pipeline Scheduled 

Tumut 359 1500 Pump Storage Water Scheduled 

Upper Tumut 616 Hydro - Gravity Water Scheduled 

                                                      
 

59 The Tumut 3 Pumps (dispatchable unit ID: SNOWYP) are not classified as scheduled load in the National Electricity Market. However, they are 
required to comply with some of the obligations of a Market Customer in respect of a scheduled load. The Tumut 3 Pumps are dispatched as if 
they were scheduled loads with respect to their dispatch bids, targets and consumption. Accordingly, information about SNOWYP is reported as 
market scheduled load information. 
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Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Uranquinty 664 OCGT Natural Gas Pipeline Scheduled 

Vales Point B 1320 Steam Sub Critical Black Coal Scheduled 

Wallerawang C 1000 Steam Sub Critical Black Coal Scheduled 

Woodlawn Wind Farm 48.3 Wind - Onshore Wind Semi-scheduled 

 

B.2.2 Power stations (existing, SNSG) used for native consumption forecasts for 

New South Wales (including ACT) – in addition to those in Table B.2.1 

Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Awaba PS 1.1 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Bankstown Sports Club 2.1 Compression 

Reciprocating Engine 

Diesel Non-scheduled  

Broadwater Power Station 38 Steam Sub Critical Bagasse Non-scheduled  

Broken Hill GT 50 Diesel OCGT Non-scheduled  

Brown Mountain 5.2 Hydro - Gravity Water Non-scheduled  

Burrendong Hydro 19 Hydro - Gravity Water Non-scheduled  

Burrinjuck PS 27.2 Hydro - Gravity Water Non-scheduled  

Condong PS 30 Steam Sub Critical Bagasse Non-scheduled  

Conroy's Gap 30  Wind - Onshore Wind Non-scheduled  

Copeton Hydro 20 Hydro - Gravity Water Non-scheduled  

EarthPower Biomass 3.9 Spark Ignition 

Reciprocating Engine 

Biomass recycled 

municipal and 

industrial materials 

Non-scheduled  

Eastern Creek PS 5.1 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Glenbawn Hydro 5 Hydro - Gravity Water Non-scheduled  

Glennies Creek PS 11 Compression 

Reciprocating Engine 

Coal Seam Methane Non-scheduled  

Grange Avenue 1.3 Compression 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Jacks Gully 2.3 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Jindabyne 1.1 Hydro - Gravity Water Non-scheduled  

Jounama 14.4 Hydro - Gravity Water Non-scheduled  

Keepit 7.2 Hydro - Gravity Water Non-scheduled  

Nine Network Willoughby 3.2 Compression 

Reciprocating Engine 

Diesel Non-scheduled  
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Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Pindari Hydro 5.7 Hydro - Gravity Water Non-scheduled  

St Georges League Club 1.5 Compression 

Reciprocating Engine 

Diesel Non-scheduled  

Teralba 3.1 Compression 

Reciprocating Engine 

Waste Coal Mine Gas Non-scheduled  

West Illawarra Leagues Club 1 Compression 

Reciprocating Engine 

Diesel Non-scheduled  

West Nowra Landfill 1 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Western Suburbs League Club 1.3 Compression 

Reciprocating Engine 

Diesel Non-scheduled  

Whytes Gully 2.5 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Wilga Park Power Station A 10 Spark Ignition 

Reciprocating Engine 

Natural Gas - 

Unprocessed 

Non-scheduled  

Wilga Park Power Station B 6 Spark Ignition 

Reciprocating Engine 

Natural Gas - 

Unprocessed 

Non-scheduled  

Woodlawn Bioreactor 5.3 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Wyangala A 20 Hydro - Gravity Water Non-scheduled  

Wyangala B 4 Hydro - Gravity Water Non-scheduled  

 

B.3 South Australia 

B.3.1 Power stations used for operational consumption forecasts for South 

Australia 

Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Angaston 50 Compression 

Reciprocating Engine 

Diesel Non-scheduled  

Canunda Wind Farm 46 Wind - Onshore Wind Non-scheduled  

Cathedral Rocks Wind Farm 66 Wind - Onshore Wind Non-scheduled  

Clements Gap Wind Farm 56.7 Wind - Onshore Wind Semi-scheduled 

Dry Creek Gas Turbine Station 156 OCGT Natural Gas Pipeline Scheduled 

Hallett 1 (Brown Hill) Wind Farm 94.5 Wind - Onshore Wind Semi-scheduled 

Hallett 2 (Hallett Hill) Wind Farm 71.4 Wind - Onshore Wind Semi-scheduled 

Hallett 4 (North Brown Hill) Wind Farm 132.3 Wind - Onshore Wind Semi-scheduled 

Hallett 5 (The Bluff) Wind Farm 52.5 Wind - Onshore Wind Semi-scheduled 

Hallett GT 228.3 OCGT Natural Gas Pipeline Scheduled 
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Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Ladbroke Grove Power Station 80 OCGT Natural Gas Pipeline Scheduled 

