

Unaccounted For Energy (UFE) Trends Report May 2025

Information and analysis of UFE for the National Electricity Market

Important notice

Purpose

AEMO publishes the Unaccounted for Energy (UFE) Trends Report under clause 3.15.5B of the National Electricity Rules (NER), to provide information and analysis of UFE in each local area to facilitate efficient decreases in UFE over time.

This publication has been prepared by AEMO using information and data relating to the period 26 February 2023 to 1 March 2025, as available to AEMO up to the date of publication.

Disclaimer

This document or the information in it may be subsequently updated or amended. This document does not constitute legal, business, engineering or technical advice, and should not be relied on as a substitute for obtaining detailed advice about the National Electricity Law, the National Electricity Rules (NER), or any other applicable laws, procedures or policies. AEMO has made reasonable efforts to ensure the quality of the information in this document but cannot guarantee its accuracy or completeness.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this document:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this document; and
- are not liable (whether by reason of negligence or otherwise) for any statements or representations in this document, or any omissions from it, or for any use or reliance on the information in it.

Version control

Version	Release date	Changes
1	16/05/2025	

Executive summary

The Unaccounted for Energy (UFE) Trends Report provides information about UFE in each *local area* for the period 26 February 2023 to 1 March 2025. The content of the report addresses the requirements under National Electricity Rules (NER) 3.15.5B for AEMO to:

- Report on the total UFE for each local area,
- Analyse UFE in each local area against benchmarks,
- Identify sources of UFE in each local area,
- Recommend UFE visibility improvements in each local area, and
- Recommend actions to reduce UFE for each local area.

Total UFE and the components of UFE for each *local area* have been calculated in accordance with formulations prescribed in NER 3.15.5.

The report identifies sources of UFE that will be analysed in future reports.

Based on the information presented in the **UFE values by settlement data versions** charts (refer to Appendix A1.2), AEMO considers that significant improvement in UFE values will come from the further deployment of remotely read interval metering. This will bring the preliminary (Prelim) and final (Final) UFE values into closer alignment with the first revision (Rev 1) and second revision (Rev 2) UFE values, as demonstrated in the Victorian *local areas*.

Contents

Executive summary		3
1	Introduction	8
1.1	Purpose and scope	8
1.2	Definitions and interpretation	8
1.3	Key definitions – UFE components	9
2	Summary and analysis of UFE	11
2.1	Trend interpretation	11
3	UFE benchmark analysis	25
3.1	ActewAGL	26
3.2	Ausgrid	27
3.3	AusNet Services	28
3.4	CitiPower	29
3.5	Endeavour Energy	30
3.6	Energex	31
3.7	Ergon	32
3.8	Essential Energy	33
3.9	Jemena	34
3.10	Powercor	35
3.11	SA Power Networks	36
3.12	TasNetworks	37
3.13	United Energy	38
4	UFE source analysis	39
4.1	DLF Values	39
4.2	Accumulation Metering Migration to 5-minute Metering	54
4.3	15 and 30-minute Metering Migration to 5-minute Metering	56
4.4	Unmetered Loads Migration to Metered Arrangements	57
4.5	NCONUML Alternative Calculation Methodologies	57
4.6	Review of Profiling Methodologies	58
4.7	Review of UFE Values by Settlement Data Versions	58
4.8	Review of Unmetered Cross Boundary Energy Volumes	58
5	Recommendations – UFE visibility improvements	59
6	Recommendations – UFE reduction actions	59
A1.	UFE analysis supporting information	61
A1.1	UFE and UFE % of ADME for local areas	62

A1.2	UFE components by settlement data type	75
A1.3	Profiles for each local area	89
Glossa	ry	116

Figures

Figure 1	UFE Components – ActewAGL	12
Figure 2	UFE Components – Ausgrid	13
Figure 3	UFE Components – AusNet Services	14
Figure 4	UFE Components – CitiPower	15
Figure 5	UFE Components – Endeavour Energy	16
Figure 6	UFE Components – Energex	17
Figure 7	UFE Components – Ergon	18
Figure 8	UFE Components – Essential Energy	19
Figure 9	UFE Components – Jemena	20
Figure 10	UFE Components – Powercor	21
Figure 11	UFE Components – SA Power Networks	22
Figure 12	UFE Components – TasNetworks	23
Figure 13	UFE Components – United Energy	24
Figure 14	UFE Median, Average, Maximum and Minimum – ActewAGL February 2024	26
Figure 15	UFE Median, Average, Maximum and Minimum – ActewAGL February 2025	26
Figure 16	UFE Median, Average, Maximum and Minimum – Ausgrid February 2024	27
Figure 17	UFE Median, Average, Maximum and Minimum – Ausgrid February 2025	27
Figure 18	UFE Median, Average, Maximum and Minimum – AusNet Services February 2024	28
Figure 19	UFE Median, Average, Maximum and Minimum – AusNet Services February 2025	28
Figure 20	UFE Median, Average, Maximum and Minimum – CitiPower February 2024	29
Figure 21	UFE Median, Average, Maximum and Minimum – CitiPower February 2025	29
Figure 22	UFE Median, Average, Maximum and Minimum – Endeavour Energy February 2024	30
Figure 23	UFE Median, Average, Maximum and Minimum – Endeavour Energy February 2025	30
Figure 24	UFE Median, Average, Maximum and Minimum – Energex February 2024	31
Figure 25	UFE Median, Average, Maximum and Minimum – Energex February 2025	31
Figure 26	UFE Median, Average, Maximum and Minimum – Ergon February 2024	32
Figure 27	UFE Median, Average, Maximum and Minimum – Ergon February 2025	32
Figure 28	UFE Median, Average, Maximum and Minimum – Essential Energy February 2024	33
Figure 29	UFE Median, Average, Maximum and Minimum – Essential Energy February 2025	33
Figure 30	UFE Median, Average, Maximum and Minimum – Jemena February 2024	34
Figure 31	UFE Median, Average, Maximum and Minimum – Jemena February 2025	34

Figure 32	UFE Median, Average, Maximum and Minimum – Powercor February 2024	35
Figure 33	UFE Median, Average, Maximum and Minimum – Powercor February 2025	35
Figure 34	UFE Median, Average, Maximum and Minimum – SA Power Networks February 2024	36
Figure 35	UFE Median, Average, Maximum and Minimum – SA Power Networks February 2025	36
Figure 36	UFE Median, Average, Maximum and Minimum – TasNetworks February 2024	37
Figure 37	UFE Median, Average, Maximum and Minimum – TasNetworks February 2025	37
Figure 38	UFE Median, Average, Maximum and Minimum – United Energy February 2024	38
Figure 39	UFE Median, Average, Maximum and Minimum – United Energy February 2025	38
Figure 40	Accumulation NMIs transitioned to 5-minute metering	55
Figure 41	Approximate accumulation and controlled load energy volumes % of ADME	55
Figure 42	15 and 30-minute NMIs transitioned to 5-minute metering	56
Figure 43	Approximate TI and Non-TI energy volumes % of ADME	57
Figure 44	UFE – ActewAGL	62
Figure 45	UFE % of ADME – ActewAGL	62
Figure 46	UFE – Ausgrid	63
Figure 47	UFE % of ADME Ausgrid	63
Figure 48	UFE – AusNet Services	64
Figure 49	UFE % of ADME – AusNet Services	64
Figure 50	UFE – CitiPower	65
Figure 51	UFE % of ADME – CitiPower	65
Figure 52	UFE – Endeavour Energy	66
Figure 53	UFE % of ADME – Endeavour Energy	66
Figure 54	UFE – Energex	67
Figure 55	UFE % of ADME – Energex	67
Figure 56	UFE – Ergon	68
Figure 57	UFE % of ADME – Ergon	68
Figure 58	UFE – Essential Energy	69
Figure 59	UFE % of ADME – Essential Energy	69
Figure 60	UFE – Jemena	70
Figure 61	UFE % of ADME – Jemena	70
Figure 62	UFE – Powercor	71
Figure 63	UFE % of ADME – Powercor	71
Figure 64	UFE – SA Power Networks	72
Figure 65	UFE % of ADME – SA Power Networks	72
Figure 66	UFE – TasNetworks	73
Figure 67	UFE % of ADME – TasNetworks	73
Figure 68	UFE – United Energy	74
Figure 69	UFE % of ADME – United Energy	74

© AEMO 2025 | Unaccounted For Energy (UFE) Trends Report

7

1 Introduction

1.1 Purpose and scope

The purpose of the UFE Trends Report is to provide information and analysis of UFE in each *local area* to facilitate efficient decreases in UFE over time¹.

NER 3.15.5B² requires AEMO to publish, at least once a year, a report on UFE trends that is prepared in accordance with the *UFE reporting guidelines*. The *UFE reporting guidelines*, made under NER 3.15.5B(d)-(f), are published on AEMO's UFE Information and Reports web page.

https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/meteringdata/unaccounted-for-energy-ufe-information-and-reports

This UFE Trends Report has been prepared in accordance with the UFE reporting guidelines.

The *UFE reporting guidelines* require the UFE Trends Report to cover a rolling 24 month period. This UFE Trends Report covers the period 26 February 2023 to 1 March 2025. This period covers complete *billing periods*, i.e. complete trading weeks, for which *final statements* have been issued.

The content of this report includes:

- 1. Reporting on total UFE by local area over the reporting period.
- 2. Analysis of UFE in each local area against benchmarks.
- 3. Analysis of the sources of UFE in each local area,
- 4. Recommended actions to gain further visibility of UFE in each local area.
- 5. Recommended actions to reduce UFE in each local area.

Source data from which UFE Trends Reports and charts are derived and monthly UFE data with high level trend information is available via AEMO's UFE Information and Reports web page:

https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/meteringdata/unaccounted-for-energy-ufe-information-and-reports

1.2 Definitions and interpretation

Terms defined in the NER have the same meanings in this report unless otherwise specified. Terms defined in the NER are intended to be identified in this report by italicising them, but failure to italicise a defined term does not affect its meaning.

Key terms relating to the calculation of UFE are set out in section 1.3. There is a glossary of other frequently used terms and acronyms at the end of this report.

¹ NER 3.15.5B(b).

² Introduced by the National Electricity Amendment (Global settlement and market reconciliation) Rule 2018.

[©] AEMO 2025 | Unaccounted For Energy (UFE) Trends Report

1.3 Key definitions – UFE components

For each *local area,* an amount representing UFE is determined by AEMO for each *trading interval* in accordance with section 1.3.1.

Calculations detailed in sections 1.3.2 and 1.3.3 are also undertaken by AEMO to assist with the allocation of UFE for each *distribution network connection point*.

1.3.1 UFE calculation

In accordance with NER 3.15.5, for each *local area*, the UFE amount for each *trading interval* is determined by the following formula:

UFE = TME – DDME – ADME

Where:

UFE is total unaccounted for energy for a local area,

TME is total *energy* flowing at *transmission network connection points* in a *local area*,

DDME is cross boundary *energy* flow between adjacent *distribution networks*. DDME is a positive value for the supplying distribution *local area* and a negative value for the receiving distribution *local area*, and

ADME is the aggregate of energy flows for each connection point in a local area.

UFE, TME, DDME and ADME information is available from the RM 46³ Report for *financially responsible Market Participants* (FRMPs) and *Local Network Service Providers* (LNSPs).

1.3.2 UFE allocation

The allocation of UFE for every *distribution network connection point* in a *local area* is determined by the following formula:

UFEA = UFE x (DME/ADMELA)

Where:

UFEA is the allocation of local area unaccounted for energy for a connection point,

DME is the load component (ME- x DLF) at a connection point in the local area,

ME- is load component as recorded in the metering data at a connection point in the local area,

DLF is the distribution loss factor applicable at a connection point in the local area, and

ADMELA is the aggregate of all DME amounts in a *local area* for which a *Market Customer* is *financially responsible*.

³ RM46 Report https://visualisations.aemo.com.au/aemo/web-

help/Content/MSATSuserGuides/Reports_MDM_RM46.htm?tocpath=Market%20Settlement%20and%20Transfer%20System%20(MSATS)%7CGuide%20to%20MSATS%7CReports%20and%20Alerts%7CMDM%20reports%7CeMDM%20report%20types%7C____13

UFEA and ADMELA information is available from the RM 43⁴ and RM 46 Reports for FRMPs and LNSPs.

1.3.3 UFE Factor (UFEF)

The UFE Factor (UFEF) is used to facilitate the allocation of UFE to individual *connection points*. As set out in section 1.4.3 of the *UFE reporting guidelines*:

UFEF = UFE/ADMELA

Where:

UFE is total unaccounted for energy for a local area, and

ADMELA is the aggregate of all DME amounts in a *local area* for which a *Market Customer* is *financially responsible*

UFEA = UFE x (DME/ADMELA), or can be expressed as:

UFEA = DME x (UFE/ADMELA), therefore

UFEA = DME x UFEF

UFEF information is available from the RM 43 and RM 46 Reports for FRMPs and LNSPs.

⁴ RM43 Report https://visualisations.aemo.com.au/aemo/web-

help/Content/MSATSuserGuides/Reports_MDM_RM43.htm?tocpath=Market%20Settlement%20and%20Transfer%20System%20(MSATS)% 7CGuide%20to%20MSATS%7CReports%20and%20Alerts%7CMDM%20reports%7CeMDM%20report%20types%7C____12

2 Summary and analysis of UFE

2.1 Trend interpretation

The following charts provide a summary of the UFE calculation components, identified in section 1.3, for each *local area* over the reporting period. The underlying data for each chart comes from values that are available to participants in MSATS RM43 and RM46 Reports. As this data is sourced from AEMO's Metering Data Management system, load values are positive and generation values are negative.

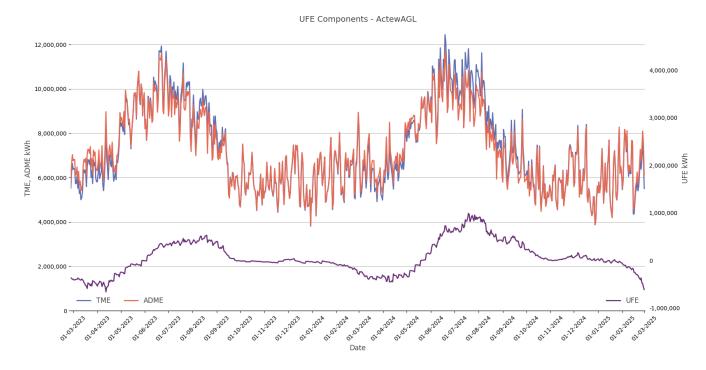
Information presented in the charts is the total of each UFE component for a *day* and are displayed as kWh values. For the UFE components charts (Section 2.1), the left vertical axis scale is related to TME and ADME values and the right vertical axis is related to UFE values, and where applicable, DDME values.

Additional charts that support observations presented in this section are provided in Appendix A. These charts are:

- UFE for a *local area* (Appendix 1.1)
- UFE for a local area expressed as a percentage of local area ADME (Appendix 1.1)
- UFE components for a *local area* by settlement data version, i.e. Prelim, Final, Rev 1 and Rev 2 (Appendix 1.2)
- Profiles for each *local area* (Appendix 1.3)

Information presented in the charts is the total of each component for a *settlements day* and are displayed as kWh values.

Trends report charts are based on daily aggregation of UFE component values that are available for Participants from the RM43 and RM46 reports.

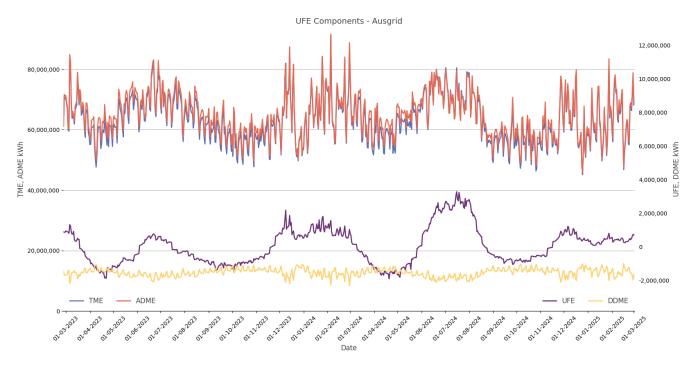

RM43 and RM46 reports provide UFE component values at *trading interval* level.

Following the application of the Five-Minute Load Profile (5MLP) in the *settlements* processes, an interim solution, the "weights methodology", was implemented to prevent energy volume spikes occurring. This methodology increases the system load component of the profiles, which artificially shifts the profiles up. Prior to any weights being applied, analysis of the system load is performed and confirmed with the respective *Transmission Network Service Providers* (TNSPs) and the *Distribution Network Service Providers* (DNSPs). The weights methodology was applied, until 30 September 2023, to the AusNet Services, Energex and SA Power Networks *local areas* as indicated in sections 2.1.3, 2.1.6 and 2.1.11.

Consultation on the development of a 5MLP profiling methodology to replace the weights methodology was undertaken and the modified 5MLP profiling methodology became effective from 1 October 2023. The modified (Uniform Allocation Method) 5MLP profiling methodology is applied to 15 and 30-minute metering data where the 5MLP values are negative.

Following further consultation, a longer-term Net System Load Profiling (NSLP) methodology to address spikerelated issues was implemented from 29 September 2024.

2.1.1 ActewAGL


Figure 1 UFE Components – ActewAGL

Local Area Observations

UFE demonstrates seasonal variations with UFE reaching highest values in May to August each year. During these periods, TME most significantly exceeded ADME. ADME has shown seasonal trends by reducing with respect to TME in other periods, causing a correlated decrease in UFE.

A decreasing trend in UFE observed in February and March 2025 has been attributed to an overall decrease in the NSLP at the time of final settlement. The NSLP across this period was partly impacted by substituted wholesale data being provided during meter replacement activities and by the application of NSLP floor values in relevant *trading intervals*.

2.1.2 Ausgrid

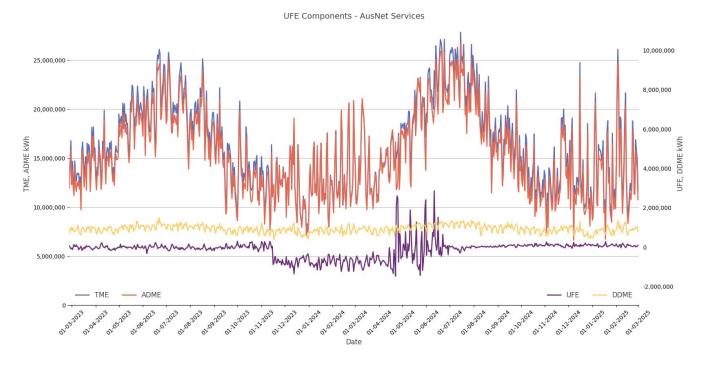


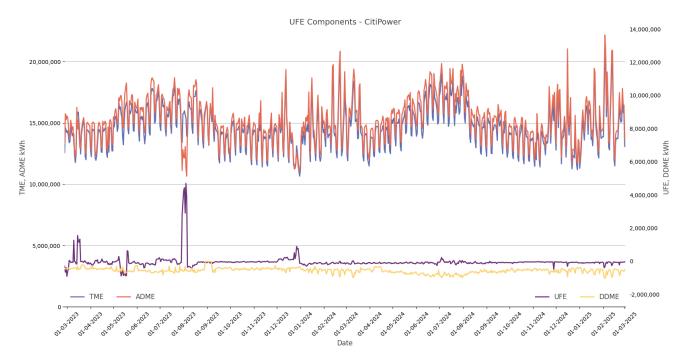
Figure 2 UFE Components – Ausgrid

Local Area Observations

Cross boundary *energy* inflows remained relatively steady over the reporting period. Rises and falls in UFE followed the relative increases and decreases, respectively, of ADME with respect to TME.

2.1.3 AusNet Services

Figure 3 UFE Components – AusNet Services


Local Area Observations

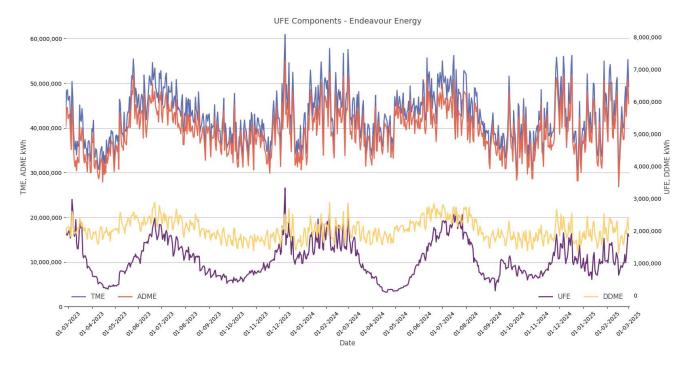
TME is generally greater than ADME for the reporting period. A step change in UFE values from November 2023 to April 2024 was due to a configuration issue with a wholesale NMI that impacted TME and the NSLP. Following the resolution of the configuration issue, UFE values improved from November 2023 to March 2024.

This configuration correction also impacted the NSLP and brought it close to zero. This impacted basic profiling allocations and UFE values between April to July 2024 as variability was increased due to NSLP fluctuating around zero.

Greater UFE variability in May 2024 is attributed to NSLP profiling. UFE was more stable following the transition period between NSLP methodologies from 29 September 2024.

2.1.4 CitiPower

Figure 4 UFE Components – CitiPower


Local Area Observations

Variability in UFE values in period March to August 2023, are attributed to issues with NSLP profiling.

UFE values in June 2024 were impacted by substituted wholesale data. This data was later corrected.

Implementation of NSLP flooring methodology from 29 September 2024 had an impact on UFE values where UFE dips are aligned with NSLP floored values. This profile area is currently highly floored. UFE was more stable following the transition period between NSLP methodologies.

2.1.5 Endeavour Energy

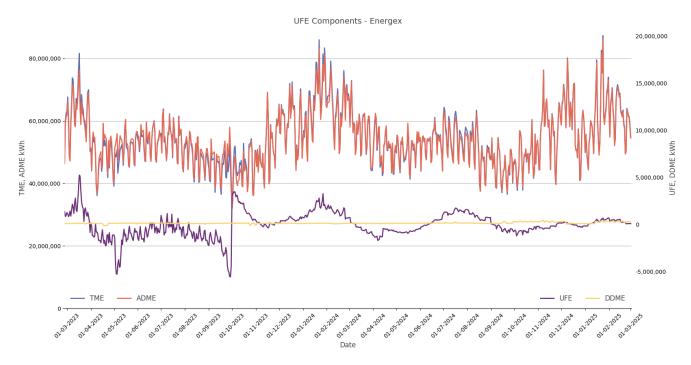


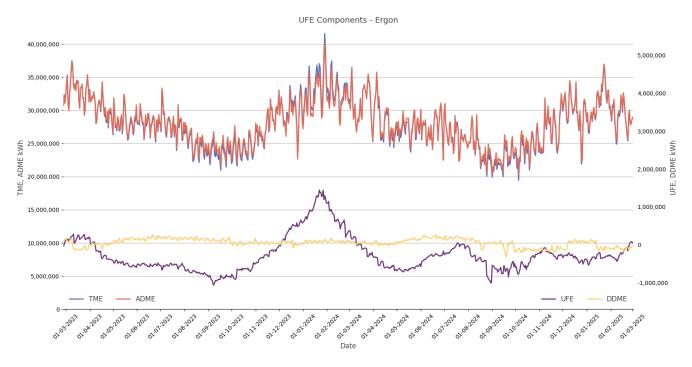
Figure 5 UFE Components – Endeavour Energy

Local Area Observations

Cross boundary *energy* outflows remained relatively steady over the reporting period. Rises and falls in UFE followed the relative increases and decreases, respectively, of ADME with respect to TME. Implementation of NSLP flooring methodology from 29 September 2024 has had some impact on UFE where UFE dips are aligned with NSLP floored values.