Lake Bonney Stage 2 Wind Farm 159 Wind - Onshore Wind Semi-scheduled 

Lake Bonney Stage 3 Wind Farm 39 Wind - Onshore Wind Semi-scheduled 

Lake Bonney Wind Farm 80.5 Wind - Onshore Wind Non-scheduled  

Mintaro Gas Turbine Station 90 OCGT Natural Gas Pipeline Scheduled 

Mt Millar Wind Farm 70 Wind - Onshore Wind Non-scheduled  

Northern Power Station 546 Steam Sub Critical Brown Coal Scheduled 

Osborne Power Station 180 CCGT Natural Gas Pipeline Scheduled 

Pelican Point Power Station 478 CCGT Natural Gas Pipeline Scheduled 

Playford B Power Station 240 Steam Sub Critical Brown Coal Scheduled 

Port Lincoln Gas Turbine 73.5 OCGT Diesel Scheduled 

Port. Stanvac 57.6 Compression 

Reciprocating Engine 

Diesel Non-scheduled  

Quarantine Power Station 224 OCGT Natural Gas Pipeline Scheduled 

Snowtown Wind Farm Units 1 and 47 98.7 Wind - Onshore Wind Semi-scheduled 

Snowtown S2 North Wind Farm 144 Wind - Onshore Wind Semi-scheduled 

Snowtown S2 South Wind Farm 126 Wind - Onshore Wind Semi-scheduled 

Snuggery Power Station 63 OCGT Diesel Scheduled 

Starfish Hill Wind Farm 34.5 Wind - Onshore Wind Non-scheduled  

Torrens Island A 480 Steam Sub Critical Natural Gas Pipeline Scheduled 

Torrens Island B 800 Steam Sub Critical Natural Gas Pipeline Scheduled 

Waterloo Wind Farm 111 Wind - Onshore Wind Semi-scheduled 

Wattle Point Wind Farm 90.8 Wind - Onshore Wind Non-scheduled  

 

B.3.2 Power stations (existing, SNSG) used for native consumption forecasts for 

South Australia – in addition to those in Table B.3.1 

Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Amcor Glass 4.0 Compression 

Reciprocating Engine 

Diesel Non-scheduled  

Blue Lake Milling Power Plant 0.5 Compression 

Reciprocating Engine 

Diesel Non-scheduled  

Lonsdale 20.7 Compression 

Reciprocating Engine 

Diesel Non-scheduled  

Port Macdonell 1 Wave Water Non-scheduled  

Seacliff Park 0.9 Hydro Water Non-scheduled  
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Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Tatiara 0.5 Compression 

Reciprocating Engine 

Diesel Non-scheduled  

Terminal Storage Mini Hydro 2.5 Hydro - Gravity Water Non-scheduled  

B.4 Victoria 

B.4.1 Power stations used for operational consumption forecasts for Victoria 

Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Anglesea60 150 Steam Sub Critical Brown Coal Scheduled  

Bairnsdale 94 OCGT Natural Gas Pipeline Scheduled 

Bogong/Mckay 310 Hydro - Gravity Water Scheduled 

Challicum Hills Wind Farm 52.5 Wind - Onshore Wind Non-scheduled  

Dartmouth 185 Hydro - Gravity Water Scheduled 

Eildon 135 Hydro - Gravity Water Scheduled 

Energy Brix Complex (Morwell) 189 Steam Sub Critical Brown Coal Scheduled 

Hazelwood 1600 Steam Sub Critical Brown Coal Scheduled 

Hume VIC 29 Hydro - Gravity Water Scheduled 

Jeeralang A 212 OCGT Natural Gas Pipeline Scheduled 

Jeeralang B 228 OCGT Natural Gas Pipeline Scheduled 

Laverton North 312 OCGT Natural Gas Pipeline Scheduled 

Loy Yang A 2180 Steam Sub Critical Brown Coal Scheduled 

Loy Yang B 1000 Steam Sub Critical Brown Coal Scheduled 

Macarthur Wind Farm 420 Wind - Onshore Wind Semi-scheduled 

Mortlake Units 566 OCGT Natural Gas Pipeline Scheduled 

Mortons Lane Wind Farm 19.5 Wind - Onshore Wind Non-scheduled  

Mt. Mercer Wind Farm 131.2 Wind - Onshore Wind Semi-scheduled 

Murray 1 950 Hydro - Gravity Water Scheduled 

Murray 2 552 Hydro - Gravity Water Scheduled 

Newport 510 Steam Sub Critical Natural Gas Pipeline Scheduled 

Oaklands Hill Wind Farm 67.2 Wind - Onshore Wind Semi-scheduled 

                                                      
 