2.1.6 Energex

Figure 6 UFE Components – Energex

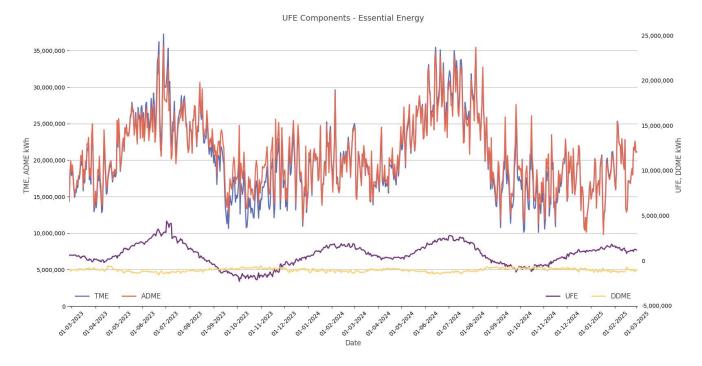

Local Area Observations

UFE values were impacted by NSLP profiling issues in April and May 2023. Removal of the weights methodology impacted UFE values from 30 September 2023.

The incorrect configuration of a Bulk Supply NMI following a meter change had the effect of incorrectly reducing TME that resulted in the step change in UFE values for April and May 2024.

Implementation of the NSLP flooring methodology from 29 September 2024 has had some impact on UFE values where UFE dips are aligned with NSLP floored values.

2.1.7 Ergon


Figure 7 UFE Components – Ergon

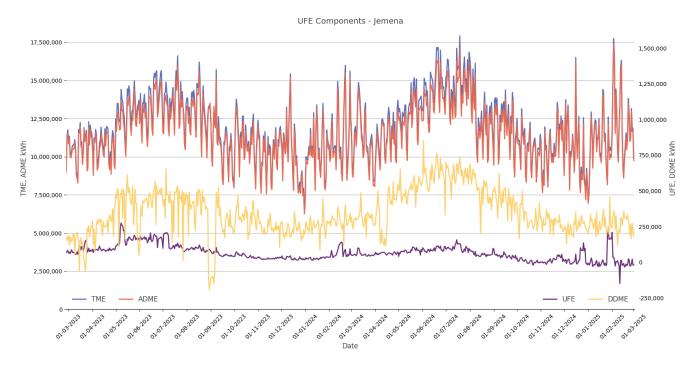
Local Area Observations

UFE increased as TME increased with respect to ADME. Cross boundary *energy* flows remained relatively steady over the reporting period. Implementation of the NSLP flooring methodology from 29 September 2024 has had some impact on UFE values where UFE dips are aligned with NSLP floored values.

The increase in UFE values in February 2025 was due to a meter configuration issue of a large interval site.

2.1.8 Essential Energy

Figure 8 UFE Components – Essential Energy


Local Area Observations

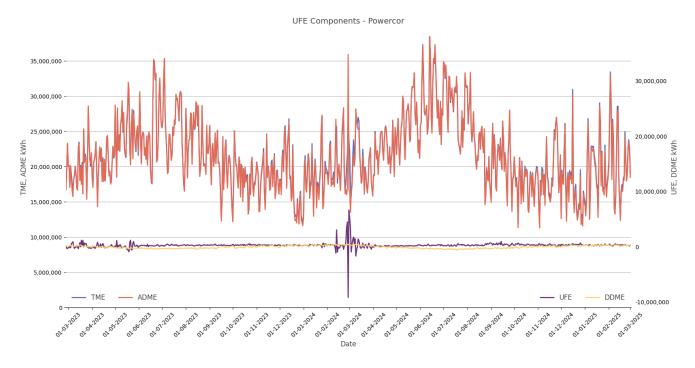
Cross boundary *energy* inflows remained relatively steady over the reporting period. Rises and falls in UFE followed the relative increases and decreases, respectively, of ADME with respect to TME.

A UFE spike in July 2023 was due to NMI configuration issues at a large site. This resulted in the energy volume being incorrectly included as a TME source and was later corrected.

Implementation of NSLP flooring methodology from 29 September 2024 has had some impact on UFE values where UFE dips are aligned with NSLP floored values.

2.1.9 Jemena

Figure 9 UFE Components – Jemena


Local Area Observations

TME is generally greater than ADME for the reporting period. Cross boundary *energy* outflows have kept UFE values relatively stable for the reporting period.

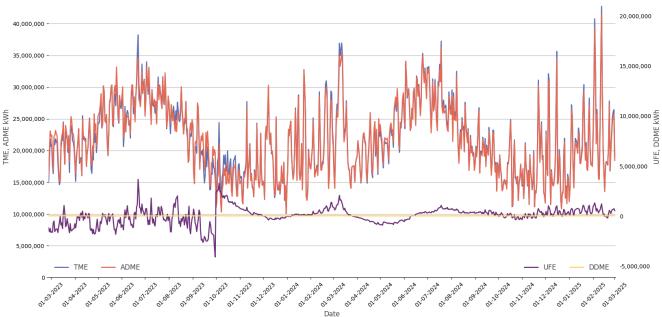
The UFE spike in late December 2024 was due to incorrectly deactivated datastreams for large set of NMIs. The UFE spike in in January 2025 was due to an incorrectly deactivated datastream of a large interval site. These items have since been corrected.

UFE values in early 2025 have spikes/dips associated with NSLP flooring and negative 5MLP values.

2.1.10 Powercor

Figure 10 UFE Components – Powercor

Local Area Observations


ADME is generally greater than TME for the reporting period. Cross boundary *energy* inflows have kept UFE values relatively stable for the reporting period.

UFE values were impacted by issues with 5MLP spikes and NSLP profiling in March – May 2023.

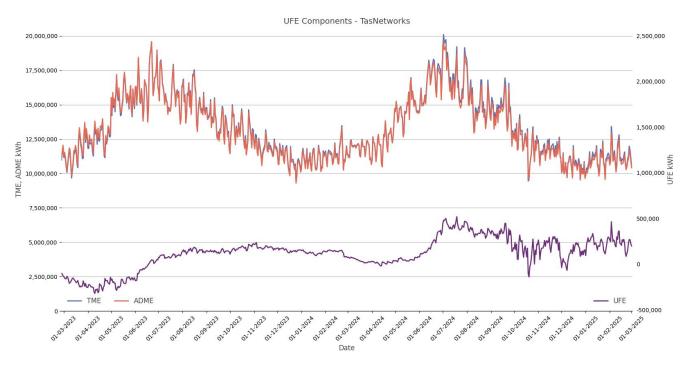
UFE spikes were attributed to 5MLP spikes and NSLP profiling issues in early 2024.

Implementation of NSLP flooring methodology from 29 September 2024 has had some impact on UFE Values where UFE dips are aligned with NSLP floored values. However, UFE values are now much more stable than in the period prior to the implementation of the NSLP flooring methodology.

2.1.11 SA Power Networks

UFE Components - SA Power Networks

Figure 11 UFE Components – SA Power Networks

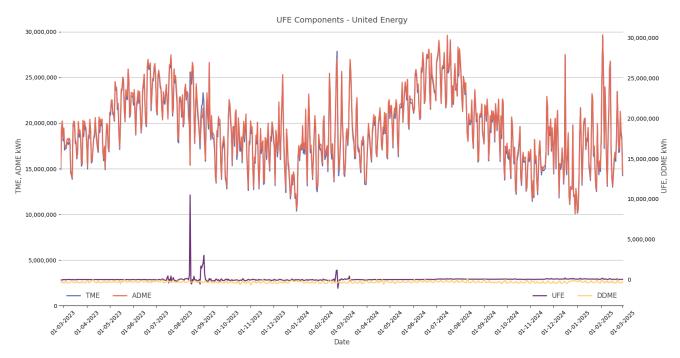

Local Area Observations

TME and ADME fluctuations throughout the reporting period result in periods where TME is greater than ADME, producing positive UFE values, and periods where ADME is greater that TME, producing negative UFE values.

Removal of the weights methodology impacted UFE values from late September 2023.

There was an overall increase in UFE variability after the implementation of the NSLP flooring methodology, from 29 September 2024, where UFE dips are aligned with floored NSLP values.

2.1.12 TasNetworks


Figure 12 UFE Components – TasNetworks

Local Area Observations

TME values were generally greater than ADME producing positive UFE values. High reads in July 2024 impacted UFE values. These high reads were later corrected.

This profile area has been impacted by the NSLP flooring methodology, from 29 September 2024, where the majority of NSLP values have been floored from November 2024 onwards. This has increased the variability of the UFE values.

2.1.13 United Energy

Figure 13 UFE Components – United Energy

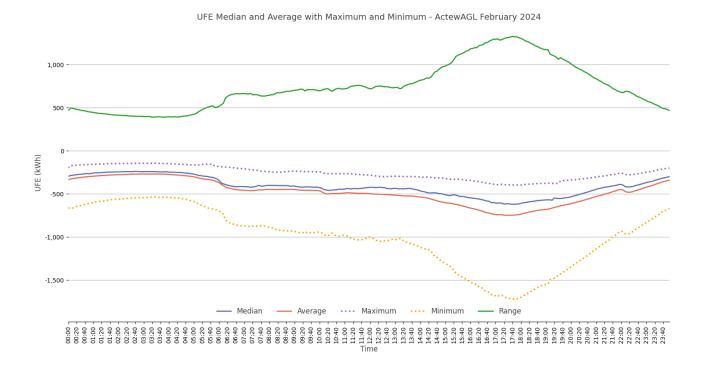
Local Area Observations

TME values were generally greater than ADME producing positive UFE values. Cross boundary *energy* inflows were stable through the period.

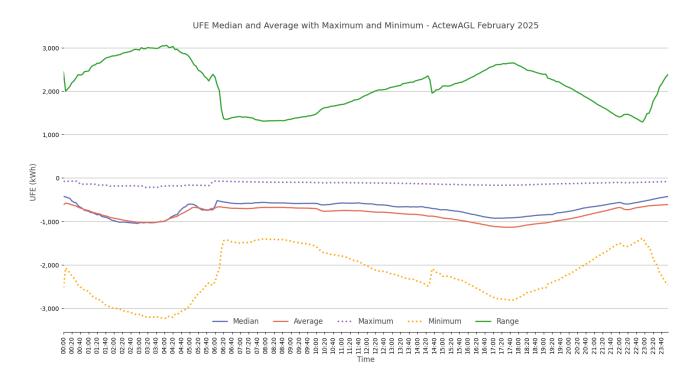
UFE values were impacted by issues with NSLP profiling in July and August 2023.

Implementation of the NSLP flooring methodology from 29 September 2024 has had some impact on UFE values where some UFE dips are aligned with NSLP floored values.

3 UFE benchmark analysis


Analysis of the UFE amounts in each *local area* in the reporting period is to be performed against benchmarks that have been determined by AEMO.

Charts in this section show the average, for a day, of maximum, minimum, average and median values of UFE, over the months of February 2024 and February 2025. The range (difference between maximum and minimum values) of the values is also shown in the charts.


The February 2025 UFE positions will be used as the benchmarks for the next UFE Trends Report.

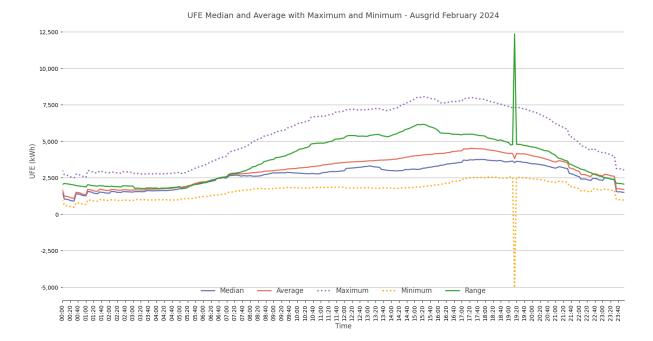
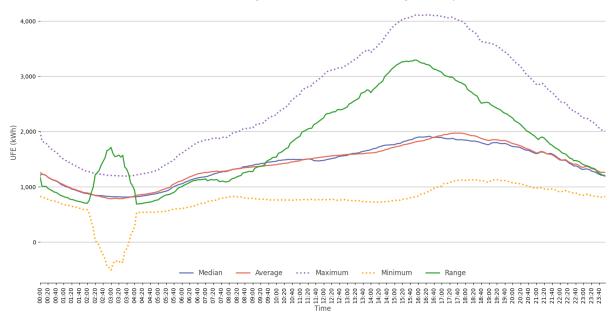
Generally, the Median and Average UFE values for each *local area* are similar for the reporting period.

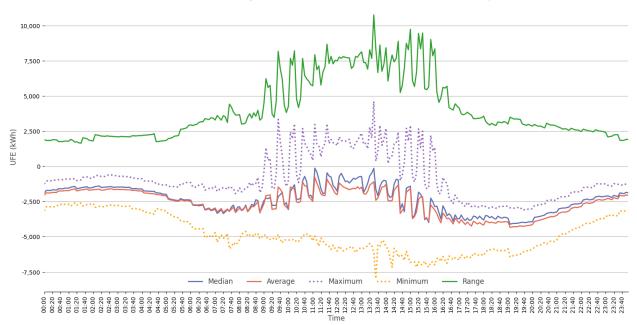
3.1 ActewAGL

Figure 14 UFE Median, Average, Maximum and Minimum – ActewAGL February 2024

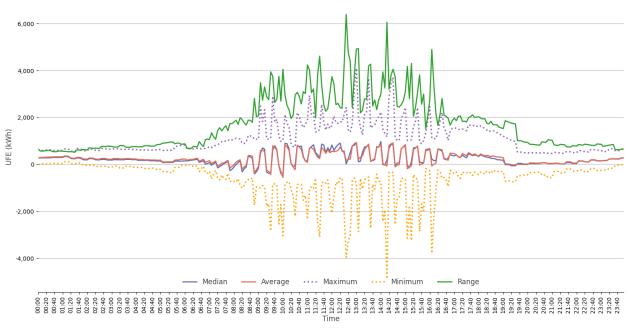
Figure 15 UFE Median, Average, Maximum and Minimum – ActewAGL February 2025

3.2 Ausgrid

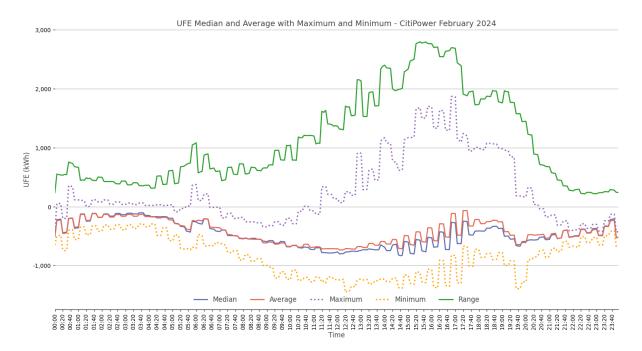

Figure 16 UFE Median, Average, Maximum and Minimum – Ausgrid February 2024

UFE Median and Average with Maximum and Minimum - Ausgrid February 2025



3.3 AusNet Services

UFE Median and Average with Maximum and Minimum - AusNet Services February 2024



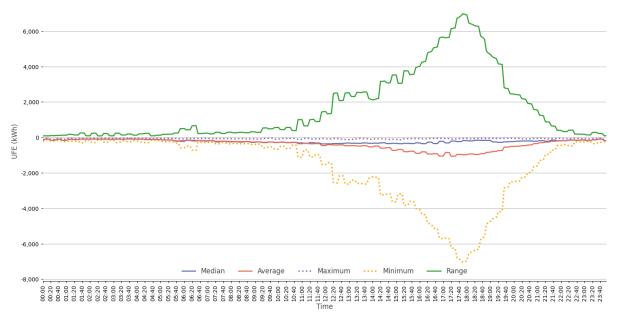
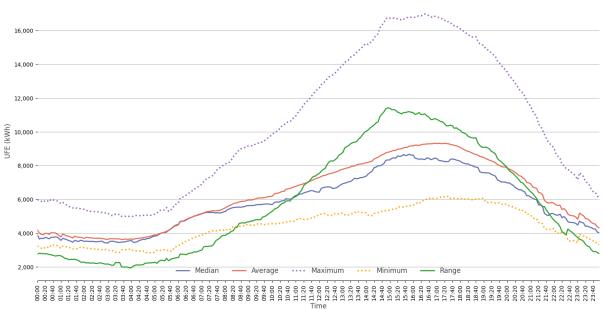

UFE Median and Average with Maximum and Minimum - AusNet Services February 2025

Figure 19 UFE Median, Average, Maximum and Minimum – AusNet Services February 2025

3.4 CitiPower

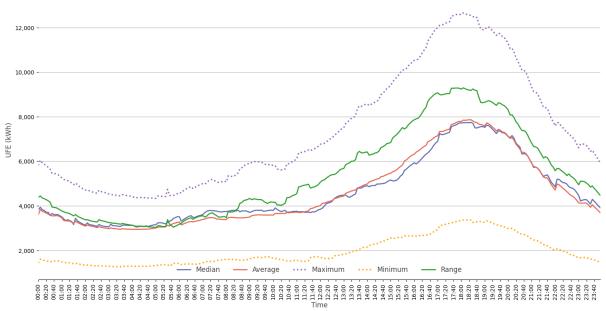


UFE Median and Average with Maximum and Minimum - CitiPower February 2025



3.5 Endeavour Energy

UFE Median and Average with Maximum and Minimum - Endeavour Energy February 2024

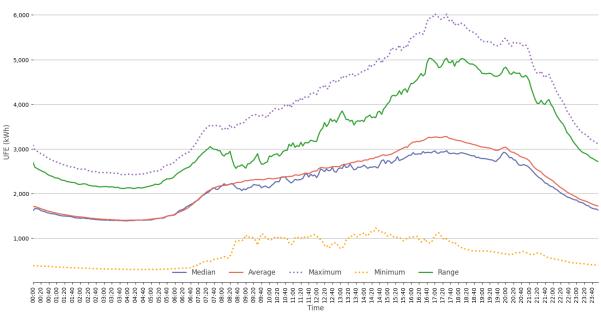

Figure 22 UFE Median, Average, Maximum and Minimum – Endeavour Energy February 2024

UFE Median and Average with Maximum and Minimum - Endeavour Energy February 2025



3.6 Energex

UFE Median and Average with Maximum and Minimum - Energex February 2024

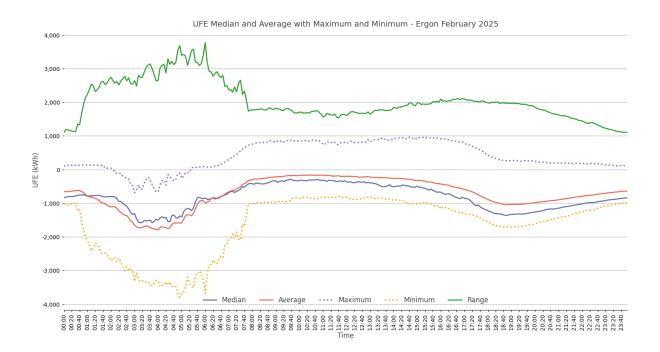

Figure 24 UFE Median, Average, Maximum and Minimum – Energex February 2024

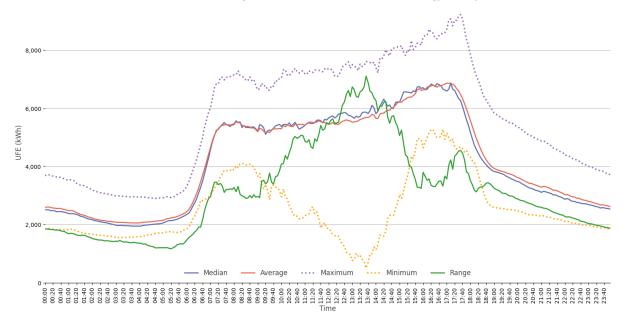
UFE Median and Average with Maximum and Minimum - Energex February 2025

Figure 25 UFE Median, Average, Maximum and Minimum – Energex February 2025

3.7 Ergon

UFE Median and Average with Maximum and Minimum - Ergon February 2024



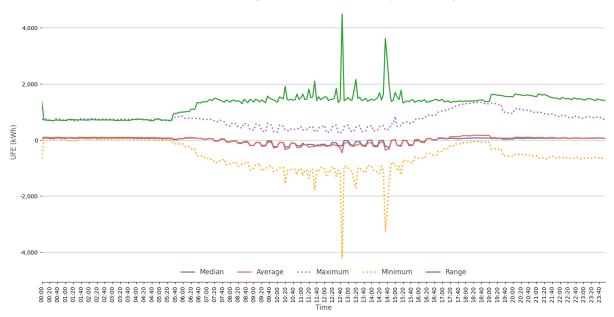

Figure 27 UFE Median, Average, Maximum and Minimum – Ergon February 2025

3.8 Essential Energy

UFE Median and Average with Maximum and Minimum - Essential Energy February 2024


Figure 28 UFE Median, Average, Maximum and Minimum – Essential Energy February 2024

UFE Median and Average with Maximum and Minimum - Essential Energy February 2025



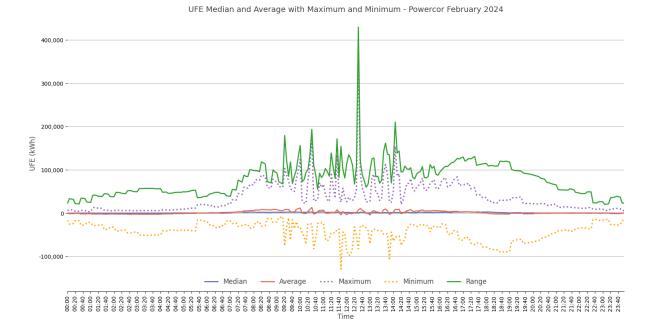
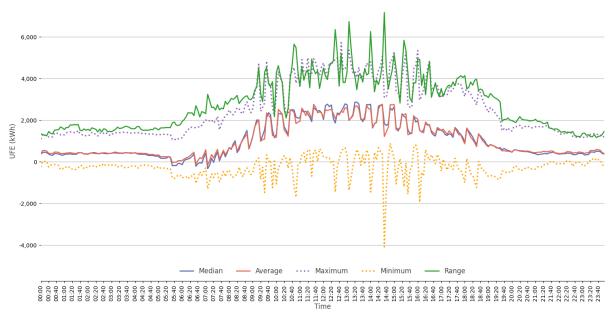
3.9 Jemena