60 The National Electricity Market registration classifications of Anglesea Power Station Unit 1 (dispatchable unit ID: APS) and Yarwun Power Station 
Unit1 (dispatchable unit ID: YARWUN_1) are market non-scheduled generating units. However, it is a condition of the registration of these units 
that the Registered Participants comply with some of the obligations of scheduled generator. Both units are dispatched as scheduled generating 
units with respect to their dispatch offers, targets and generation outputs. Accordingly, information about APS and YARWUN_1 is reported as 
scheduled generating unit’s information. 
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Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Portland Wind Farm 102 Wind - Onshore Wind Non-scheduled  

Somerton 160 OCGT Natural Gas Pipeline Scheduled 

Valley Power Peaking Facility 300 OCGT Natural Gas Pipeline Scheduled 

Waubra Wind Farm 192 Wind - Onshore Wind Non-scheduled  

West Kiewa 60 Hydro - Gravity Water Scheduled 

Yallourn W 1480 Steam Sub Critical Brown Coal Scheduled 

Yambuk Wind Farm 30 Wind - Onshore Wind Non-scheduled  

 

B.4.2 Power stations (existing, SNSG) used for native consumption forecasts for 

Victoria – in addition to those in Table B.4.1 

Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Ballarat Base hospital 2.0 Spark Ignition 

Reciprocating Engine 

Natural Gas Pipeline Non-scheduled  

Banimboola PS 12.2 Hydro - Gravity Water Non-scheduled  

Berwick 4.6 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Brooklyn Landfill 2.8 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Codrington Wind Farm 18.2 Wind - Onshore Wind Non-scheduled  

Hallam Hydro – South East Water 0.3 Hydro - Gravity Water Non-scheduled  

Hallam Road 9.0 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Hepburn (Leonards Hill) Wind Farm 4.1 Wind - Onshore Wind Non-scheduled  

HRL Tramway Road 5.0 OCGT Diesel Non-scheduled  

Longford 31.8 OCGT Natural Gas Pipeline Non-scheduled  

Mornington Waste Disposal Facility 0.8 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Qenos Cogeneration Facility 21.0  CCGT Natural Gas Pipeline Non-scheduled  

Rubicon 13.5 Hydro - Gravity Water Non-scheduled  

Shepparton 0.8 Spark Ignition 

Reciprocating Engine 

Non-biomass recycled 

municipal and 

industrial waste 

Non-scheduled  

Sunshine Energy 8.7 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Symex 5.9 OCGT Natural Gas Pipeline Non-scheduled  

Tatura Biomass 1.1 Spark Ignition 

Reciprocating Engine 

Sewerage/Waste 

Water 

Non-scheduled  
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Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Toora Wind Farm 21.0 Wind - Onshore Wind Non-scheduled  

Wonthaggi Wind Farm 12.0 Wind - Onshore Wind Non-scheduled  

Wyndham Renewable Energy Facility 1.9 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Yarrawonga Hydro 9.5 Hydro - Gravity Water Non-scheduled  

Werribee Western Treatment Plant 9.6 Spark Ignition 

Reciprocating Engine 

Biogas Non-scheduled  

 

 

B.5 Tasmania 

B.5.1 Power stations used for operational consumption forecasts for Tasmania 

Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Bastyan 79.9 Hydro - Gravity Water Scheduled 

Bell Bay Three 120 OCGT Natural Gas Pipeline Scheduled 

Catagunya/Liapootah/Wayatinah 170.1 Hydro - Gravity Water Scheduled 

Cethana 85 Hydro - Gravity Water Scheduled 

Devils Gate 60 Hydro - Gravity Water Scheduled 

Fisher 43.2 Hydro - Gravity Water Scheduled 

Gordon 432 Hydro - Gravity Water Scheduled 

John Butters 144 Hydro - Gravity Water Scheduled 

Lake Echo 32.4 Hydro - Gravity Water Scheduled 

Lemonthyme / Wilmot 81.6 Hydro - Gravity Water Scheduled 

Mackintosh 79.9 Hydro - Gravity Water Scheduled 

Meadowbank 40 Hydro - Gravity Water Scheduled 

Musselroe 168 Wind - Onshore Wind Semi-scheduled 

Poatina 300 Hydro - Gravity Water Scheduled 

Reece 231.2 Hydro - Gravity Water Scheduled 

Tamar Valley Combined Cycle 208 CCGT Natural Gas Pipeline Scheduled 

Tamar Valley Peaking 58 OCGT Natural Gas Pipeline Scheduled 

Tarraleah 90 Hydro - Gravity Water Scheduled 

Trevallyn 93 Hydro - Gravity Water Scheduled 

Tribute 82.8 Hydro - Gravity Water Scheduled 

Tungatinah 125 Hydro - Gravity Water Scheduled 



FORECASTING METHODOLOGY INFORMATION PAPER 

© AEMO 2014  64 

Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Woolnorth Studland Bay/Bluff Point 