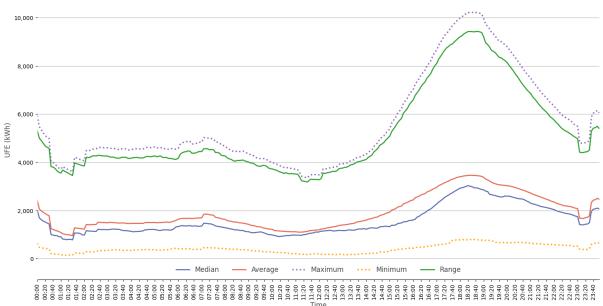
UFE Median and Average with Maximum and Minimum - Jemena February 2024

Figure 30 UFE Median, Average, Maximum and Minimum – Jemena February 2024

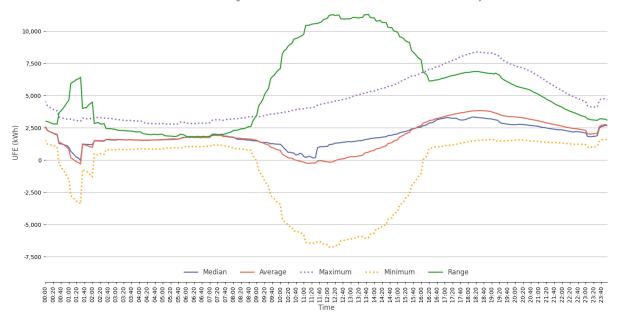
UFE Median and Average with Maximum and Minimum - Jemena February 2025

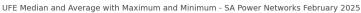
3.10 Powercor

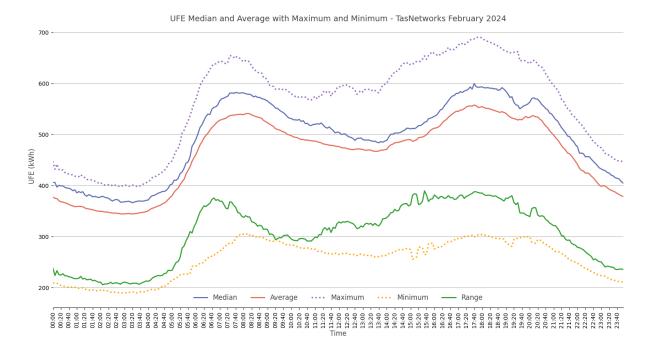

Figure 32 UFE Median, Average, Maximum and Minimum – Powercor February 2024

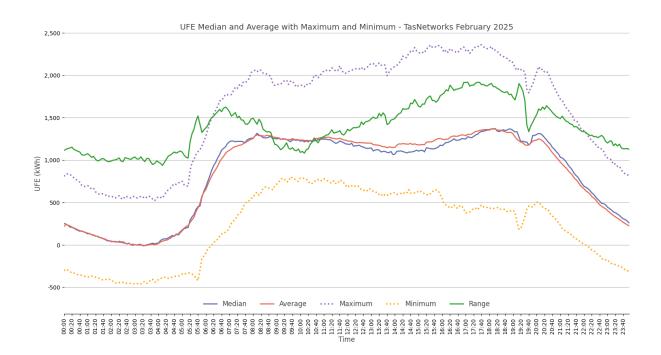
UFE Median and Average with Maximum and Minimum - Powercor February 2025



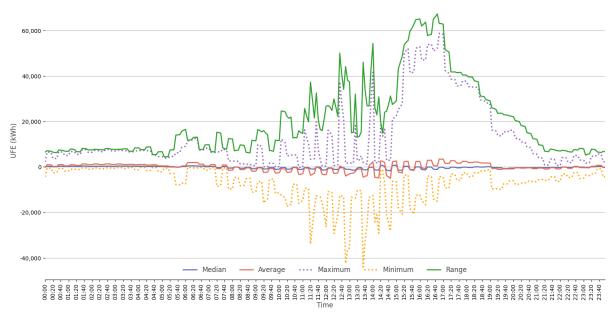

3.11 SA Power Networks

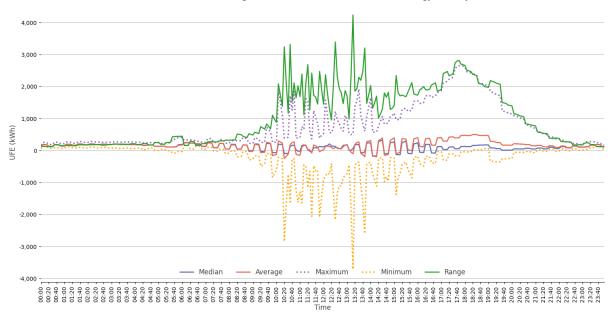
UFE Median and Average with Maximum and Minimum - SA Power Networks February 2024





3.12 TasNetworks





3.13 United Energy

UFE Median and Average with Maximum and Minimum - United Energy February 2024

UFE Median and Average with Maximum and Minimum - United Energy February 2025

4 UFE source analysis

AEMO undertakes an analysis of the sources of UFE in each *local area*. The sources of UFE and their respective solutions are diverse, therefore identifying the likely sources of UFE is crucial to identifying and recommended actions to reduce UFE. The areas of UFE source analysis include:

- Time factors (e.g. season, day, time of day) that produce patterns of UFE that are occurring are likely to be important in identifying causes and solutions to reduce UFE.
- The following variables that modify metering data:
 - DLF value changes historical analysis of DLFs
 - o Accumulation (basic) meter replacement with interval meters
 - o 15 and 30-minute metering data transition to 5-minute metering data
 - o Type 7 loads transitioned to metered arrangements
 - o NCONUML loads transitioned to alternative calculation methodologies
 - o Review of profiling methodologies
 - o Review of UFE values by settlement data versions
 - o Review impact of unmetered temporary emergency cross boundary energy volumes

4.1 DLF Values

This section of the UFE Trends Report provides, for each *local area*, a table of DLF codes and values for the most recent five year period.

Some DLF values have reduced over the five year period and some have increased. The changes appear to be very marginal as the increases or decreases have generally been at the third or fourth decimal place.

DLF source data is available on AEMO's "Loss factors and regional boundaries" web page via the link below.

https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/market-operations/loss-factorsand-regional-boundaries

4.1.1 DLF codes and values – ActewAGL

		2020 -	2021 -	2022 -	2023 -	2024 -
Jurisdiction	Code	2021	2022	2023	2024	2025
ACT	AH00	1.0111	1.0106	1.0178	1.0187	1.0127
ACT	AL00	1.0447	1.0430	1.0369	1.0325	1.0429
ACT	AS01	1.0136	1.0176	1.0129	1.0140	1.0052
ACT	AS02	1.0152	1.0104	1.0178	1.0187	1.0187
ACT	AS03	1.0282	1.0282	1.0282	1.0282	1.0087
ACT	AS04	0.9998	0.9997	0.9997	0.9980	0.9978

ACT	AS06	0.9985	0.9985	0.9985	0.9964	0.9985
ACT	AS07	0.9994	0.9990	0.9995	0.9968	0.9985

4.1.2 DLF codes and values – Ausgrid

		2020 -	2021 -	2022 -	2023 -	2024 -
Jurisdiction	Code	2021	2022	2023	2024	2025
NSW	J500		1.0071	1.0124	1.0134	1.0594
NSW	J521		1.0355	1.0355		
NSW	J522		1.0134	1.0134		
NSW	J541		1.0094	1.0103	1.0061	1.0067
NSW	J543		1.0103	1.0072	1.0082	1.0067
NSW	J550		1.0063	1.0037	1.0046	1.0027
NSW	J560		1.0068	1.0081	1.0069	1.0086
NSW	J570		1.0723	1.0723		
NSW	J580		1.0018	1.0048	1.0031	1.0060
NSW	J590		1.0045	1.0049	1.0045	1.0107
NSW	J600		1.0028	1.0033	1.0038	1.0039
NSW	J601		1.0139	1.0033	1.0116	1.0020
NSW	J605		1.0056	1.0051	1.0167	1.0169
NSW	J610		1.0061	1.0072	1.0049	1.0101
NSW	J615		1.0083	1.0126	1.0049	1.0022
NSW	J620		1.0053	1.0051	1.0134	1.0095
NSW	J630		1.0037	1.0067	1.0061	1.0018
NSW	J635		1.0031	1.0019	1.0027	1.0028
NSW	J640		1.0096	1.0091	1.0064	1.0035
NSW	J645		1.0053	1.0057	1.0049	1.0051
NSW	J655		1.0080	1.0086	1.0025	1.0200
NSW	J660		1.0110	1.0123	1.0143	1.0039
NSW	J670		1.0153	1.0175	1.0175	1.0175
NSW	J680		1.0129	1.0145	1.0180	1.0180
NSW	J690		1.0229	1.0229		
NSW	J700	1.0033	1.0041	1.0082	1.0111	1.0128
NSW	J710	1.0051	1.0051	1.0051		
NSW	J720	1.0281	1.0281	1.0281		
NSW	J721	1.0177	1.0177	1.0177		
NSW	J731	1.0125	1.0125	1.0125		
NSW	J732	1.0205	1.0205	1.0205		
NSW	J750	1.0262	1.0262	1.0262		
NSW	J770	1.0130	1.0155	1.0154	1.0124	1.0125
NSW	J771	1.0172	1.0075	1.0120	1.0142	1.0156
NSW	J772	1.0080	1.0082	1.0114	1.0039	1.0096
NSW	J773	1.0096	1.0176	1.0148	1.0228	1.0152
NSW	J774	1.0217	1.0096	1.0128	1.0135	1.0149
NSW	J775	1.0166	1.0283	1.0226	1.0142	1.0142

NSW	J777	1.0355	1.0084	1.0078	1.0090	1.0060
NSW	J778	1.0134	1.0076	1.0051	1.0079	1.0079
NSW	J779	1.0145	1.0140	1.0148	1.0176	1.0170
NSW	J780	1.0012	1.0119	1.0099	1.0201	1.0176
NSW	J781	1.0022	1.0032	1.0075	1.0099	1.0112
NSW	J782	1.0059	1.0032	1.0075	1.0099	1.0099
NSW	J783	1.0723	1.0117	1.0098	1.0000	1.0000
NSW	J784	1.0035	1.0100	1.0131	1.0175	1.0170
NSW	J785	1.0049	1.0094	1.009	1.0085	1.0085
NSW	J786	1.0049	1.0084	1.0107	1.0131	1.0136
NSW	J787	1.0066	1.0024	1.0034	1.0040	1.0045
NSW	J788	1.0057	1.0089	1.0168	1.0180	1.0111
NSW	J789	1.0124	1.0035	1.0074	1.0088	1.0146
NSW	J790	1.0046	1.0192	1.0192	1.0215	1.0217
NSW	J791	1.0009	1.0172	1.0106	1.0111	1.0097
NSW	J792	1.0031	1.0066	1.0147	1.0133	1.0221
NSW	J793	1.0025	1.0135	1.0214	1.0155	1.0340
NSW	J794	1.0000	1.0029	1.0029	1.0067	1.0105
NSW	J795	1.0045	1.0025	1.0057	1.0024	1.0017
NSW	J796	1.0032		1.0037	1.0052	1.0019
NSW	J797	1.0105		1.0011	1.0052	1.0061
NSW	J798	1.0123			1.0052	1.0041
NSW	J799	1.0123			1.0142	1.0077
NSW	J800	1.0229	1.0037	1.0038	1.0000	1.0000
NSW	J881	1.0047	1.0046	1.0105	1.0130	1.0152
NSW	J882	1.0350	1.0350	1.0350		
NSW	J883	1.0128	1.0128	1.0128		
NSW	J884	1.0128	1.0128	1.0128		
NSW	J885	1.0000	1.0050	1.0015	1.0000	1.0000
NSW	J886	1.0006	1.0006	1.0011	1.0011	1.0012
NSW	J887	1.0006	1.0006	1.0011	1.0011	1.0585
NSW	JASH	1.0265	1.0265	1.0265		
NSW	JCAP	1.0000	1.0007	1.0007		
NSW	JGEN	1.0041	1.0056	0.9978	0.9991	1.0024
NSW	JGLB	1.0028	1.0040	1.0034	1.0024	1.0020
NSW	JGN1		0.9350	0.9472	0.9718	0.8742
NSW	JGN2			0.9969	0.9877	0.9984
NSW	JHBH	1.0088	1.0102	1.0111	1.0099	1.0099
NSW	JHSH	1.0123	1.0139	1.0149	1.0137	1.0148
NSW	JK23	1.0069	1.0059	1.0058	1.0070	1.0062
NSW	JK24	1.0123	1.0123	1.0123	1.0123	1.0123
NSW	JKUR	1.0000	1.0000	1.0000		
NSW	JL1L	1.0514	1.0519	1.0517	1.0505	1.0505
NSW	JL2L	1.0514	1.0519	1.0517	1.0505	1.0505
NSW	JL40	1.0479	1.0484	1.0489	1.0482	1.0431
NSW	JLDL	1.0514	1.0519	1.0517	1.0505	1.0494

NSW	JLSL	1.0444	1.0453	1.0455	1.0441	1.0420
NSW	JLSP	1.0546	1.0563	1.0562	1.0543	1.0510
NSW	JLSU	1.0445	1.0461	1.0462	1.0446	1.0413
NSW	JLUS					1.0186
NSW	JRED	1.0007	1.0007	1.0007	1.0007	1.0007
NSW	JSAP				1.0157	1.0000
NSW	JSSS	1.0044	1.0059	1.0058	1.0049	1.0061
NSW	JTOL	1.0004	1.0077	1.0119	1.0091	1.0091

4.1.3 DLF codes and values – AusNet Services

		2020 -	2021 -	2022 -	2023 -	2024 -
Jurisdiction	Code	2021	2022	2023	2024	2025
VIC	LASL	1.0174	1.0269	1.0212	1.0253	1.0247
VIC	LASS	1.0018	1.0036	1.0022	1.0016	1.0021
VIC	LBSL	1.0254	1.0345	1.0289	1.0328	1.0319
VIC	LBSS	1.0099	1.0113	1.0098	1.0091	1.0093
VIC	LCHL	1.0448	1.0519	1.0524	1.0553	1.0491
VIC	LCHS	1.0293	1.0286	1.0334	1.0316	1.0264
VIC	LDLL	1.0679	1.0726	1.0746	1.0801	1.0752
VIC	LDLS	1.0524	1.0494	1.0556	1.0564	1.0525
VIC	LELL	1.0757	1.0802	1.0824	1.0879	1.0835
VIC	LELS	1.0602	1.0570	1.0634	1.0641	1.0608
VIC	LG02	1.0361	1.0337	1.0316	1.0198	1.0104
VIC	LG03	1.0262	1.0149	1.0115	1.0098	1.0156
VIC	LG04	1.0279	1.0293	1.0232	1.0672	1.0572
VIC	LG05	0.9965	0.9958	0.9894	0.9849	0.9814
VIC	LG06	0.9982	0.9973	0.9906	0.9789	0.9943
VIC	LG07	1.0354	1.0333	1.0368	1.0585	1.0527
VIC	LG08	1.0063	1.0070	1.0145	1.0163	1.0113
VIC	LG09	1.0219	1.0199	1.0220	1.0134	1.0171
VIC	LG10	1.0139	1.0089	1.0219	1.0083	0.9899
VIC	LG11	0.9992	0.9992	0.9993	0.9995	0.9999
VIC	LG12	0.9998	0.9998	1.0000	0.9999	1.0000
VIC	LL01	1.0383	1.0309	1.0297	1.0257	1.0173
VIC	LL02	1.0009	1.0043	1.0030	1.0025	1.0081
VIC	LL03	1.0343	1.0343	1.0343		
VIC	LL04	1.0664	1.0664	1.0664		
VIC	LL05	1.0042	1.0005	1.0006	1.0045	1.0057
VIC	LL06	1.0410	1.0410	1.0410		
VIC	UNIT	1.0000	1.0000	1.0000	1.0000	1.0000

4.1.4 DLF codes and values – CitiPower

Jurisdiction	Code	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024	2024 - 2025
VIC	EDSD	1.0418	1.0412	1.0400	1.0368	1.0353
VIC	EHVC	1.0159	1.0153	1.0129	1.0121	1.0110
VIC	ELVE	1.0509	1.0500	1.0488	1.0450	1.0434
VIC	ESS1	1.0152	1.0152	1.0152		
VIC	ESS2	1.0132	1.0132	1.0132		
VIC	ESS3	1.0140	1.0140	1.0140		
VIC	ESS4	1.0166	1.0164	1.0148	1.0134	1.0143
VIC	ESTA	1.0041	1.004	1.00300	1.0041	1.0041
VIC	EZSB	1.0122	1.0117	1.0100	1.0097	1.0089
VIC	UNIT	1.0000	1.0000	1.0000	1.0000	1.0000

4.1.5 DLF codes and values – Endeavour Energy

Jurisdiction	Code	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024	2024 - 2025
NSW	HHV1	1.0134	1.0156	1.0155	1.0160	1.0152
NSW	HHVL	1.0170	1.0157	1.0162	1.0162	1.0164
NSW	HHVT	1.0116	1.0109	1.0116	1.0118	1.0114
NSW	HHY1	1.0135	1.0137	1.0135	1.0130	1.0136
NSW	HHY2	1.0135	1.0135	1.0135		
NSW	HHY3	1.0136	1.0121	1.0146	1.0137	1.0149
NSW	HHY4	1.0153	1.0144	1.0144	1.0092	1.0133
NSW	HHY5	1.0259	1.0259	1.0259		
NSW	HHY6	1.0204	1.0204	1.0204	1.0098	1.0099
NSW	HHY7	1.0125	1.0125	1.0107	1.0108	1.0116
NSW	HHY8			1.0082	1.0086	1.0094
NSW	HIC1	1.0148	1.0144	1.0134	1.0148	1.0150
NSW	HLVL	1.0687	1.0682	1.0680	1.0691	1.0624
NSW	HLVT	1.0477	1.0476	1.0493	1.0502	1.0479
NSW	HNC1	1.0005	1.0001	1.0018	0.9994	0.9996
NSW	HNC2			1.0025	0.9926	0.9980
NSW	HNVL	1.0026	1.0025	1.0025	1.0025	1.0028
NSW	HSTL	1.0107	1.0104	1.0114	1.0116	1.0121
NSW	HSTS	1.0062	1.0065	1.0069	1.0072	1.0076
NSW	HTF1	1.0031	1.0028	1.0029	1.0032	1.0033
NSW	HTF2	1.0073	1.0066	1.0072	1.0076	1.0090
NSW	HTF3	1.0024	1.0038	1.0042	1.0044	1.0037
NSW	HTV1	1.0035	1.0032	1.0036	1.0036	1.0040
NSW	HTV2	1.0026	1.0023	1.0036	1.0036	1.0040
NSW	HTV3	1.0015	1.0015	1.0000	1.0000	1.0000
NSW	HTV4	1.0071	1.0065	1.0181	1.0183	1.0175
NSW	HTV6	1.0012	1.0012	1.001	1.0013	1.0015

NSW	HTV7	1.0012	1.0013	1.0011	1.0007	1.0022
NSW	HTV8	1.0027	1.0020	1.0096	1.0109	1.0092
NSW	HTX1	1.0136	1.0150	1.0130	1.0149	1.0147
NSW	HTX2	1.0655	1.0512	1.0619	0.9937	0.9957
NSW	HTX3	1.0257	1.0343	1.0285	1.0236	1.0217
NSW	HTX4	1.0294	1.0376	1.025	1.0122	1.0145
NSW	HTX5	1.0055	1.0108	1.0071	1.0110	1.0099
NSW	HTX6	1.0103	1.0101	1.0107	1.0102	1.0104
NSW	HTX7	1.0045	1.0045	1.0062	1.0068	1.0078
NSW	HTX8	1.0074	1.0071	1.0072	1.0077	1.0078
NSW	HTX9	1.0041	1.0040	1.0040	1.0040	1.0051
NSW	HTXA	1.0083	1.0083	1.0086	1.0082	1.0087
NSW	НТХВ	1.0049	1.0073	1.0040	1.0062	1.0062
NSW	HTY1	1.0120	1.0120	1.0120		
NSW	HTY2	1.0039	1.0039	1.0039		
NSW	HTY3	1.0067	1.0059	1.0064	1.0062	1.0064
NSW	HTY4	1.0266	1.0261	1.0279	1.0312	1.0325
NSW	HTY5	1.0497	1.0529	1.0390	1.0364	1.0321
NSW	HTY6	1.0051	1.0051	1.0051		
NSW	HTY7	1.0087	1.0110	1.0079	1.0116	1.0081
NSW	HTY9	1.0032	1.0078	1.004	1.0076	1.0072
NSW	HTYA	1.0149	1.0144	1.0170	1.0167	1.0194
NSW	НТҮВ	1.0054	1.0050	1.0055	1.0055	1.0058
NSW	HTYC	1.0044	1.0040	1.0040	1.0044	1.0043
NSW	HTYD	1.0033	1.0033	1.0033		
NSW	HTYE	1.0062	1.0059	1.0055	1.0116	1.0121
NSW	HTYF					1.0186

4.1.6 DLF codes and values – Energex

Jurisdiction	Code	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024	2024 - 2025
QLD	F1CH	1.0196	1.0202	1.0220	1.0196	1.0204
QLD	F1CL	1.0382	1.0434	1.0444	1.0432	1.0481
QLD	F1ZH	1.0123	1.0130	1.0143	1.0129	1.0130
QLD	F3CL	1.0084	1.0089	1.0089	1.0089	1.0089
QLD	FACI	1.0956	1.0788	1.0866	1.1008	1.1017
QLD	FALK	1.0094	1.0088	1.0081	1.0074	1.0108
QLD	FAPB	1.0134	1.0127	1.0124	1.0123	1.0141
QLD	FAPL	1.0136	1.0141	1.0173	1.0130	
QLD	FAPM	1.0107	1.0114	1.0113	1.0122	
QLD	FBAC	1.0136	1.0141	1.0173	1.0130	1.0137
QLD	FBCC	1.0107	1.0114	1.0113	1.0122	1.0116
QLD	FBEP	1.0114	1.0095	1.0107	1.0090	1.0107
QLD	FBOC	1.0101	1.0097	1.0101	1.0097	1.0106

QLD	FBRR	1.04952	1.04952	1.04952		
QLD	FCAL	1.0088	1.04332	1.04552	1.0097	1.0083
	FCAL	1.0051	1.0052	1.0056	1.0063	1.0065
QLD	-	1.0153	1.0032	1.0507	1.0412	1.0005
QLD	FCRL	1.0033				
QLD	FCST		1.0025	1.0035	1.0036	1.0049
QLD	FEAN	1.0069	1.0055	1.0056	1.0069	1.0068
QLD	FEAS	1.0073	1.0060	1.0057	1.0063	1.0069
QLD	FEIB	1.0133	1.0144	1.0203	1.0285	1.0204
QLD	FGBI	1.0041	1.0039	1.0036	1.0032	1.0037
QLD	FGHP	1.0081	1.0069	1.0097	1.0091	1.0030
QLD	FHDL	1.0017	1.0012	1.0015	1.0063	1.0097
QLD	FHDU	1.0136	1.0130	1.0126	1.0136	1.0143
QLD	FHYS	1.0505	1.0492	1.0557	1.0656	1.0511
QLD	FICT	1.0125	1.0078	1.0065	1.0086	1.0063
QLD	FLCL	1.0520	1.0587	1.0611	1.0591	1.0664
QLD	FLGP	1.0111	1.0130	1.0102	1.0106	1.0092
QLD	FLMD	1.0106	1.0072	1.0091	1.0085	1.0127
QLD	FLWH	1.0061	1.0062	1.0062	1.0064	1.0060
QLD	FLWT	1.0007	1.0006	1.0008	1.0007	1.0012
QLD	FMRP	1.0576	1.0650	1.0602	1.0638	1.0613
QLD	FNBW	1.1376	1.1314	1.1272	1.1378	1.1429
QLD	FNPD	1.0216	1.0222	1.0184	1.0266	1.0228
QLD	FPAH	1.0105	1.0093	1.0114	1.0172	1.0093
QLD	FPCF	1.0131	1.0138	1.0138	1.0138	1.0138
QLD	FQB	1.0024	1.0023	1.0014	1.0079	1.0027
QLD	FQBH	1.0003	1.0003	1.0003	1.0003	1.0003
QLD	FQBW	1.0015	1.0014	1.0016	1.0020	1.0015
QLD	FQC	1.0000	1.0000	1.0001	1.0001	1.0001
QLD	FQCB	1.0102	1.0083	1.0100	1.0052	1.0093
QLD	FQCH	1.0030	1.0052	1.0069	1.0075	1.0076
QLD	FQCL	1.0476	1.0457	1.0362	1.0448	1.0484
QLD	FQG	1.0132	1.0177	1.0169	1.0134	1.0142
QLD	FQL	1.0007	1.0012	1.0007	1.0008	1.0006
QLD	FQML		1.0000	1.0000	1.0000	1.0000
QLD	FQNG	1.0056	1.0053	1.0060	1.0055	1.0044
QLD	FQP	1.0074	1.0059	1.0060	1.0061	1.0057
QLD	FQR	1.0005	1.0005	1.0004	1.0005	1.0003
QLD	FQRS	1.0003	1.0003	1.0002	1.0001	1.0003
QLD	FQRW	1.0058	1.0056	1.0056	1.0060	1.0061
QLD	FQT	1.0048	1.0093	1.0059	1.0066	1.0071
QLD	FQUE	1.0080	1.0121	1.0134	1.0079	1.0076
QLD	FQUE	1.0000	1.0088	1.0125	1.0113	1.0070
	FQW	1.0017	1.0088	1.0123	1.0203	1.0007
QLD		1.0062	1.0165	1.0212	1.0203	1.0163
QLD	FRBH	1.0062	1.0066	1.0078		1.0063
QLD	FRPT	1.0007	1.0027	1.0009	1.0019 1.0473	1.0010
QLD	FSBB	1.0377	1.0401	1.0377	1.0473	1.0429

QLD	FSC	1.0063	1.0065	1.0061	1.0062	1.0045
QLD	FSFT	1.0103	1.0114	1.0098	1.0100	1.0090
QLD	FSHG	1.1621	1.1702	1.1359	1.1359	1.1359
QLD	FSTC	1.0108	1.0126	1.0102	1.0115	1.0133
QLD	FSUH	1.0101	1.0110	1.0110	1.0110	1.0110
QLD	FSWP	1.0088	1.0088	1.0078	1.0075	1.0079
QLD	FTD	1.0066	1.0078	1.0076	1.0063	1.0067
QLD	FTTB	1.0372	1.0399	1.0486	1.0454	1.0359
QLD	FUQ1	1.0048	1.0047	1.0046	1.0047	1.0045
QLD	FUQC	1.0356	1.0175	1.0168	1.0160	1.0232
QLD	FVP	1.0091	1.0108	1.0083	1.0097	1.0077
QLD	FVSF	1.0512	1.0463	1.0547	1.0812	1.0675
QLD	FWGC	1.0049	1.0051	1.0051	1.0052	1.0045
QLD	FWHG	1.0590	1.0949	1.0801	1.0801	1.0801
QLD	UNIT	1.0590	1.0949	1.0801	1.0801	1.0801

4.1.7 DLF codes and values – Ergon

		2020 -	2021 -	2022 -	2023 -	2024 -
Jurisdiction	Code	2021	2022	2023	2024	2025
QLD	GA01	0.9590	0.9510	0.9470	0.9560	0.9610
QLD	GA02	0.8200	1.0100	1.008	0.9630	0.8590
QLD	GA03	0.9400	0.9440	0.9040	0.9090	0.8400
QLD	GA04	1.0050	0.9940	0.9830	0.9880	0.9890
QLD	GA05	0.9890	0.9870	0.9830	0.9840	0.9870
QLD	GA06	0.9630	0.9690	0.9250	0.9330	0.8550
QLD	GA07	1.0010	1.0010	1.0010	1.0010	1.0010
QLD	GA09	0.9870	0.9870	0.9870	0.9920	0.9870
QLD	GA10	0.9870	0.9870	0.9870	0.9930	0.9860
QLD	GA11	0.9450	0.9650	0.9670	0.9580	0.9600
QLD	GA12			0.9720	0.9720	0.9720
QLD	GA13				0.9940	0.9940
QLD	GBSB	1.0000	1.0000	1.0000	1.0000	1.0000
QLD	GEHB	1.0110	1.0106	1.0108	1.0160	1.0160
QLD	GEHL	1.0310	1.0360	1.0360	1.0330	1.0340
QLD	GELB	1.0750	1.0730	1.0680	1.0610	1.0650
QLD	GELL	1.0930	1.0770	1.0830	1.0940	1.0980
QLD	GESB	1.0050	1.0040	1.0050	1.0050	1.0050
QLD	GESL	1.0080	1.0110	1.0150	1.0150	1.0150
QLD	GMLL	1.0360	1.1130	1.1130	1.1130	1.1130
QLD	GRLL	1.0000	1.0000	1.0000	1.0000	1.0000
QLD	GS02	1.0040	1.0060	1.0080	1.0060	1.0100
QLD	GS05	1.0050	1.0050	1.0050		
QLD	GS06	1.0050	1.0060	1.0060	1.0050	1.0050
QLD	GS12	0.9810	1.0000	0.9950	1.0050	1.0030

QLD	GS13	1.0000	1.0100	1.0070	1.0040	1.0040
QLD	GS14	1.0060	1.0070	1.0005	1.0060	1.0060
QLD	GS18	1.0010	1.0030	1.0040	1.0110	1.0060
QLD	GS19	1.0460	1.0470	1.0708	1.0370	1.0350
QLD	GS21	1.0020	1.0003	1.0010	1.0010	1.0010
QLD	GS22	1.0040	1.0060	1.0050	1.0040	1.0040
QLD	GS23	1.0250	1.0250	1.0250		
QLD	GS24	1.0080	1.0080	1.0080		
QLD	GS26	0.9990	0.9920	0.9930	1.0020	1.0010
QLD	GS29	0.9870	0.9950	0.9920	0.9860	0.9540
QLD	GS30	0.9870	0.9950	0.9920	0.9860	0.9540
QLD	GS33	1.0030	1.0030	1.0030	0.0000	0.0010
QLD	GS34	1.0000	1.0000	1.0000		
QLD	GS40	1.0860	1.0840	1.0790	1.0730	1.0550
QLD	GS41	1.0010	1.0010	1.0010	1.0750	1.0550
QLD	GS44	1.0060	1.0060	1.0060		
QLD	GS49	0.8820	0.8900	0.9400	0.9300	0.9430
QLD	GS50	1.0170	1.0170	1.0170	0.5500	0.5 150
QLD	GS51	0.9990	1.0070	1.0070	1.0040	1.0060
QLD	GS55	0.9810	0.9850	0.9840	0.9850	0.9850
QLD	GS56	0.9860	1.0000	0.9740	0.9740	0.9740
QLD	GS60	1.0340	1.0340	1.0340	0.5740	0.5740
		1.0010	1.0010	1.0010		
QLD	GS61 GS62	1.0080	1.0160	1.0130	1.0110	1.0100
QLD		1.0190	1.0190	1.0190	1.0110	1.0100
QLD QLD	GS63 GS64	1.0080	1.0070	1.0060	1.0090	1.0060
QLD	GS65	1.0080	1.0070	1.0000	1.0040	1.0000
QLD	GS66	1.0110	1.0110	1.0110	1.0040	
QLD	GS67	0.9920	0.9970	0.9780	0.9820	0.9840
		1.0020	1.0070	1.0060	1.0060	1.0070
QLD QLD	GS69 GS70	1.0020	1.0040	1.0000	1.0000	1.0010
QLD	GS70	1.0000	1.0040	0.9960	1.0020	1.0010
QLD	GS73	1.0010	1.0010	1.0010	1.0020	1.0020
QLD	GS74	1.0090	1.0010	1.0020	1.0040	1.0020
QLD	GS76	0.9580	0.9590	0.9640	0.9780	1.0020
QLD	GS77	1.0040	1.0070	1.0010	1.0010	1.0030
QLD	GS78	0.9780	0.9780	0.9780	1.0010	1.0010
QLD	GS79	0.9660	0.9780	0.9750	0.9740	0.9730
	GS80	1.0020	1.0000	0.9980	0.9990	1.0000
QLD		0.9910	0.9960	0.9950	0.9990	0.9960
QLD QLD	GS81 GS82	1.0080	1.0120	1.0100	1.0080	1.0090
		1.0080	1.0090	1.0020	1.0080	1.0090
QLD	GS83	0.9980	1.0090	1.00000	1.0040	1.0000
	GS84	1.0820	1.0720	1.0810	1.0740	1.0800
QLD	GS85	1.0020	1.0720	1.0020	1.0740	1.0020
QLD	GS86	1.0080	1.0070	1.0020	1.0020	1.0020
QLD	GS87	1.0040	1.0050	1.0060	1.0050	1.0030

QLD	GS88	1.0080	1.0080	1.0020	1.0030	1.0030
QLD	GS89	0.9990	1.0010	1.0000	1.0000	1.0000
QLD	GS90	1.0060	1.008	1.00400	1.0030	1.0050
QLD	GS91	0.9020	0.9260	0.9270	0.9360	0.9820
QLD	GS92	0.9950	1.0000	0.9990	0.9980	0.9930
QLD	GS93	0.9810	0.9850	0.9680	0.9750	0.9830
QLD	GS95	1.0010	0.9990	0.9990	0.9990	0.9990
QLD	GS96	0.8900	0.8870	0.8680	0.9110	0.8900
QLD	GS97	1.0070	1.0000	0.9940	1.0000	1.0010
QLD	GS98	0.9560	0.9550	0.9150	0.9590	0.9560
QLD	GS99	0.9640	0.9630	0.9720	0.9710	0.9770
QLD	GWHB	1.0440	1.0600	1.0640	1.0710	1.0810
QLD	GWHL	1.0780	1.1130	1.1060	1.1080	1.1210
QLD	GWLB	1.1180	1.1730	1.1560	1.1380	1.1590
QLD	GWLL	1.2330	1.2400	1.2240	1.2230	1.2120
QLD	GWSB	1.0290	1.0240	1.0210	1.0270	1.0290
QLD	GWSL	1.0400	1.0510	1.0560	1.0710	1.0790

4.1.8 DLF codes and values – Essential Energy

		2020 -	2021 -	2022 -	2023 -	2024 -
Jurisdiction	Code	2021	2022	2023	2024	2025
NSW	BH0A	1.0301	1.0309	1.0290	1.0253	1.0226
NSW	BH5A	1.0185	1.0182	1.0159	1.0135	1.0104
NSW	BLOA	1.0664	1.0637	1.0609	1.0588	1.0594
NSW	BL5A	1.0544	1.0506	1.0485	1.0455	1.0438
NSW	BS02	0.9375	0.9296	0.9334	0.9358	0.9372
NSW	BS03	0.9963	0.997	0.9986	0.9957	0.9985
NSW	BS0A	1.0110	1.0119	1.0104	1.0101	1.0086
NSW	BS32	1.0989	1.0859	1.0567	1.0534	1.0454
NSW	BS33	1.0563	1.0481	1.0200	1.0295	1.0162
NSW	BS34	1.1027	1.1027	1.1027		
NSW	BS35	1.0135	1.0141	1.0130	1.0138	10.131
NSW	BS37	1.0000	1.0000	1.0000		
NSW	BS38	1.0085	1.0102	1.0118	1.0096	1.0058
NSW	BS39	1.0339	1.0253	1.0251	1.0147	1.0297
NSW	BS40	1.0555	1.0495	1.0239	1.0345	1.2000
NSW	BS41	1.0848	1.0651	1.0651	1.0651	1.0651
NSW	BS43	0.9949	0.9953	0.9933	0.9934	0.9928
NSW	BS44	0.9969	0.9956	0.9993	0.9904	0.9809
NSW	BS45	1.0443	1.0335	1.0264	1.0157	1.0019
NSW	BS46	1.0256	1.0391	1.0318	1.0318	1.0318
NSW	BS47	0.9526	0.9526	0.9526		
NSW	BS48	0.9852	0.9750	0.9781	0.9762	0.9777
NSW	BS50	0.9831	0.9720	0.9751	0.9731	0.9750

	1	1 00 10	1 0000	1 0 0 6 0	1 0000	1 00 00
NSW	BS51	1.0046	1.0063	1.0063	1.0063	1.0063
NSW	BS52	1.0450	1.0413	1.0232	1.0232	1.0232
NSW	BS53	1.0100	1.0087	1.0075	1.0061	1.0006
NSW	BS54	0.9820	0.9705	0.9772	0.9769	0.9776
NSW	BS55	0.9917	0.9838	0.9832	0.9830	0.9823
NSW	BS56	1.0135	1.0141	1.0130	1.0138	1.0131
NSW	BS57	0.9591	0.9419	0.9217	0.9328	0.9248
NSW	BS58	0.9850	0.9835	0.9815	0.9853	0.9853
NSW	BS60	1.0153	1.0121	1.0112	1.0112	1.0121
NSW	BS61	1.0008	0.9982	0.9841	0.9841	0.9481
NSW	BS62	0.9956	0.9909	0.9828	0.9868	0.9862
NSW	BS63	0.9938	0.9983	0.9983	0.9979	0.9996
NSW	BS64	0.9597	0.9462	0.9294	0.9366	0.9321
NSW	BS65	0.9800	0.9803	0.9768	0.9809	0.9600
NSW	BS66	0.9931	0.9908	0.9853	0.9793	1.0010
NSW	BS67		1.0126	1.0181	1.0177	1.0156
NSW	BS68		1.0262	1.0289	1.0304	1.0256
NSW	BS69	0.9812	0.9812	0.9801	0.9784	0.9791
NSW	BS70		0.9169	0.9263	0.9107	0.9221
NSW	BS71		0.9904	0.9878	0.9792	0.9654
NSW	BS72			1.0517	1.0537	1.0607
NSW	BS73			0.9544	0.9403	0.9325
NSW	BS74			0.9291	0.9243	0.9315
NSW	BS75				1.0036	0.9972
NSW	UNIT	1.0000	1.0000	1.0000	1.0000	1.0000

4.1.9 DLF odes and values – Jemena

Jurisdiction	Code	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024	2024 - 2025
VIC	CAFP	1.0026	1.0026	1.0026		
VIC	CAGP	1.0097	1.0108	1.0095	1.0111	1.0106
VIC	CAHH	1.0120	1.0130	1.0116	1.0140	1.0132
VIC	CAPA	1.0024	1.0025	1.002	1.0017	1.0011
VIC	CFMC	1.0107	1.0107	1.0107		
VIC	CHBL	1.0158	1.0169	1.0139	1.0169	1.0162
VIC	CHBS	1.0077	1.0087	1.0071	1.0088	1.0079
VIC	CHCA	1.0110	1.0110	1.0110		
VIC	CHCL	1.0249	1.0253	1.0206	1.0254	1.0262
VIC	CHCS	1.0168	1.0172	1.0138	1.0172	1.0180
VIC	CLDL	1.0425	1.0455	1.0397	1.0466	1.0492
VIC	CLDS	1.0344	1.0373	1.0330	1.0385	1.0410
VIC	CLEL	1.0476	1.0512	1.0446	1.0528	1.0551
VIC	CLES	1.0394	1.0430	1.0379	1.0447	1.0468
VIC	CNDC					1.0150

VIC	CSAL	1.0118	1.0124	1.0102	1.0127	1.0124
VIC	CSAS	1.0037	1.0042	1.0034	1.0046	1.0041
VIC	CSOG	0.9917	0.9872	0.9881	0.9800	0.9828
VIC	CSPL	1.0081	1.0088	1.0079	1.0094	1.0089
VIC	CSPT	1.0131	1.0131	1.0131		
VIC	CVPC	1.0068	1.0086	1.0079	1.0107	1.0069
VIC	CWGP					1.0001
VIC	UNIT	1.0000	1.0000	1.0000	1.0000	1.0000

4.1.10 DLF Codes and values – Powercor

		2020 -	2021 -	2022 -	2023 -	2024 -
Jurisdiction	Code	2021	2022	2023	2024	2025
VIC	КАВ	1.0162	1.0162	1.0162		
VIC	KAD	1.0167	1.0115	1.0091	1.0094	1.0091
VIC	KAF	1.0069	1.0068	1.0069	1.0070	1.0070
VIC	KAF1	1.0005	1.0005	1.0006	1.0005	1.0005
VIC	KAL	1.0388	1.0373	1.0378	1.0366	1.0369
VIC	KAO			1.0022	1.0020	1.0015
VIC	KAO1				1.0009	1.0009
VIC	KAS	1.0035	1.0035	1.0033	1.0030	1.0030
VIC	KAT	1.0109	1.0109	1.0113	1.0109	1.0099
VIC	КВС	1.0444	1.0311	1.0375		
VIC	KBF	1.0651	1.0651	1.0651		
VIC	KBL	1.0442	1.0426	1.0428	1.0413	1.0416
VIC	KBN	1.0083	1.0082	1.0081	1.0084	1.0078
VIC	КВР	0.9846	0.9825	0.9753		
VIC	KBS	1.0089	1.0088	1.0083	1.0077	1.0077
VIC	КВТ					1.0130
VIC	КСВ	0.9624	0.9183	0.9018	0.9063	0.9255
VIC	KCF	1.0788	1.0323	1.0146	1.0157	1.0171
VIC	КСН	0.992	0.9689	0.9654	0.9578	0.9478
VIC	KCL	1.0683	1.0662	1.066	1.0635	1.0638
VIC	ксо	0.9811	0.9811	0.9811	0.9811	0.9988
VIC	KCS	1.033	1.0324	1.0315	1.0299	1.0299
VIC	KDA	1.0015	1.0015	1.0015		
VIC	KDA1	1.0118	1.0118	1.012	1.0051	1.0051
VIC	KDA2	1.0017	1.0017	1.0017		
VIC	KDL	1.0930	1.0900	1.0896	1.0857	1.0861
VIC	KDS	1.0577	1.0562	1.0551	1.0521	1.0522
VIC	KEL	1.1006	1.0975	1.0972	1.0932	1.0946
VIC	KES	1.0653	1.0637	1.0627	1.0596	1.0607
VIC	KGD	1.0010	1.0010	1.0010		
VIC	KGE	1.0091	1.0091	1.0091		
VIC	KGG				0.9830	0.9830

VIC	KGJ	1.0022	1.0021	1.0022	1.0025	1.0021
VIC	KGK	1.0042	1.0042	1.0042		
VIC	KGS	0.9901	0.9859	0.9796	0.9782	0.9779
VIC	KPP					0.9991
VIC	KKS	0.9852	0.9797	0.9731	1.0296	0.9654
VIC	KKW	0.9155	0.9171	0.9316	0.9112	0.8959
VIC	KLD	1.0074	1.0074	1.0074		
VIC	KMG	1.0010	0.9823	0.9820	0.9822	0.9937
VIC	KML	0.9087	0.9077	0.9102	0.9077	0.9099
VIC	KNS	0.9875	0.9871	0.9852	0.9723	0.9600
VIC	КОН	0.8919	0.8907	0.8933	0.8906	0.8930
VIC	KRD	1.0071	1.0096	1.0094	1.0097	1.0064
VIC	KSB	1.0555	1.0524	1.0493	1.0635	1.0635
VIC	KSE	1.0469	1.0484	1.0572	1.0578	1.0571
VIC	KTE	1.0459	1.0459	1.0459	0.9984	1.0505
VIC	KWN				0.9769	0.9769
VIC	KWS	0.9986	0.9985	0.9982	0.9868	0.9983
VIC	KYD	0.9845	0.9845	0.9845	0.9998	0.9868
VIC	KYP	0.9818	0.9818	0.9818	0.9491	0.9810
VIC	KYS	1.0536	0.9842	0.9627	1.0157	0.9230
VIC	KYW	1.0788	1.0323	1.0146	1.0635	1.0171

4.1.11 DLF Codes and values – SA Power Networks

		2020 -	2021 -	2022 -	2023 -	2024 -
Jurisdiction	Code	2021	2022	2023	2024	2025
SA	BP01			0.9960	0.9960	0.9960
SA	NAB1	1.0100	1.0100	1.0100	1.0100	1.0100
SA	NAC1	1.0200	1.0200	1.0200		
SA	NAC2	1.0080	1.0080	1.0080	1.0080	1.0080
SA	NAS1	0.9890	0.9890	0.9890	0.9890	0.9890
SA	NAS2	0.9890	0.9890	0.9890	0.9890	0.9890
SA	NB09	0.9930	0.9930	0.9930	0.9930	0.9910
SA	NBA1	1.0010	1.0010	1.0010	1.0010	1.0010
SA	NBO1	0.9930	0.9930	0.9903	0.9930	0.9910
SA	NCDW	0.9720	0.9720	0.9720	0.9720	0.9720
SA	NCL1	1.0020	1.0020	1.0040	1.0040	1.0040
SA	NDS1	1.0080	1.0080	1.0080		
SA	NDS2	1.0080	1.0080	1.0080		
SA	NDS4	1.0100	1.0100	1.0100		
SA	NDS5		1.0110	1.0110	1.0110	1.0110
SA	NDS8		1.0110	1.0110	1.0110	1.0110
SA	NDS9	1.0100	1.0100	1.0100	1.0100	1.0100
SA	NGM1	1.0090	1.0090	1.0090		
SA	NGM2	1.0070	1.0070	1.0070		