Wind Farm 

140 Wind - Onshore Wind Non-scheduled  

 

B.5.2 Power stations (existing, SNSG) used for native consumption forecasts for 

Tasmania – in addition to those in Table B.5.1 

Power station Installed 
capacity 

(MW) 

Plant type Fuel Dispatch type 

Butlers Gorge 14.4 Hydro - Gravity Water Non-scheduled  

Cluny 17 Hydro - Gravity Water Non-scheduled  

Paloona 28 Hydro - Gravity Water Non-scheduled  

Remount 2.2 Spark Ignition 

Reciprocating Engine 

Landfill 

Methane/Landfill Gas 

Non-scheduled  

Repulse 28 Hydro - Gravity Water Non-scheduled  

Rowallan 10.5 Hydro - Gravity Water Non-scheduled  
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APPENDIX C –  MAXIMUM DEMAND PV SNAPSHOTS 

This appendix provides snapshots of the MD load profiles over the forecast period. 

C.1 Queensland summer 
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C.2 Queensland winter 
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C.3 New South Wales summer  
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C.4 New South Wales winter 

 

 



FORECASTING METHODOLOGY INFORMATION PAPER 

© AEMO 2014  69 

C.5 South Australia summer 
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C.6 South Australia winter 
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C.7 Victoria summer 
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C.8 Victoria winter 
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C.9 Tasmania summer 
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C.10 Tasmania winter 
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APPENDIX D –  DOLS RESIDUALS 

This appendix provides the residual plots for the DOLS models used to produce the residential and commercial 

energy forecasts. Residual plots are commonly used to assess how well the econometric models explain historical 

consumption. The residual is consumption that is unexplained by the model, calculated as the difference between 

actual energy consumption and historical consumption as estimated by the model. Ideally, the data in residual plots 

will appear random with no discernable pattern or time trend and no change in mean or variance over time. 



FORECASTING METHODOLOGY INFORMATION PAPER 

© AEMO 2014  76 

D.1 DOLS residuals for New South Wales 

 

D.2 DOLS residuals for Queensland 
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D.3 DOLS residuals for South Australia 

 

D.4 DOLS residuals for Tasmania 
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D.5 DOLS residuals for Victoria 
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MEASURES AND ABBREVIATIONS 

Units of measure 

Abbreviation Unit of measure 

c cents 

CDD cooling degree days 

DD degree days 

HDD heating degree days 

GWh gigawatt hour 

kW kilowatt 

kWh kilowatt hour 

MW megawatt 

MWh megawatt hour 

TWh terawatt hour 

 

Abbreviations 

Abbreviation Expanded term 

AEMO Australian Energy Market Operator 

BAU Business as usual 

BGP Real Business Gas Price 

BOM Bureau of Meteorology 

BPE Real Business Price of Electricity 

CER Clean Energy Regulator 

CCGT Combined Cycle Gas Turbine 

CSIRO Commonwealth Scientific and Industrial Research Organisation  

DNSP Distribution Network Service Provider 

DOI Department of Industry 

DOLS Dynamic Ordinary Least squares 

DSP Demand-side Participation 

EC Error Correction 

EEO Energy Efficiency Opportunities 

ECM Error Correction Model 

EE Energy Efficiency 

GDP Gross Domestic Product 
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Abbreviation Expanded term 

GSP Gross State Product 

IDM Integrated Dynamic Model 

MD Maximum Demand 

MEPS Minimum Energy Performance Standards 

MMS Market Management System 

MPC Market Price Cap 

NEM National Electricity Market 

NSP Network Service Provider 

OCGT Open Cycle Gas Turbine 

PCA Principal Component Analysis 

PMA Post Model Adjustment 

POP Population 

RGP Real Residential Gas Price 

RIS Regulation Impact Statements 

RPE Real Residential Price of Electricity 

SRES Small-scale Renewable Energy Scheme 

STC Small-scale Technology Certificates 

TGP Real Total Gas Price 

TNSP Transmission Network Service Provider 

TOU Time of use 

TPE Real Total Price of Electricity 

 