	I	1	1	1		1
SA	NGT1	1.0070	1.0070	1.0070	1.0070	1.0070
SA	NHA1		0.9730	0.9730	0.9730	1.0431
SA	NHA9		0.9730	0.9730	0.9730	1.0431
SA	NHN1	1.0030	1.0030	1.0020	1.0020	1.0020
SA	NHN2	1.0030	1.0030	1.003		
SA	NHV1	1.0510	1.0503	1.0449	1.0454	1.0444
SA	NIF1	1.0100	1.0100	1.0100	1.0100	1.0100
SA	NKC4	1.0100	1.0100	1.0100	1.0100	1.0100
SA	NLV1	1.0840	1.0985	1.0903	1.0897	1.0889
SA	NLV2	1.1070	1.1170	1.1070	1.1109	1.1161
SA	NMS1					1.0000
SA	NOS1	1.0010	1.0010	1.0010	1.0010	1.0010
SA	NOS2	1.0000	1.0000	1.0000	1.0000	1.0000
SA	NP01			0.9960	0.9960	0.9980
SA	NPS1	1.0000	1.0000	1.0000	1.0000	1.0000
SA	NPS3	1.0070	1.0070	1.0070	1.0070	1.0070
SA	NRA1	1.0100	1.0100	1.0100	1.0100	1.0100
SA	NRA2	1.0120	1.0120	1.0120		
SA	NRT1	1.0040	1.0050	1.0050	1.0050	1.0020
SA	NSHW	0.9950	0.9950	0.9950	0.9950	0.9950
SA	NSP1	1.0040	1.0004	1.0040	1.0040	1.0040
SA	NSP2	1.0040	1.0040	1.0040	1.0040	1.0040
SA	NST1		1.0163	1.0149	1.0128	1.0137
SA	NTGN	1.0000	1.0000	1.0000		
SA	NTGS	1.0030	1.0030	1.0030	1.0030	1.0030
SA	NZS1	1.0230	1.0265	1.0243	1.0247	1.0242
SA	XOX1	1.0560	1.0560	1.0560		
SA	UNIT	1.0000	1.0000	1.0000	1.0000	1.0000

4.1.12 DLF Codes and Values – TasNetworks

Jurisdiction	Code	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024	2024 - 2025
TAS	PACH	1.0000	1.0000	1.0000	1.0000	1.0000
TAS	PADS			1.0397	1.0311	1.0318
TAS	PAHV			1.0136	1.0142	1.0145
TAS	PALV			1.0579	1.0502	1.0412
TAS	PAST			1.0059		
TAS	PATR			1.0000	1.0000	1.0000
TAS	PAZN			1.0098		
TAS	PBGM	1.0118	1.0118	1.0118		
TAS	PBSM	1.0110	1.0132	1.0147	1.0164	1.0134
TAS	PDDS	1.0469	1.0324	1.0397	1.0311	1.0311
TAS	PDHV	1.0147	1.0135	1.0136	1.0136	1.0136
TAS	PDLV	1.0557	1.0583	1.0579	1.0502	1.0502

TAS	PDST	1.0000	1.0056	1.0059		
TAS	PDTC	0.9720	0.9720	0.9720		
TAS	PDZN	1.0000	1.0084	1.0098		
TAS	PEDE	1.0000	1.0000	1.0000		
TAS	PEDS	1.0478	1.0324	1.0397	1.0311	1.0311
TAS	PEHE	1.0000	1.0000	1.0000		
TAS	PEHV	1.0181	1.0135	1.0136	1.0136	1.0136
TAS	PELV	1.0785	1.0583	1.0579	1.0502	1.0502
TAS	PEMW	0.9588	0.9588	0.9588		
TAS	PEST	1.0000	1.0056	1.0059		
TAS	PEZN	1.0000	1.0084	1.0098		
TAS	PHDS	1.0238	1.0324	1.0397	1.0311	1.0311
TAS	PHGM	1.0000	1.0000	1.0000	1.0000	1.000
TAS	PHHV	1.0112	1.0135	1.0136	1.0136	1.0136
TAS	PHLV	1.0407	1.0583	1.0579	1.0502	1.0502
TAS	PHST	1.0034	1.0056	1.0059		
TAS	PHZN	1.0053	1.0084	1.0098		
TAS	PNDS	1.0329	1.0324	1.0397	1.0311	1.0311
TAS	PNHV	1.0111	1.0135	1.0136	1.0136	1.0136
TAS	PNLV	1.0543	1.0583	1.0579	1.0502	1.0502
TAS	PNST	1.0000	1.0056	1.0059		
TAS	PNZN	1.0000	1.0084	1.0098		
TAS	PSDS	1.0395	1.0324	1.0397	1.0311	1.0311
TAS	PSHV	1.0171	1.0135	1.0136	1.0136	1.0136
TAS	PSLV	1.0579	1.0583	1.0579	1.0502	1.0502
TAS	PSPU	0.9915	0.9915	0.9915		
TAS	PSST	1.0002	1.0056	1.0059		
TAS	PSZN	1.0004	1.0084	1.0098		
TAS	PTDS	1.0244	1.0324	1.0397	1.0311	1.0311
TAS	PTHV	1.0077	1.0135	1.0136	1.0136	1.0136
TAS	PTLV	1.0439	1.0583	1.0579	1.0502	1.0502
TAS	PTST	1.0000	1.0056	1.0059		
TAS	PTZN	1.0000	1.0084	1.0098		
TAS	PWDS	1.0305	1.0324	1.0397	1.0311	1.0311
TAS	PWHV	1.0125	1.0135	1.0136	1.0136	1.0136
TAS	PWLV	1.0482	1.0583	1.0579	1.0502	1.0502
TAS	PWST	1.0017	1.0056	1.0059		
TAS	PWZN	1.0038	1.0084	1.0098		
TAS	UNIT	1.0000	1.0000	1.0000	1.0000	1.0000

4.1.13 DLF codes and values – United Energy

			2020 -	2021 -	2022 -	2023 -	2024 -
Jurisdio	ction	Code	2021	2022	2023	2024	2025
VIC		MC01	1.0095	1.0084	1.0077	1.0075	1.0077

1	1 1					
VIC	MC02	1.0144	1.0125	1.0128	1.0116	1.0116
VIC	MC03	1.0057	1.0042	1.003	1.0046	1.0050
VIC	MC04	1.0276	1.0231	1.0223	1.0193	1.0198
VIC	MC05	1.0108	1.0095	1.0088	1.0085	1.0084
VIC	MC06	1.0125	1.0111	1.0102	1.0100	1.0101
VIC	MC07	1.0179	1.0156	1.016	1.0146	1.0138
VIC	MC08	1.0196	1.0169	1.0166	1.0145	1.0149
VIC	MG01	1.0111	1.0081	1.0093	1.0084	1.0078
VIC	MG02				0.9938	0.9954
VIC	MHBL	1.0243	1.024	1.0223		
VIC	MHBS	1.0098	1.0091	1.0085	1.0086	1.0079
VIC	MHCL	1.0296	1.0298	1.0274	1.0281	1.0268
VIC	MHCS	1.0151	1.0149	1.0135	1.0143	1.0136
VIC	MLDL	1.0557	1.0533	1.0485	1.0486	1.0463
VIC	MLDS	1.0411	1.0384	1.0346	1.0349	1.0332
VIC	MLEL	1.0708	1.0673	1.0609	1.0621	1.0595
VIC	MLES	1.0563	1.0525	1.0471	1.0483	1.0463
VIC	MSAL	1.0183	1.0187	1.0176		1.0164
VIC	MSAS	1.0038	1.0039	1.0038	1.0038	1.0032
VIC	XGW1	0.9901	0.9901	0.9901		

4.2 Accumulation Metering Migration to 5-minute Metering

This section provides, for each *local area*, the number of accumulation *metering installations* that were transitioned to 5-minute metering over the reporting period.

This section also provides an indication of the changes to the *accumulation metering data* and, where applicable, changes to controlled load *metering data* for the period commencing with trading week 26 February 2023 – 4 March 2023 (Start) to trading week 23 February 2025 – 1 March 2025 (End).

Charts related to this section are provided in Appendix A1.3. The first chart for each *local area* shows the stacked profile *energy* volumes under the *local area load* curve. The second chart for each *local area* shows the percentage of the *local area load* related each profile group in that *local area*.

PROFILE AREA	Jan-Mar 23	Apr-Jun 23	Jul-Sep 23	Oct-Dec 23	Jan-Mar 24	Apr-Jun 24	Jul-Sep 24	Oct-Dec 24	Jan-Mar 25	Total
ACTEWAGL	2,054	2,150	2,131	1744	1438	1610	1622	1273	1229	15,251
TasNetworks	16,703	17,130	15,188	15009	13013	13705	10712	8917	7186	117,563
CITIPOWER	60	78	59	167	150	193	174	155	20	1,056
Essential Energy	97	41	35	19741	17768	26385	25343	21457	18326	129,193
Energex	15,939	23,726	32,837	23962	29932	40190	44532	38083	29193	278,394
AusGrid	20,894	29,411	28,736	15279	12584	14855	19142	26590	27193	194,684
Ergon	14,987	15,972	13,559	12517	16281	21672	30673	34930	29011	189,602
Endeavour Energy	15,068	23,389	24,666	31772	35542	38540	36951	23661	19485	249,074
POWERCOR	22	17	22	477	368	366	237	37	32	1,578
AusNet Services	183	101	469	93	67	412	318	97	36	1,776
SA Power Networks	14,448	15,417	16,246	15233	12965	14277	19509	18366	16688	143,149
United Energ	12,286	15,177	15,389	23	9	14	17	3	10	42,928
Jemena	349	356	53	22	21	20	23	22	10	876

Figure 40 Accumulation NMIs transitioned to 5-minute metering

LOCAL AREA	Trading Week	ADME	Accumulation	Controlled Load	Accum % of ADME	CL % of ADME
ActewAGL	Start	49,362,783	12,978,509	N/A	26.29%	N/A
ACTEWAGE	End	49,630,157	12,442,233	N/A	25.07%	N/A
Ausgrid	Start	472,863,974	77,607,520	8,290,585	16.41%	1.75%
Ausgriu	End	480,292,209	78,074,434	0	16.26%	0.00%
AusNet Services	Start	90,723,490	30,280,493	N/A	33.38%	N/A
Ausiver Services	End	94,163,921	496,777	N/A	0.53%	,
CitiPower	Start	104,017,222	-99,968	N/A	-0.10%	N/A
	End	112,194,179	23,142	N/A	0.02%	N/A
Endeavour Energy	Start	296,184,671	76,262,737	7,973,186	25.75%	2.69%
Endeavour Energy	End	312,953,671	62,086,040	0	19.84%	0.00%
Energex	Start	403,917,359	245,632,926	16,582,315	60.81%	4.11%
Energex	End	411,656,863	82,664,476	9,612,909	20.08%	2.34%
Ergon	Start	225,946,331	72,089,291	N/A	31.91%	N/A
Ligon	End	198,086,633	46,348,934	N/A	23.40%	N/A
Essential Energy	Start	125,329,501	55,519,436	11,332,501	44.30%	9.04%
LSSential Lifelgy	End	144,610,204	52,806,924	0	36.52%	0.00%
Jemena	Start	73,556,711	988,494	N/A	1.34%	N/A
Jennena	End	80,816,921	510,219	N/A	0.63%	N/A
Powercor	Start	137,423,778	-1,137,235	N/A	-0.83%	N/A
Fowercor	End	143,283,073	258,962	N/A	0.18%	N/A
SA Power Networks	Start	137,423,778	177,477,088	3,140,489	129.15%	2.29%
SA POWER NELWORKS	End	143,283,073	32,979,662	1,737,709	23.02%	1.21%
TasNetworks	Start	79,425,088	16,563,491	N/A	20.85%	N/A
	End	76,897,720	11,090,218	N/A	14.42%	N/A
United Energy	Start	127,688,156	100,060	N/A	0.08%	N/A
	End	128,071,763	364,750	N/A	0.28%	N/A

Figure 41 Approximate accumulation and controlled load energy volumes % of ADME

4.3 15 and 30-minute Metering Migration to 5-minute Metering

This section provides, for each *local area*, the number of 15 and 30-minute *metering installations* that were transitioned to 5-minute metering over the reporting period.

This section also provides an indication of the changes to the 15 and 30-minute (non-TI) *metering data* and, where applicable, changes to the 5-minute (TI) *metering data* for the period commencing with trading week 26 February 2023 – 4 March 2023 (Start) to trading week 23 February 2025 – 1 March 2025 (End).

Charts related to this section are provided in Appendix A1.3. The first chart for each *local area* shows the stacked profile *energy* volumes under the *local area load* curve. The second chart for each *local area* shows the percentage of the *local area load* related each profile group in that *local area*.

PROFILE AREA	Jan-Mar 23	Apr-Jun 23	Jul-Sep 23	Oct-Dec 23	Jan-Mar 24	Apr-Jun 24	Jul-Sep 24	Oct-Dec 24	Jan-Mar 25	Total
ACTEWAGL	544	708	410	85	126	84	72	62	61	2,152
AusGrid	7,200	32,890	7,125	6900	6083	7001	9182	10823	8596	95,800
AusNet Services	1,550	1,297	859	851	836	1210	1069	919	656	9,247
CITIPOWER	754	714	673	606	623	655	757	471	653	5,906
Endeavour Energy	2,683	12,052	2,132	1744	1918	1686	1410	1339	1257	26,221
Energex	2,953	20,128	753	454	414	377	236	209	189	25,713
Ergon	839	929	702	408	953	3851	1686	523	568	10,459
Essential Energy	2,480	15,135	2,631	1903	1624	1426	1401	1222	1232	29,054
Jemena	537	354	321	321	291	321	349	270	302	3,066
POWERCOR	1,756	1,795	1,783	1529	1675	1570	2041	1466	1422	15,037
SA Power Networks	2,451	4,620	1,369	727	498	518	293	212	184	10,872
TasNetworks	3,301	1,724	804	257	256	253	244	222	223	7,284
United Energy	837	839	1,124	868	801	1035	1104	886	801	8,295

Figure 42 15 and 30-minute NMIs transitioned to 5-minute metering

LOCAL AREA	Trading Week	ADME	Trading Interval	Non-Trad Int	TI % of ADME	Non-TI % of ADME
ActewAGL	Start	49,362,783	23,213,670	5,791,460	47.03%	11.73%
ALLEWAUL	End	49,630,157	29,917,796	2,501,817	60.28%	5.04%
Aucarid	Start	472,863,974	283,048,698	111,520,927	59.86%	23.58%
Ausgrid	End	480,292,209	337,138,350	69,556,146	70.19%	14.48%
AusNet Services	Start	90,723,490	34,033,172	59,243,442	37.51%	65.30%
Ausiver Services	End	94,163,921	42,486,232	54,640,771	45.12%	58.03%
CitiPower	Start	104,017,222	64,464,537	36,839,639	61.97%	35.42%
CITIFOWEI	End	112,194,179	75,954,974	36,934,984	67.70%	32.92%
Endoayour Enormy	Start	296,184,671	211,129,388	27,946,609	71.28%	9.44%
Endeavour Energy	End	312,953,671	265,919,341	9,046,126	84.97%	2.89%
Energex	Start	403,917,359	166,593,448	28,908,836	41.24%	7.16%
Energex	End	411,656,863	302,409,522	16,869,813	73.46%	4.10%
Ergon	Start	225,946,331	135,688,070	17,460,916	60.05%	7.73%
Ergon	End	198,086,633	138,988,600	10,402,745	70.17%	5.25%
Ecceptial Energy	Start	125,329,501	40,696,315	20,077,928	32.47%	16.02%
Essential Energy	End	144,610,204	89,132,951	6,838,400	61.64%	4.73%
lomona	Start	73,556,711	50,787,654	26,260,261	69.05%	35.70%
Jemena	End	80,816,921	58,573,635	26,380,607	72.48%	32.64%
Doworoor	Start	137,423,778	71,413,844	67,334,379	51.97%	49.00%
Powercor	End	143,283,073	85,145,857	65,889,603	59.42%	45.99%
SA Power Networks	Start	137,423,778	84,120,999	14,548,200	61.21%	10.59%
SA POWER NELWORKS	End	143,283,073	112,817,833	9,461,764	78.74%	6.60%
TasNetworks	Start	79,425,088	57,179,856	4,391,393	71.99%	5.53%
	End	76,897,720	68,709,243	2,162,605	89.35%	2.81%
	Start	127,688,156	75,966,510	49,322,551	59.49%	38.63%
United Energy	End	128,071,763	79,421,635	46,820,038	62.01%	36.56%

Figure 43 Approximate TI and Non-TI energy volumes % of ADME

4.4 Unmetered Loads Migration to Metered Arrangements

No type 7 or NCONUML metering installations were migrated to *metered* arrangements during the reporting period.

4.5 NCONUML Alternative Calculation Methodologies

No alternative calculation methodologies were introduced for NCONUML *metering installations* during the reporting period.

4.6 Review of Profiling Methodologies

This section provides, for each *local area*, a chart of the volume of profiled *metering data* over the reporting period related to the following profiling methods:

- Net System Load Profile (NSLP),
- Controlled Load Profile (CLP), and
- 15 and 30-minute metering data profiled to 5-minute

The energy volumes related to each profiling method are expressed as a percentage of the local area load.

Charts related to this section are provided in Appendix A1.3. The first chart for each *local area* shows the stacked profile *energy* volumes under the *local area load* curve. The second chart for each *local area* shows the percentage of the *local area load* related each profile group in that *local area*.

As set out in section 2.1, a number of changes to the profiling methodology have occurred in the reporting period. As an interim solution, the "weights methodology", was implemented to prevent energy volume spikes occurring following the application of the 5MLP in the *settlements* processes. A modified 5MLP profiling methodology was introduced in 1 October 2023, with a new, longer term, NSLP flooring methodology implemented on 29 September 2024.

4.7 Review of UFE Values by Settlement Data Versions

This section provides, for each *local area*, a chart of UFE values for each settlement data version, i.e. Prelim, Final, Rev 1 and Rev 2. The UFE values are aggregated for each day over the reporting period.

Generally, Prelim and Final UFE values follow each other closely and Rev 1 and Rev 2 UFE values follow each other closely. Victorian *local areas*, generally show Prelim/Final and Rev 1/Rev 2 UFE values following each other, but non-Victorian *local areas* generally show significant differences between Prelim/Final UFE values and Rev 1/Rev 2 UFE values.

Charts related to this section are provided in Appendix A1.2.

4.8 Review of Unmetered Cross Boundary Energy Volumes

No unmetered cross boundary energy volumes were identified during the reporting period.

5 Recommendations – UFE visibility improvements

This section considers whether any actions should be recommended to improve the visibility of UFE in each *local area*, in particular whether and how more granular information should be gathered to identify UFE.

Analysis of *local areas* to determine whether more granular geographic UFE information will be an on-going undertaking by AEMO. Time factors (e.g. season, and day) that produce patterns of UFE can be important in identifying causes and solutions to reduce UFE. Seasonal variation in UFE values can be seen in the UFE Components charts in section 2.1.

The existence of virtual TNIs in *local areas* prevents full settlement reconciliation analysis of UFE components at a TNI level for that *local area*. Knowledge of which connection points are connected to each TNI and mapping of virtual TNI connection points to a physical TNI are required to calculate UFE at TNI level. In its Global Settlement and Market Reconciliation Final Rule Determination, the AEMC determined that the cost to implement these complexities would exceed the benefits of doing so.

AEMO has not identified any other feasible options to improve visibility of UFE in each local area and therefore this report makes no recommendations in this regard.

6 Recommendations – UFE reduction actions

This section considers whether any actions should be recommended to reduce the amounts of UFE in each *local area*, including actions to be taken by *Market Participants*, *Network Service Providers*, the AER and AEMO.

While the implementation of global settlements has improved the information provided regarding UFE and the incentives on retailers to minimise UFE, the scope to migrate unmetered loads to metered arrangements will be realised through the "Unlocking CER benefits through flexible trading" initiative⁵ to be implemented from 31 May 2026. This initiative includes the introduction of alternative metering arrangements for loads that have historically been unmetered.

Having reviewed the information presented in the **UFE values by settlement data versions** charts in Appendix A1.2, AEMO considers that significant improvement in UFE values will come from the further deployment of remotely read interval metering. This will bring into closer alignment the Prelim and Final UFE values with the Rev 1 and Rev 2 UFE values, as demonstrated in the Victorian *local areas*. Action to extend the installation of this

⁵ National Electricity Amendment (Unlocking CER benefits through flexible trading) Rule 2024 at: <u>https://www.aemc.gov.au/rule-changes/unlocking-CER-benefits-through-flexible-trading</u>

metering will be facilitated through the "Accelerating smart meter deployment" initiative⁶, to be implemented from 1 December 2025.

As such, AEMO is not recommending any additional actions to reduce UFE amounts in this UFE Trends Report, pending implementation and operation of these two reform initiatives. Accordingly, AEMO did not facilitate a discussion forum prior to the release of this UFE Trends Report.

⁶ National Electricity Amendment (Accelerating smart meter deployment) Rule 2024 at: <u>https://www.aemc.gov.au/rule-changes/accelerating-smart-meter-deployment</u>

A1. UFE analysis supporting information

The charts provided in this Appendix provide additional information to support UFE analysis in each *local area*. These charts are:

- UFE for a local area (Appendix A1.1)
- UFE for a local area expressed as a percentage of local area ADME (Appendix A1.1)
- UFE values for a local area by settlement data version, i.e. Prelim, Final, Rev 1 and Rev 2 (Appendix A1.2)
- Profiles for each *local area* (Appendix 1.3)

UFE for a local area charts the aggregate of UFE values for each *day* over the reporting period. The UFE values are determined by the UFE calculation that is detailed in section 1.3.1.

UFE as a percentage of ADME charts the aggregate of UFE values as a percentage of the aggregate of ADME values for each *day* over the reporting period. This shows the variability of UFE with respect to the aggregate of *energy* flows for each *connection point* in a *local area*.

UFE values by settlement data version (Prelim, Final, Rev 1, Rev 2) charts the aggregate of UFE values for each *day* over the reporting period.

Profiles for each local area chart the volume of profiled metering data over the reporting period related to:

- Net System Load Profile (NSLP)
- Controlled Load Profile (CLP)
- 15 and 30-minute metering data profiled to 5-minute metering data.

A1.1 UFE and UFE % of ADME for local areas

A1.1.1 ActewAGL

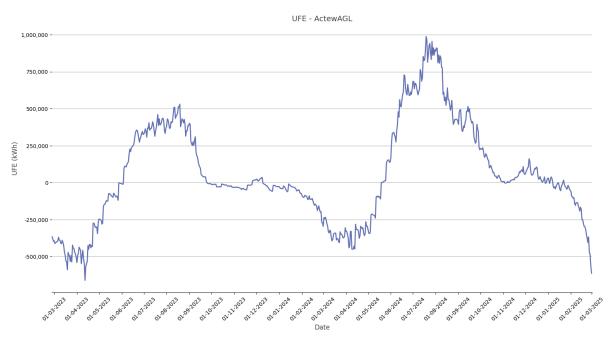
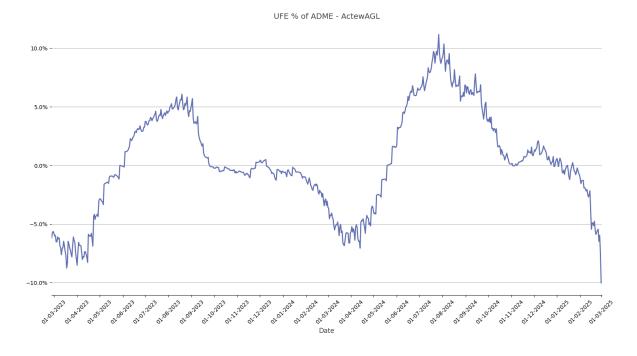
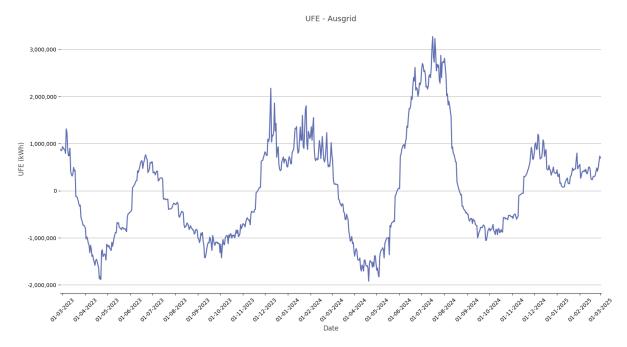
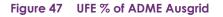
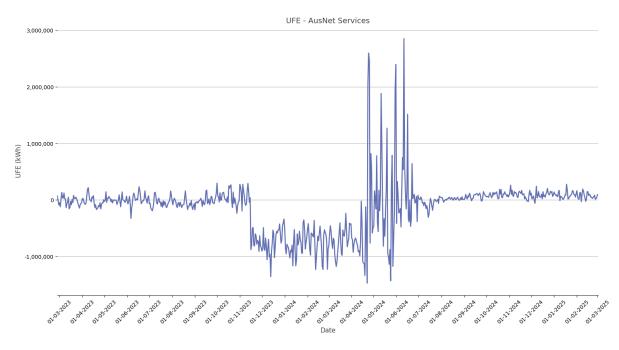


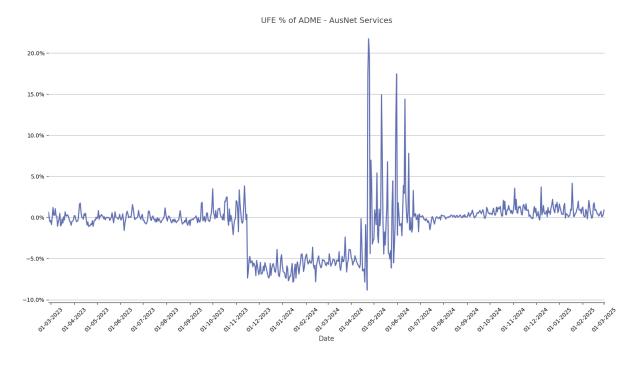
Figure 44 UFE – ActewAGL


Figure 45 UFE % of ADME – ActewAGL

A1.1.2 Ausgrid




UFE % of ADME - Ausgrid 4.0% 3.0% 2.0% 6 1.0% 0.0% --1.0% MAN -2.0% -3.0% of of a charter of 01.052024 02.06.2024 01.01.2024 01.08-2024 01.222023 01.02.2024 01:11:2024 01:2:2024 01.01.2025 01.01.2024 5 01.02.2025 01.03.202

A1.1.3 AusNet Services

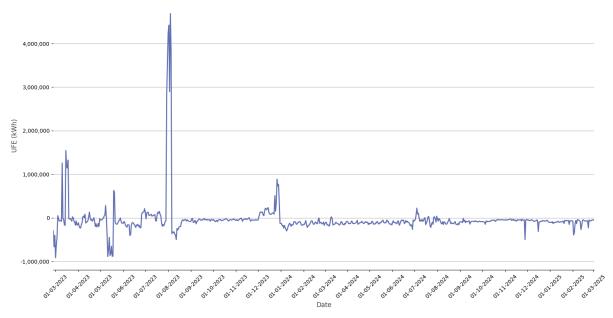
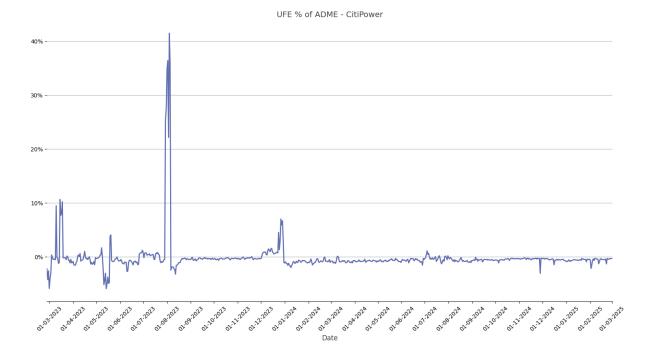
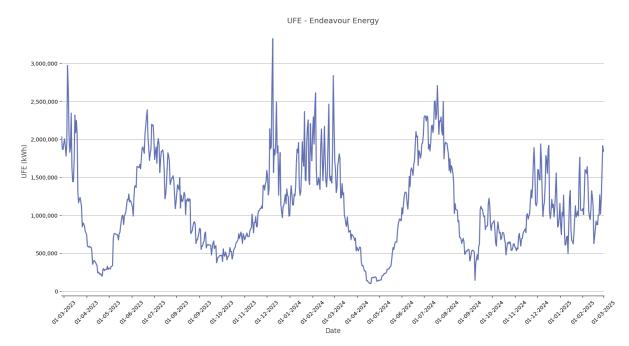
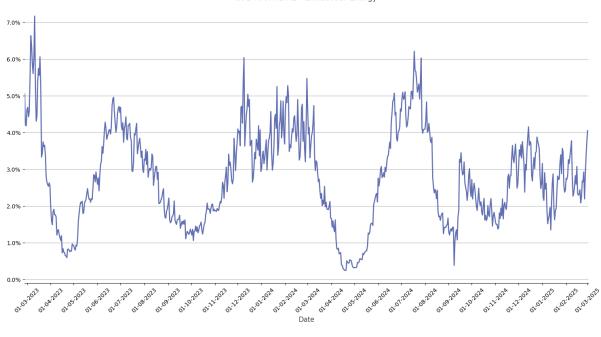


Figure 49 UFE % of ADME – AusNet Services

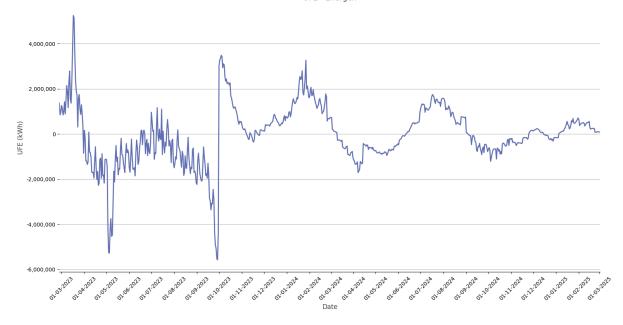

Weights removed 1 October 2023 and replaced with modified 5MLP methodology.

A1.1.4 CitiPower

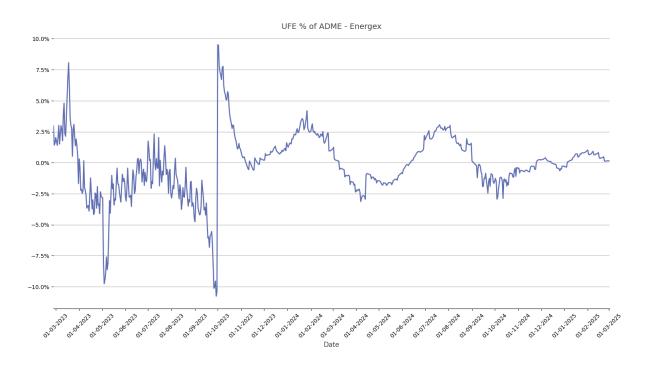




A1.1.5 Endeavour Energy



UFE % of ADME - Endeavour Energy


Figure 53 UFE % of ADME – Endeavour Energy

A1.1.6 Energex

Figure 55 UFE % of ADME – Energex

Weights removed 1 October 2023 and replaced with modified 5MLP methodology.

A1.1.7 Ergon

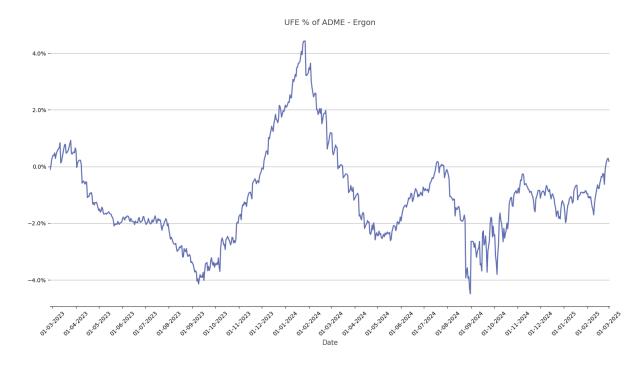
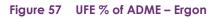
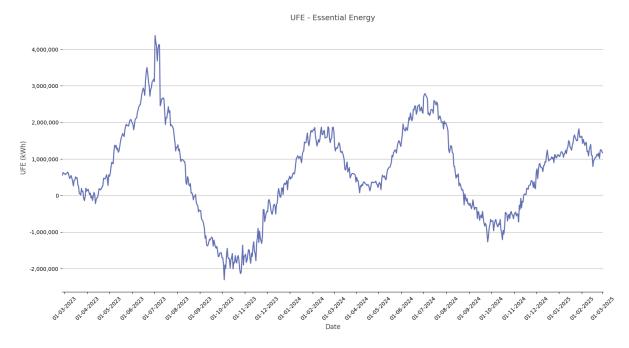
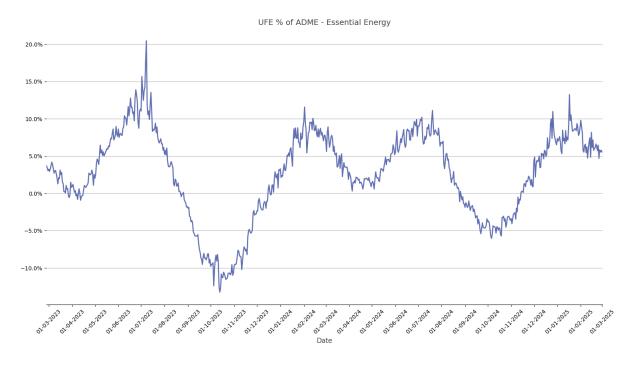
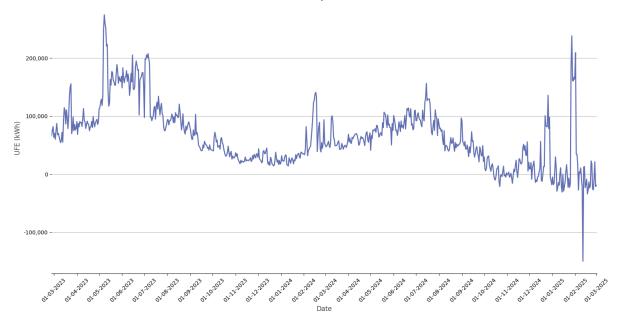





Figure 56 UFE – Ergon



A1.1.8 Essential Energy



A1.1.9 Jemena

UFE % of ADME - Jemena

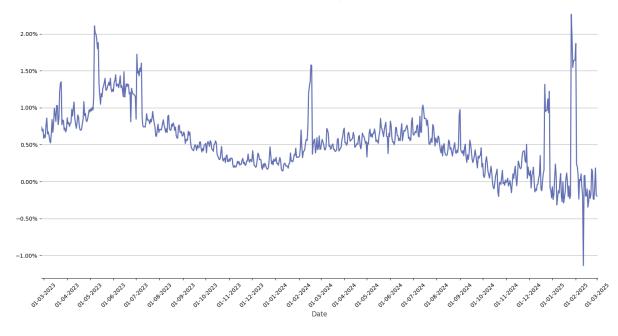


Figure 61 UFE % of ADME – Jemena

A1.1.10 Powercor

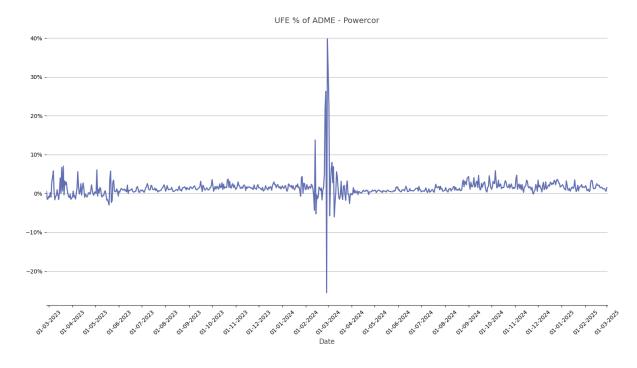
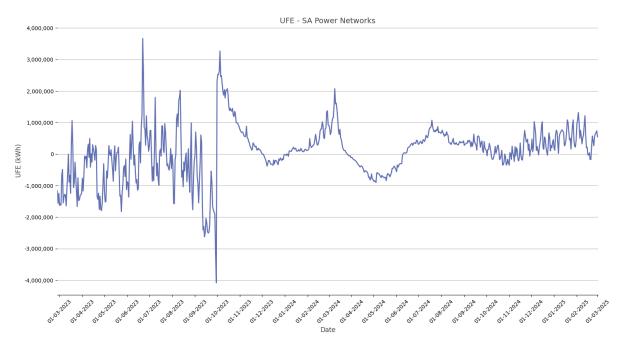
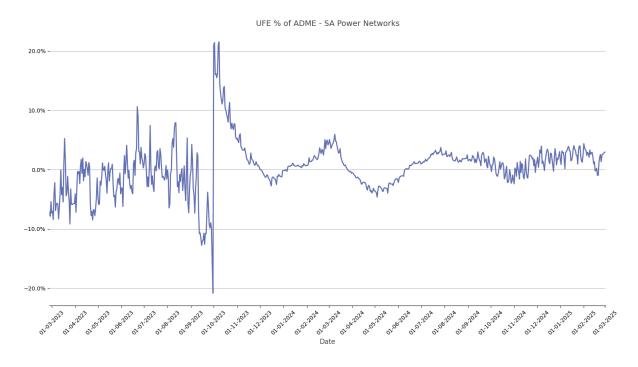




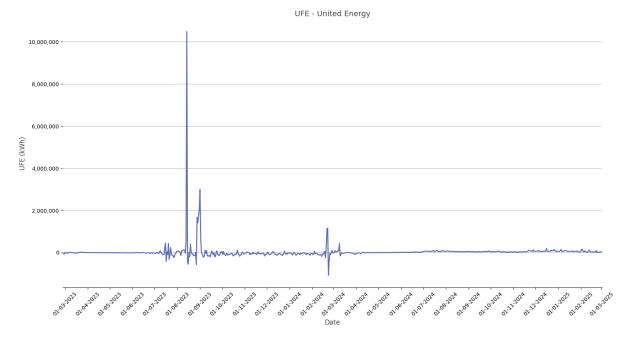
Figure 63 UFE % of ADME – Powercor

A1.1.11 SA Power Networks

Figure 65 UFE % of ADME – SA Power Networks

Weights removed 1 October 2023 and replaced with modified 5MLP methodology.

A1.1.12 TasNetworks



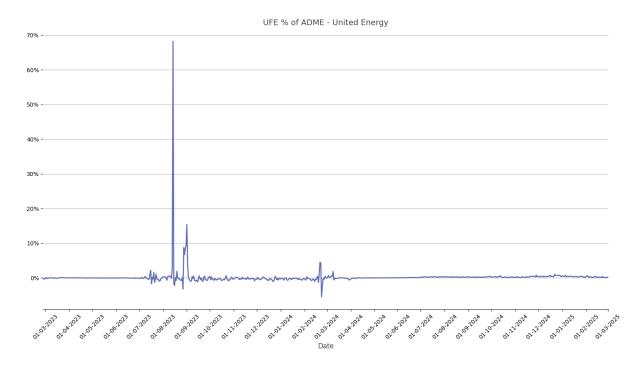


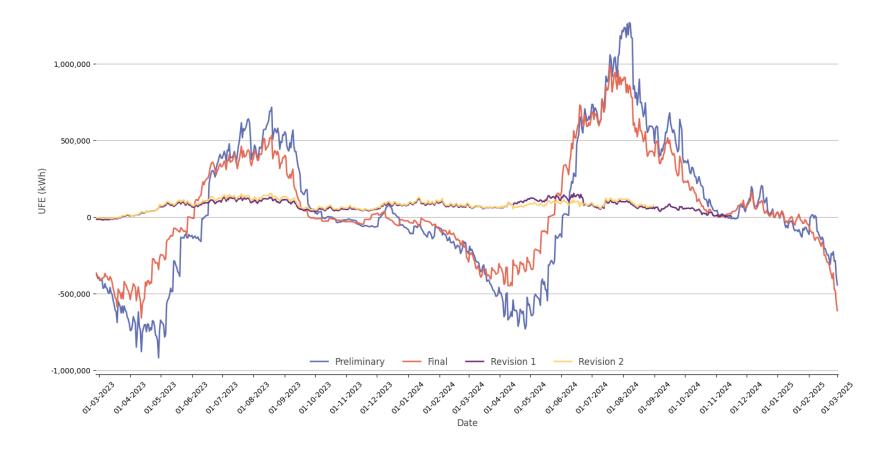
Figure 67 UFE % of ADME – TasNetworks

A1.1.13 United Energy

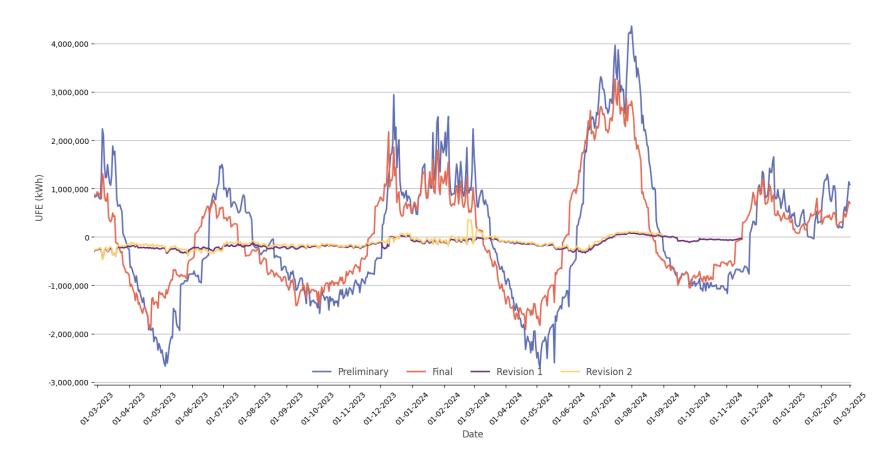
A1.2 UFE components by settlement data type

The charts in this section of the UFE Trends Report provide additional information to support UFE analysis in each *local area*. These charts are based on weekly values for:

• UFE components for the *local area* by settlement data version, i.e. Prelim, Final, Rev 1 and Rev 2.

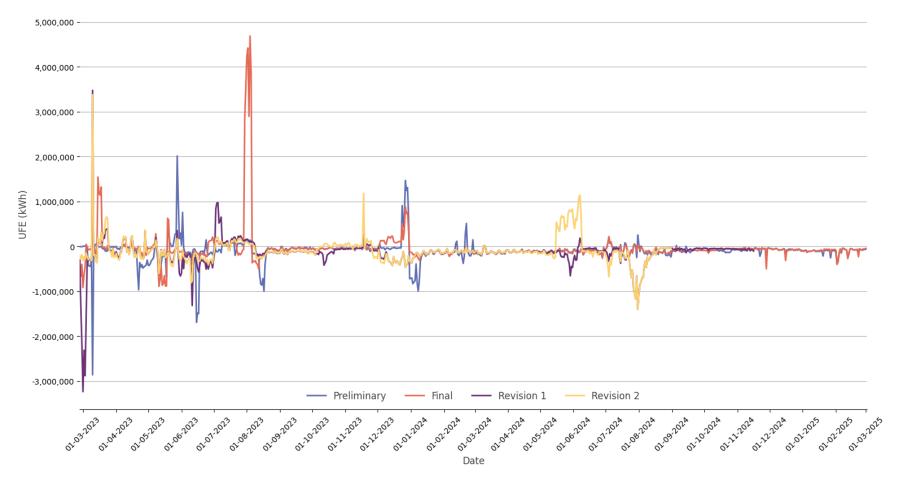

UFE **components by settlement data version** (Prelim, Final, Rev1, Rev2) charts the aggregate of UFE values for each *day* over the reporting period.

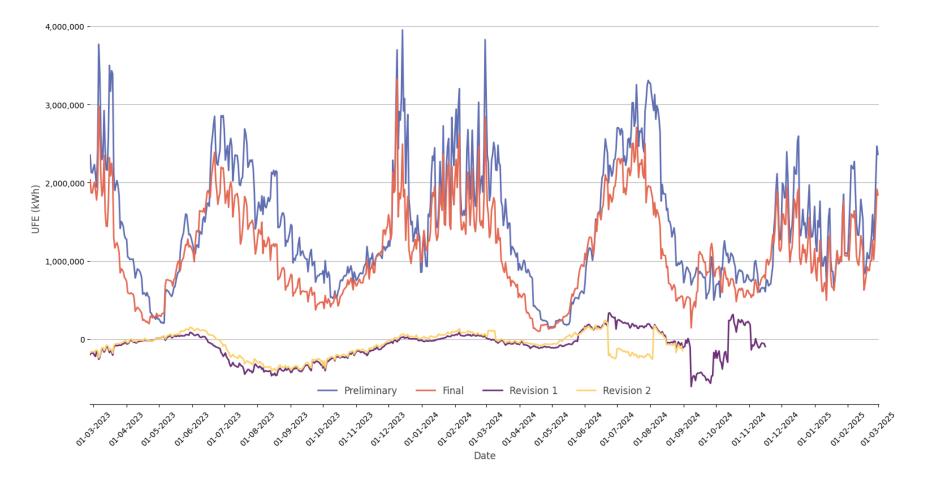
Generally, Prelim and Final UFE values follow each other closely and Rev 1 and Rev 2 UFE values follow each other closely. Victorian *local areas*, generally show Prelim/Final and Rev 1/Rev 2 UFE values following each other, but non-Victorian *local areas* generally show significant differences between Prelim/Final UFE values and Rev 1/Rev 2 UFE values.

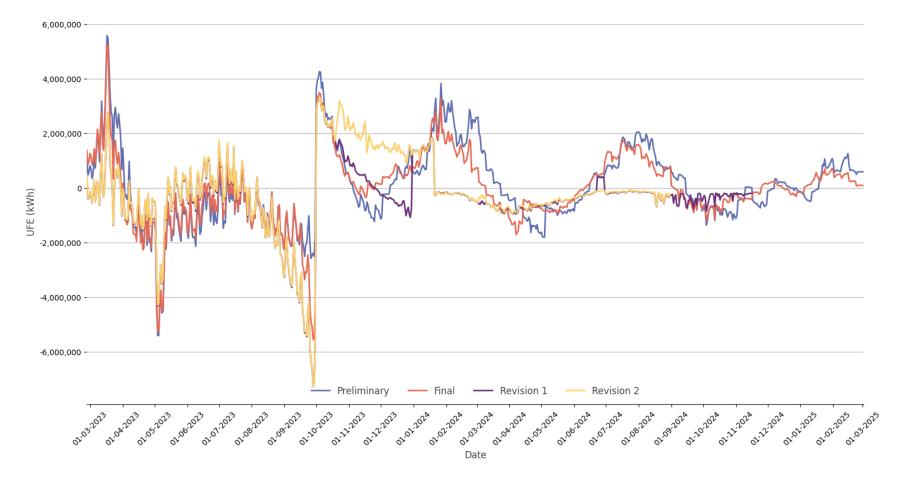

The line charts show settlement data versions as follows:

Blue line represents PRELIM UFE values Purple line represents REV 1 UFE values Orange line represents FINAL UFE values Yellow line represents REV 2 UFE values

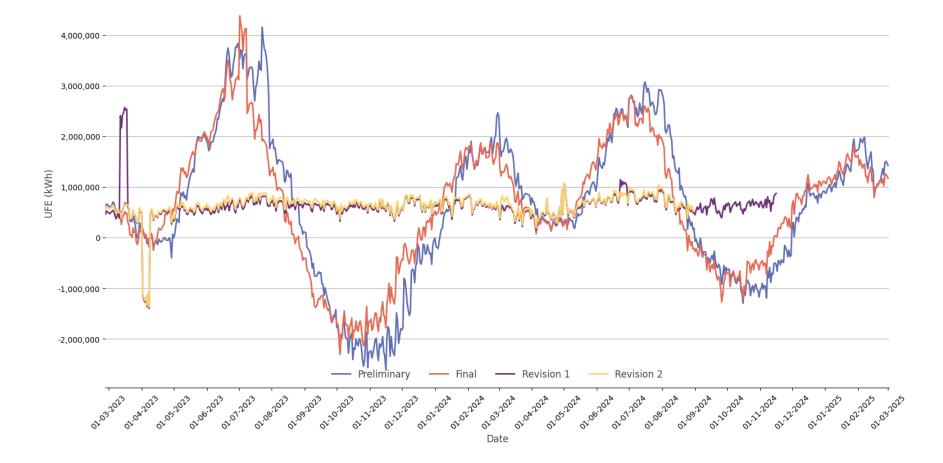
A1.2.1 ActewAGL

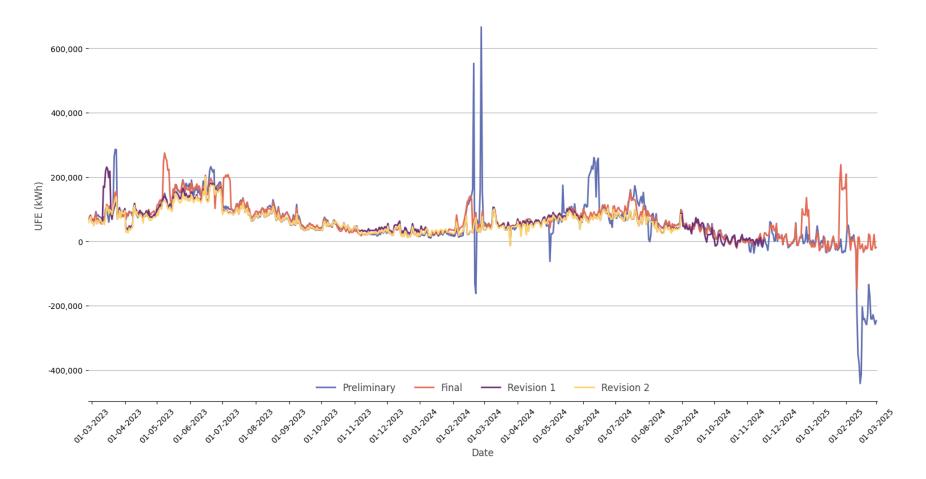

A1.2.2 Ausgrid

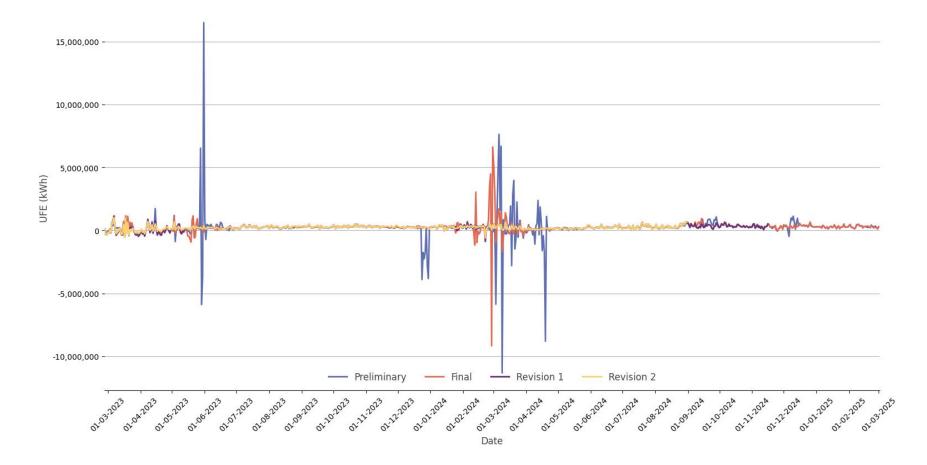

A1.2.3 AusNet Services


A1.2.4 CitiPower

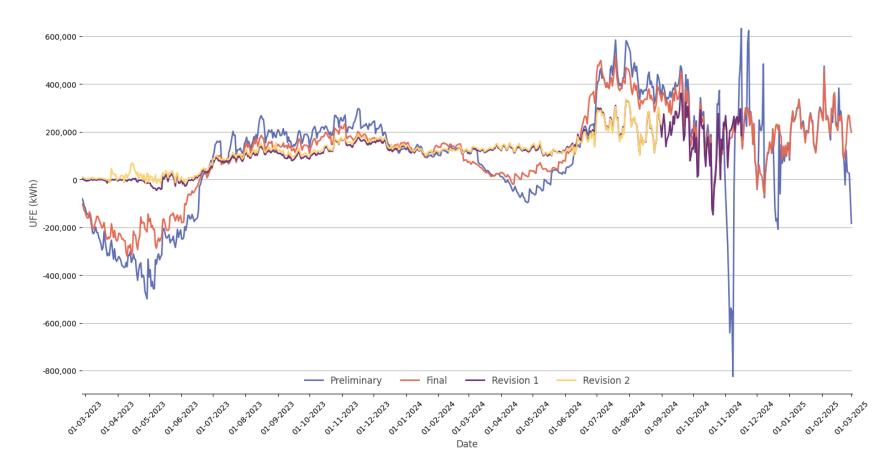
A1.2.5 Endeavour Energy

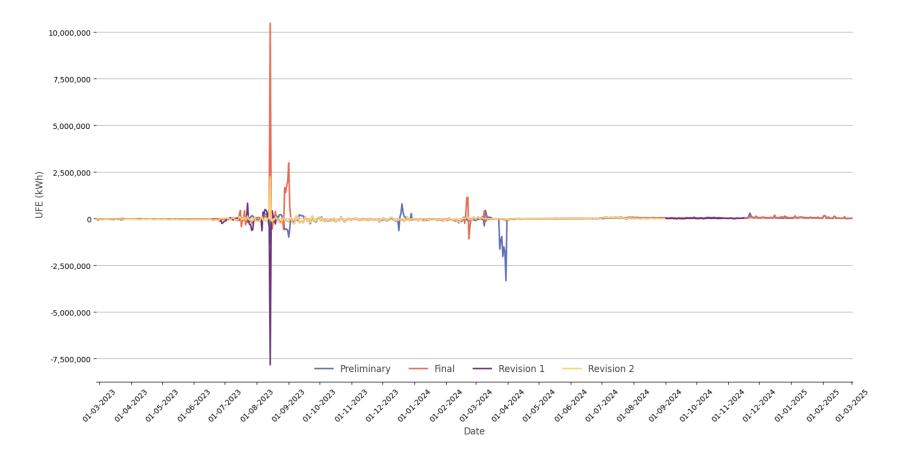

A1.2.6 Energex




A1.2.8 Essential Energy

A1.2.9 Jemena

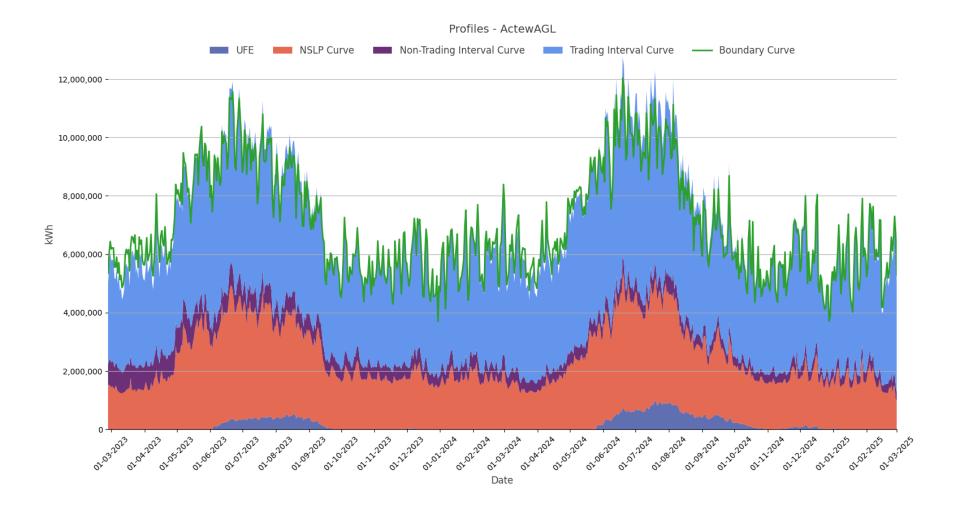

A1.2.10 Powercor

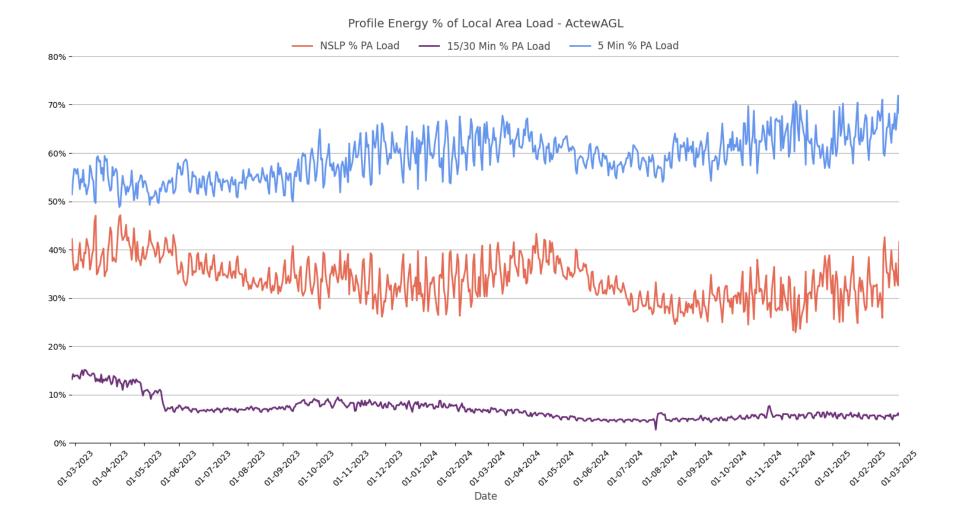

A1.2.11 SA Power Networks

A1.2.12 TasNetworks

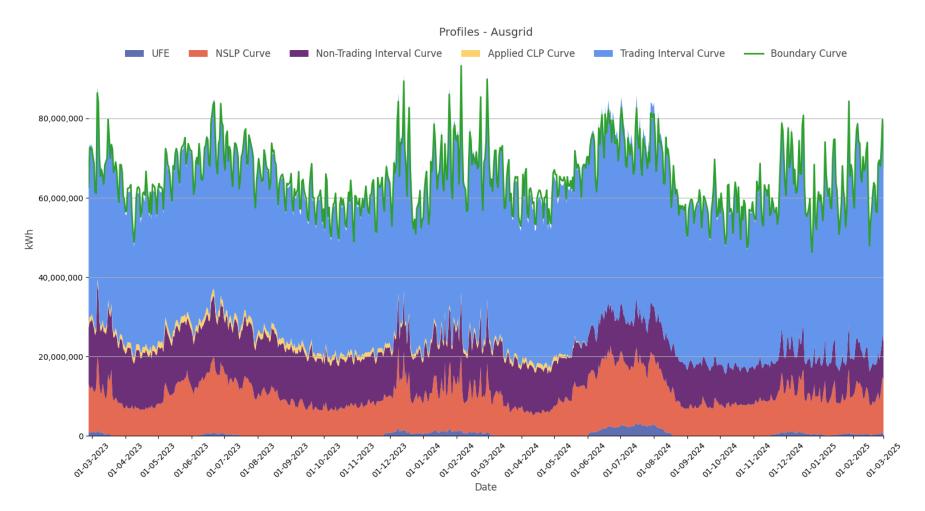
A1.2.13 United Energy

© AEMO 2025 | Unaccounted For Energy (UFE) Trends Report

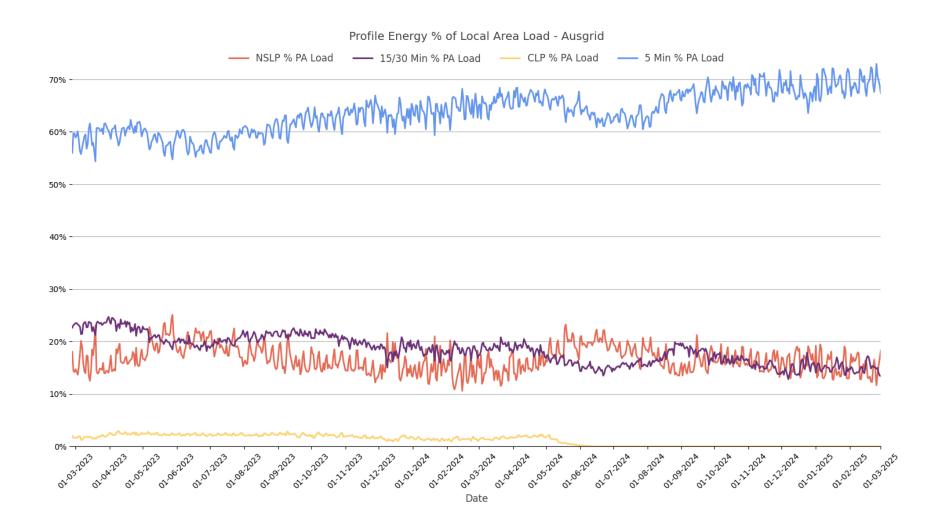

A1.3 Profiles for each local area

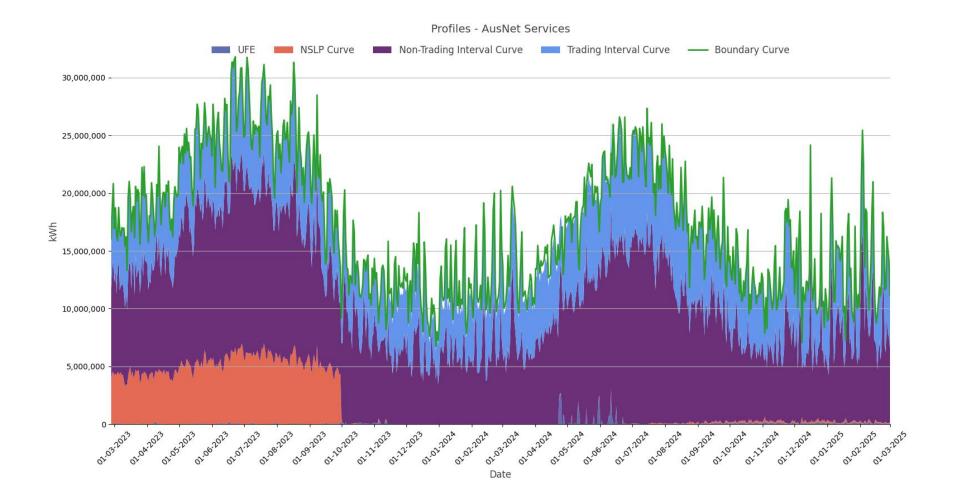

Charts in this section show the volume of profiled *metering data* over the reporting period related to the following profiling methods:

- Net System Load Profile (NSLP),
- Controlled Load Profile (CLP), and
- 15 and 30-minute metering data profiled to 5-minute
- The energy volumes related to each profiling method are expressed as a percentage of the local area load.

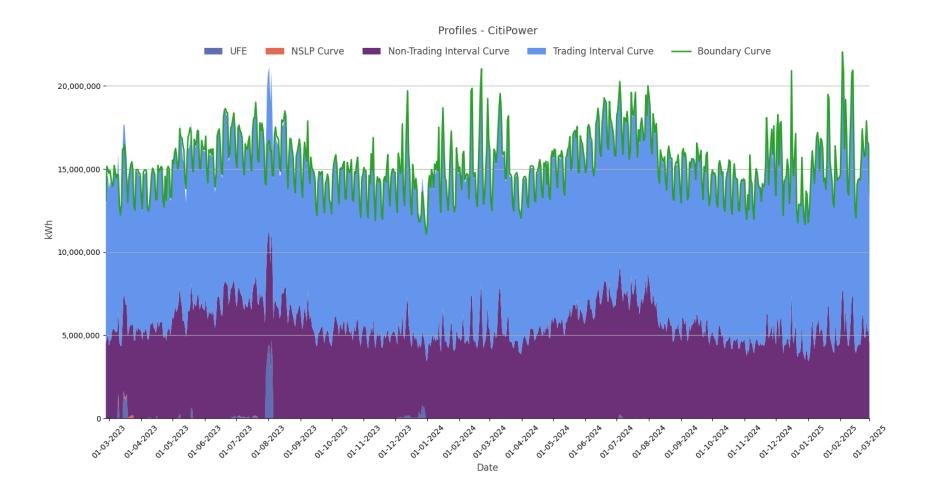

The first chart for each *local area* shows the stacked profile energy volumes under the *local area load* curve. The second chart for each *local area* shows the percentage of the *local area load* related each profile group in that *local area*.

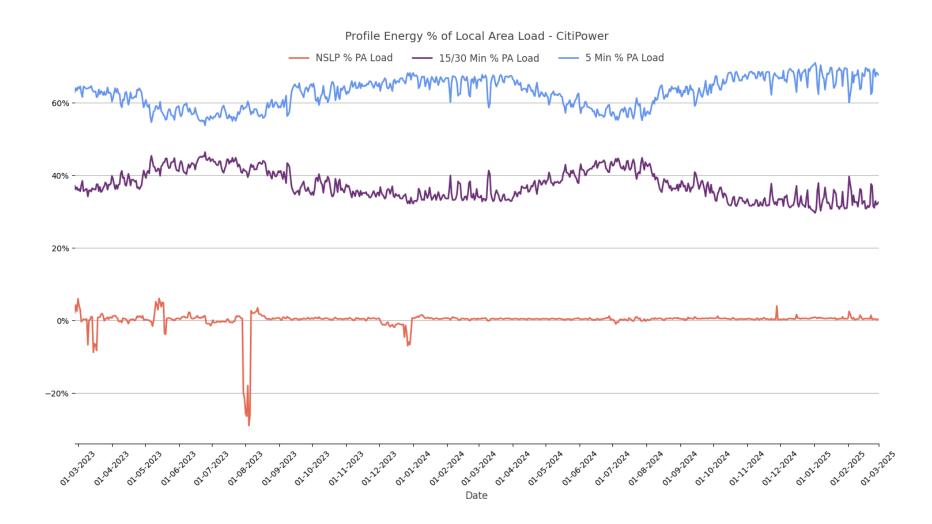
A1.3.1 ActewAGL



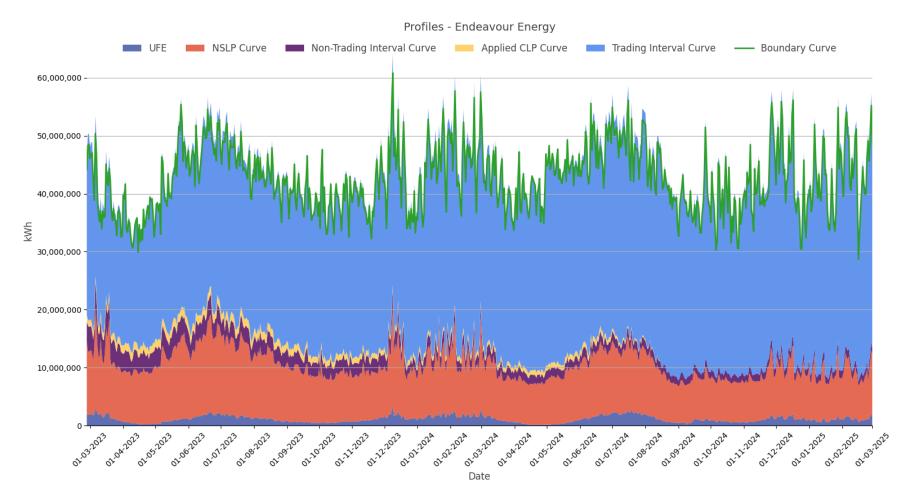

A1.3.2 Ausgrid


Controlled load profiling ended 19 June 2024.

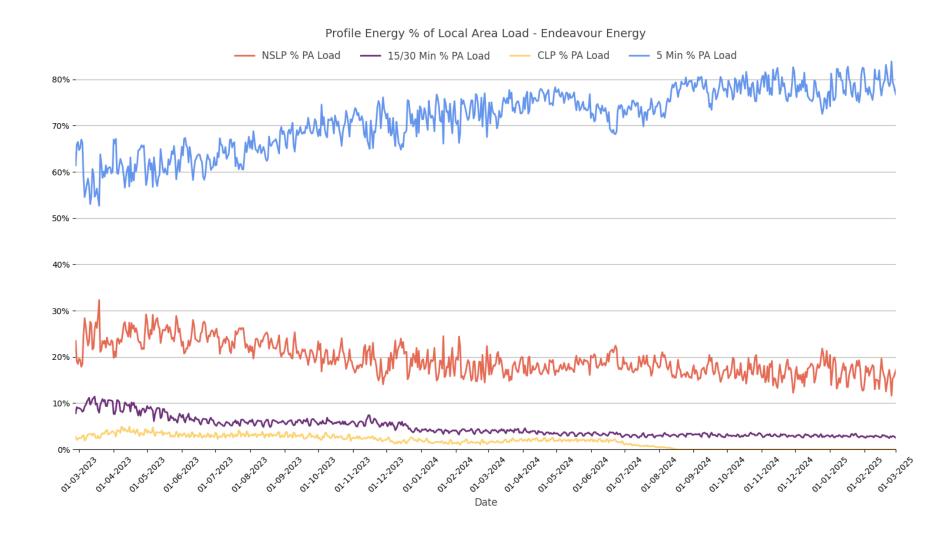

A1.3.3 AusNet Services

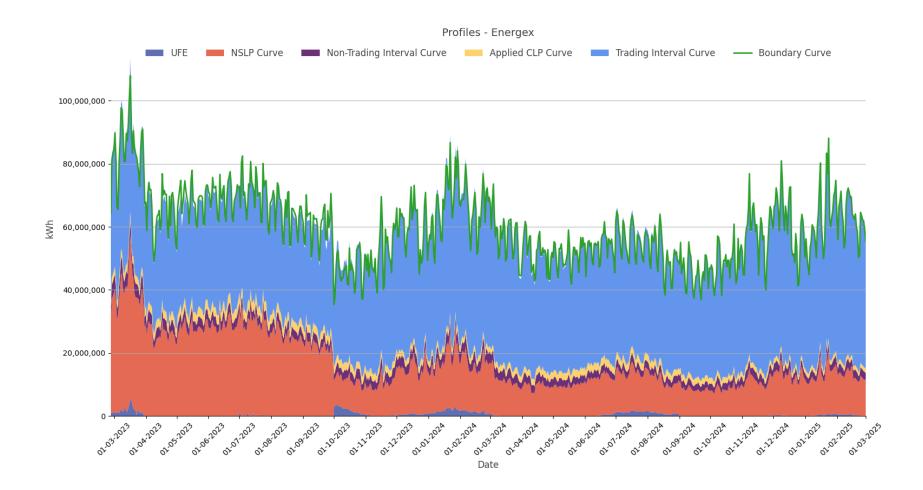


Weights were applied to Final version settlement data from January 2022 to 30 September 2023.

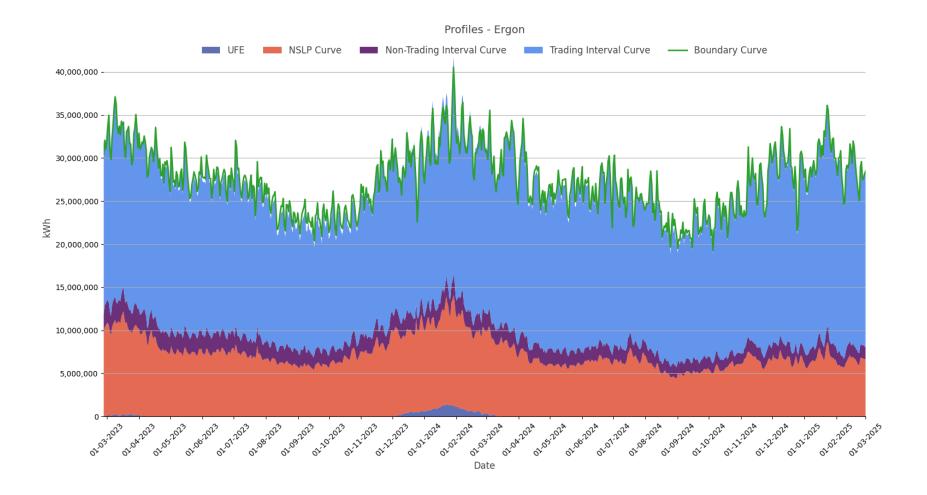


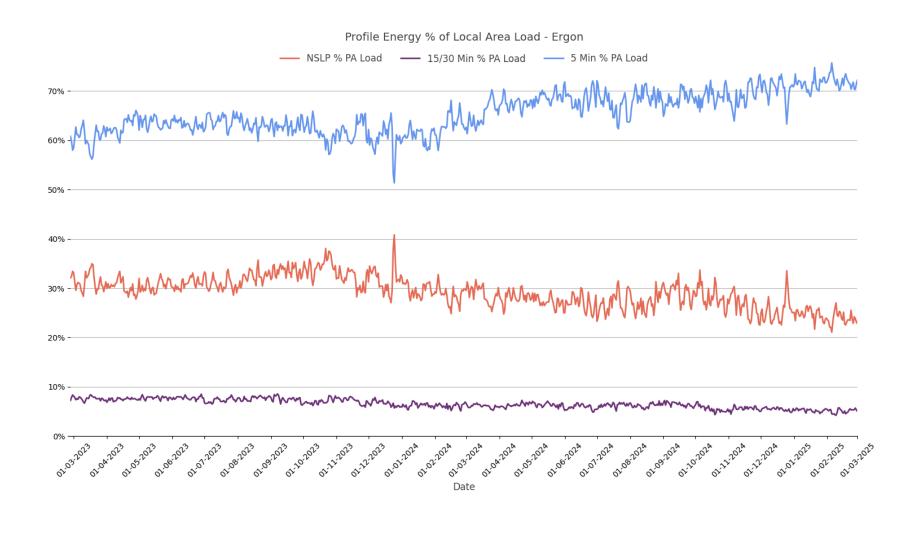
A1.3.4 CitiPower



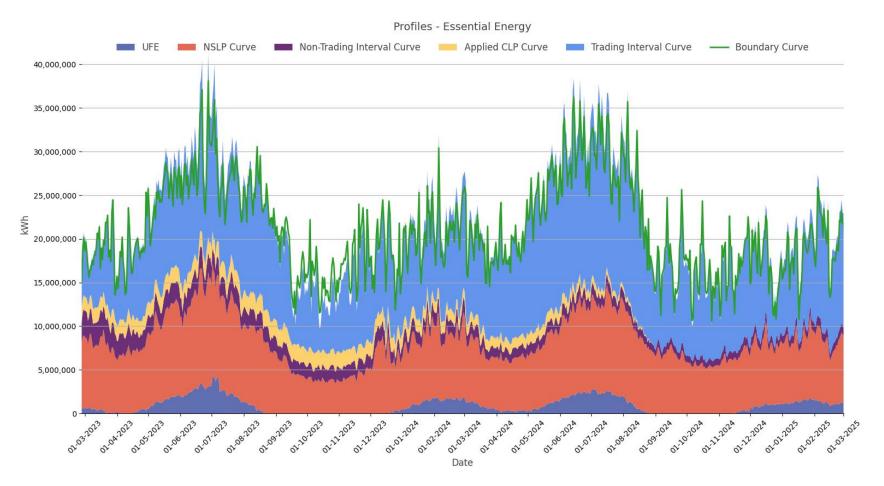

A1.3.5 Endeavour Energy

Controlled load profiling ended 25 August 2024.

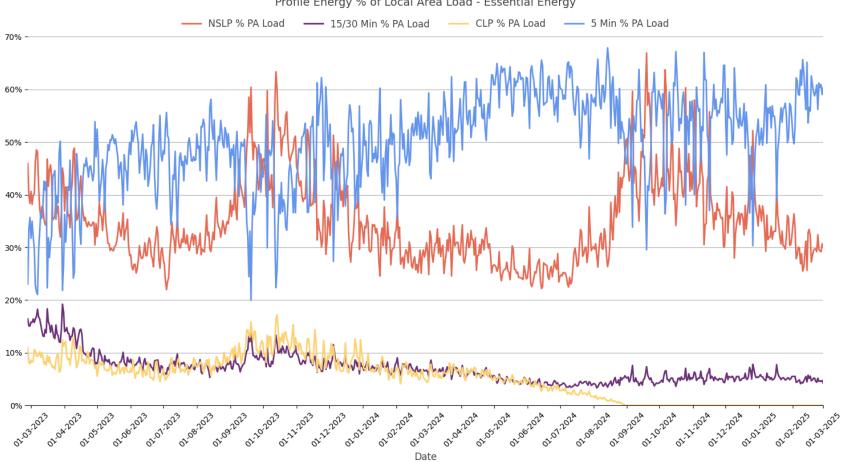

A1.3.6 Energex



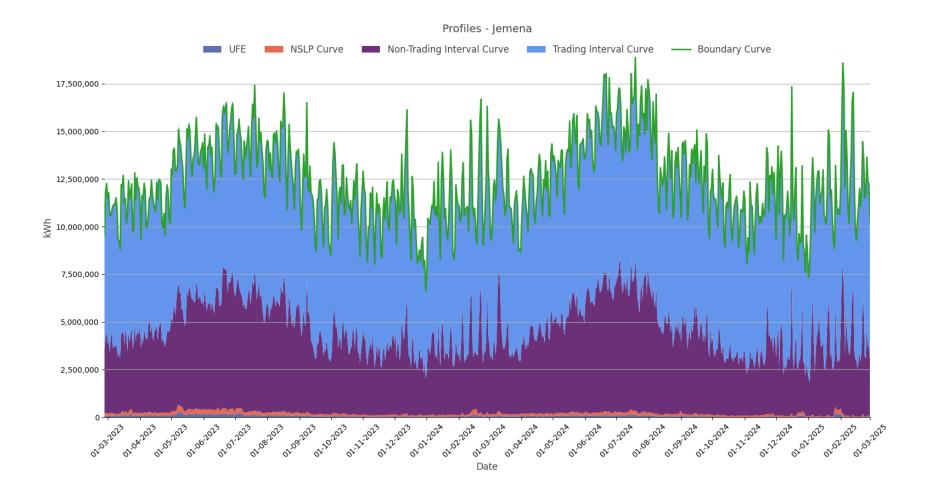
Weights were applied to Final version settlement data from December 2021 to 30 September 2023.

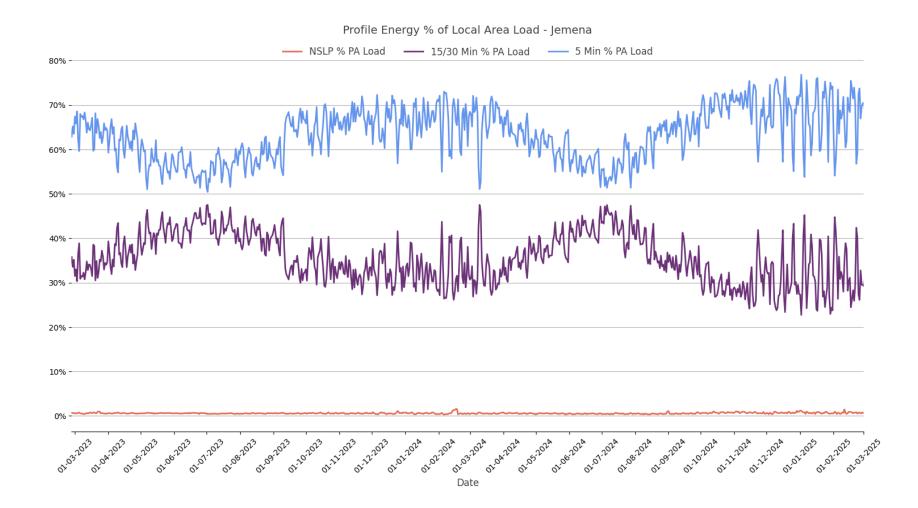


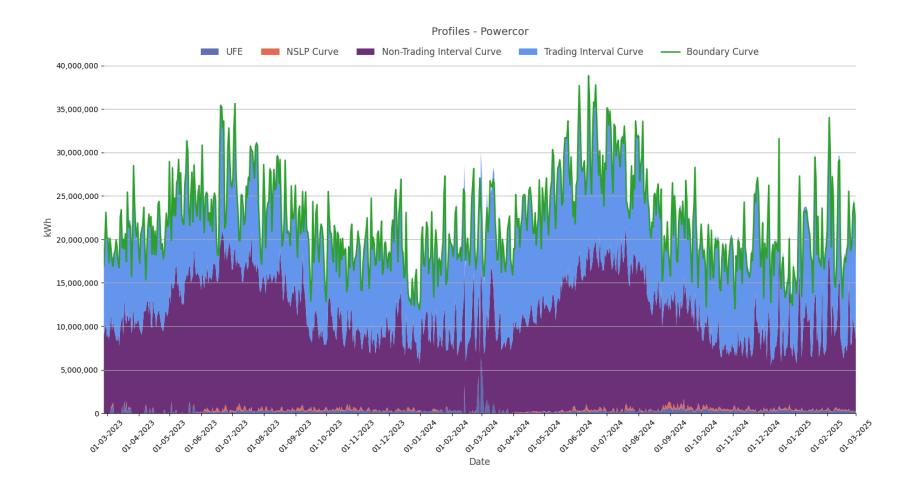
A1.3.7 Ergon

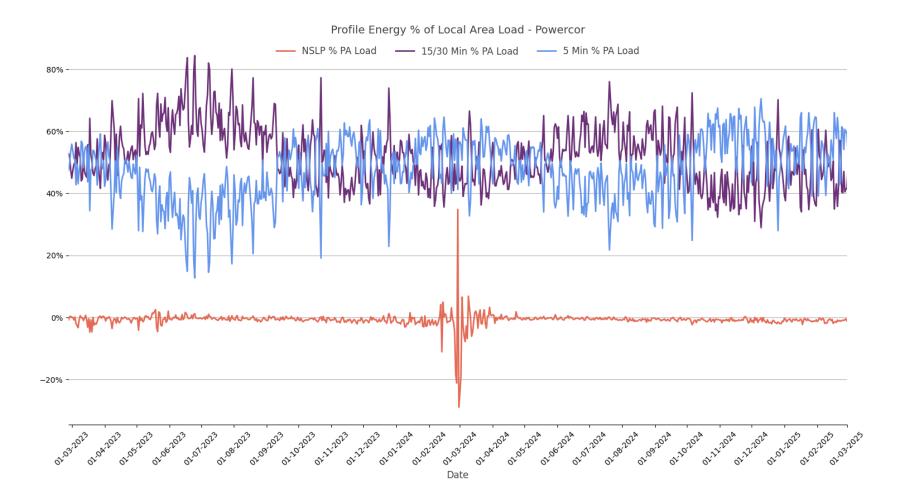


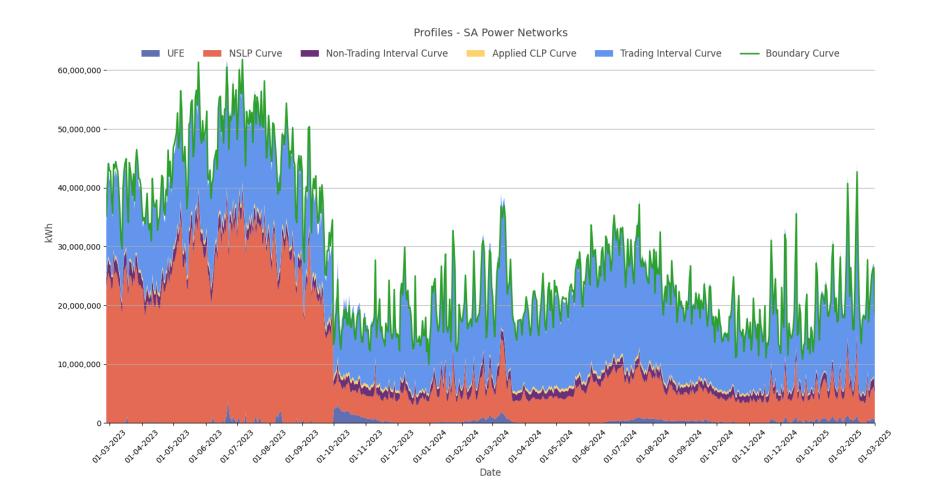
A1.3.8 Essential Energy



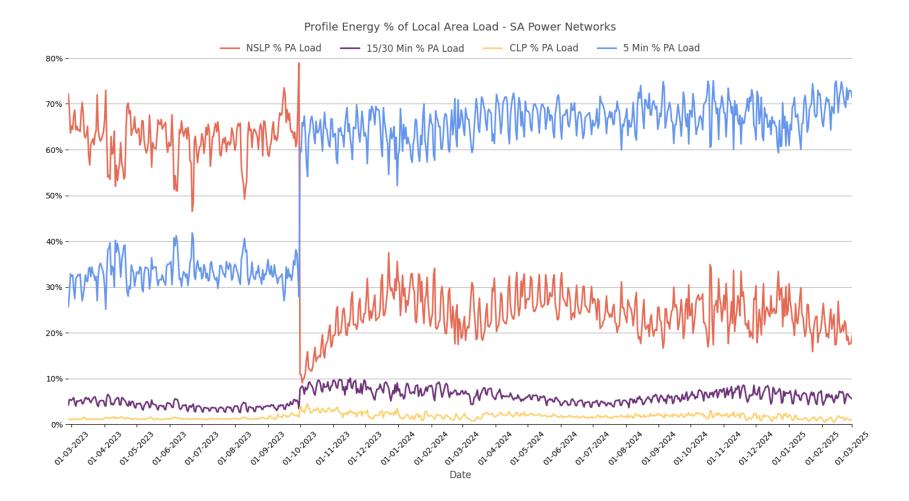

Controlled load profiling ended 1 September 2024.

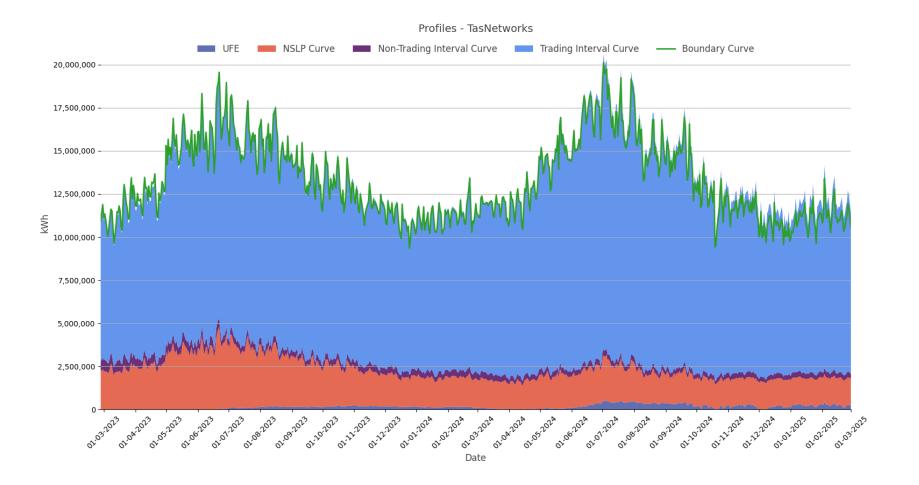

Profile Energy % of Local Area Load - Essential Energy

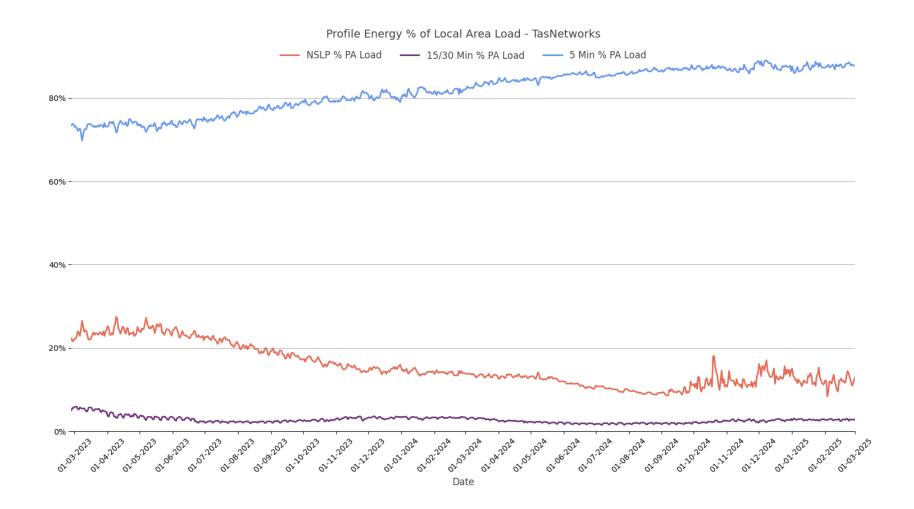

A1.3.9 Jemena



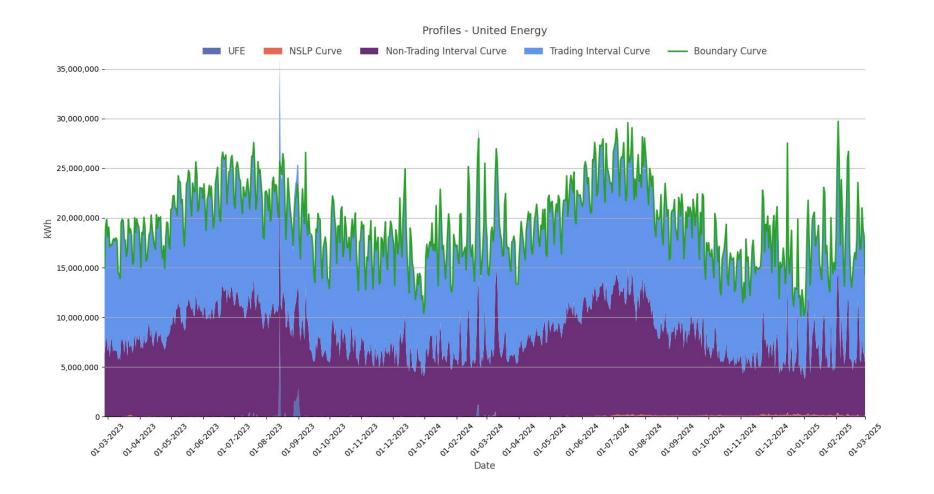
A1.3.10 Powercor

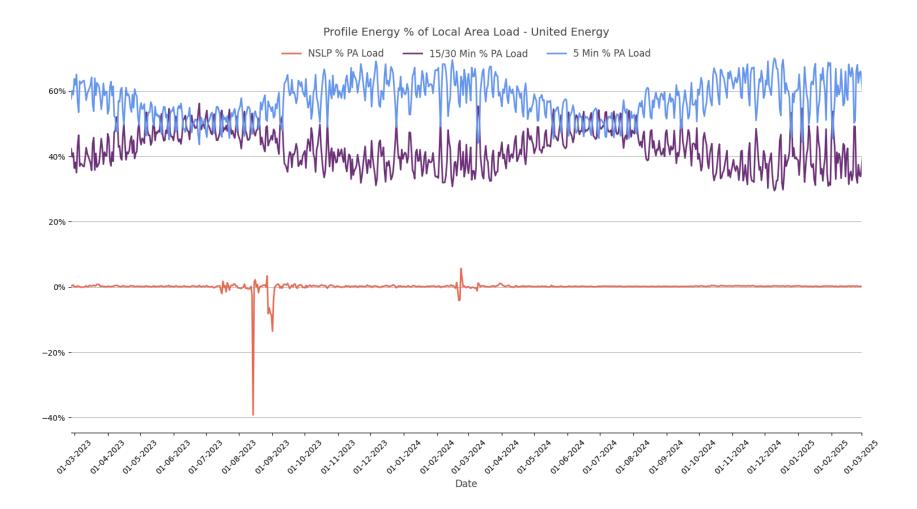



A1.3.11 SA Power Networks



Weights have been applied to Final version settlement data from December 2021 to 30 September 2023.




A1.3.12 TasNetworks

A1.3.13 United Energy

Glossary

Term	Definition
5MLP	Five-minute load profile
CLP	Controlled load profile
DNSP	Distribution Network Service Provider
Final	Refers to settlement data used for final statements
kWh	Kilowatt hour
MSATS	Market Settlement and Transfer Solution
NCONUML	Non-contestable unmetered load
NSLP	Net system load profile
Prelim	Refers to settlement data used for preliminary statements
Rev 1	Refers to settlement data used for 20-week routine revised statements
Rev 2	Refers to settlement data used for 30-week routine revised statements
ΤΝΙ	Transmission Node Identifier, a code identifying a physical connection point between a transmission network and a distribution network.
TNSP	Transmission Network Service Provider
Virtual TNI	A virtual transmission node, being a non-physical node used for the purpose of market settlement.