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The National Electricity Forecasts used for publications such as the Electricity Statement of Opportunities 

(ESOO) provide independent forecasts of electricity consumption, maximum and minimum demand over a 

20-year forecast period for the National Electricity Market (NEM), and for each NEM region. This report 

outlines the forecasting methodologies used in the 2018 ESOO publication. 

1.1 Key definitions 

AEMO forecasts are reported as1: 

ð Operational: Electricity demand is measured by metering supply to the network rather than 

consumption. Operational refers to the electricity used by residential, commercial and large industrial 

consumers, as supplied by scheduled, semi-scheduled, and significant non-scheduled generating units 

aggregate capacity Ô 30 MW. Operational demand is presented on a ôsent outõ basis. This refers to 

electricity supplied to the market excluding generator auxiliary loads from the total output of 

scheduled, semi-scheduled, and significant non-scheduled generators. Operational demand generally 

excludes electricity demand met by non-scheduled wind/solar generation of aggregate capacity < 30 

MW, non-scheduled non-wind/non-solar generation and exempt generation. 

The exceptions which are included in the operational demand definition are:  

ð Yarwun (registered as non-scheduled generation but treated as scheduled generation). 

ð Mortons Lane wind farm, Yaloak South wind farm, Hughenden solar farm, Longreach solar farm (non-

scheduled generation < 30 MW but due to power system security reasons AEMO is required to model 

in network constraints).  

ð Non-scheduled diesel generation in South Australia. 

  

¶ Consumption: Consumption refers to electricity used over a period of time, conventionally reported as 

gigawatt hours (GWh).  

¶ Demand: Demand is defined as the amount of power consumed at any time. Maximum and minimum 

demand is measured in megawatts (MW) and averaged over a 30-minute period. 

¶ òAs generatedó or òsent outó basis: òSent outó refers to electricity supplied to the grid by scheduled, 

semi-scheduled, and significant non-scheduled generators (excluding their auxiliary loads, or electricity 

used by a generator). òAs generatedó refers to the same consumption, but including auxiliary loads, or 

electricity used by a generator. Consumption is defined on a òsent outó basis unless otherwise stated. 

¶ Auxiliary loads: Auxiliary load, also called ôparasitic loadõ or ôself-loadõ refers to energy generated for use 

within power stations but excludes pumped hydro. The electricity consumed by battery storage facilities 

within a generating system is not considered to be auxiliary load. Electricity consumed to charge by 

battery storage facilities is a primary input and treated as a market load. 

                                                      
1 More definition information is available at https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/EFI/2018/Operational-

Consumption-definition--- 2018-update.pdf. 

https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/EFI/2018/Operational-Consumption-definition---2018-update.pdf
https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/EFI/2018/Operational-Consumption-definition---2018-update.pdf
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Other key definitions used are: 

¶ Probability of Exceedance (POE): POE is the likelihood a maximum or minimum demand forecast will be 

met or exceeded. A 10% POE maximum demand forecast, for example, is expected to be exceeded, on 

average, one year in 10, while a 90% POE maximum demand forecast is expected to be exceeded nine 

years in 10.  

¶ Rooftop PV: Rooftop PV is defined as a system comprising one or more photovoltaic (PV) panels, installed 

on a residential or commercial building rooftop to convert sunlight into electricity. The capacity of these 

systems is less than 100 kilowatts (kW). 

¶ PV Non-Scheduled Generators (PVNSG): PV systems larger than 100 kW but smaller than 30 MW non-

scheduled generators. 

¶ Other Non-Scheduled Generators (ONSG): Non-scheduled generators that are smaller than 30 MW and 

are not PV. 

¶ Energy Storage Systems (ESS): ESS are defined as small distributed battery storage for residential and 

commercial consumers. 

Figure 1 provides a schematic of the breakdown and linkages between demand definitions. Operational 

demand sent out is computed as the sum of residential, commercial and large industrial consumer electricity 

consumption plus distribution and transmission losses minus rooftop solar photovoltaic (PV) and other non-

scheduled generation (ONSG). 

Figure 1  Operational d emand /consumption  definition  

 
 

1.2 Recent methodology changes 

AEMO continues to derive more detailed ôbottom-upõ models that capture an improved mix of economic and 

technical methods to better capture the continuing transformation of the energy supply and demand system. 

This transformation, since 2010, has been driven by changes in technology that: 

¶ Are positioned between the consumer and the grid, such as rooftop PV, energy-efficient appliances, and 

technologies that enable greater control of appliance operation and energy usage. 

¶ Have become increasingly affordable to typical residential and business consumers. 

¶ Are increasingly being adopted, in part as a possible solution to rising energy costs.  
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Business consumption has also been impacted by changes in the Australian economy with the continued 

transition away from energy-intensive industries. 

While much of the change has been occurring within the distribution networks, it has major implications for 

the transmission gridõs operation and development, and therefore for AEMOõs forecasting and planning 

reports. 

Bulk transmission data has traditionally been used as the primary source of data for forecasting. However, 

this data: 

¶ Is highly aggregated (so may not provide fine detail in some instances). 

¶ May not provide identifiable and/or reliable indicators of a changing future. 

¶ Does not reveal dynamics that originate within distribution networks. 

This lack of granularity has made it challenging, in a changing energy environment, to quickly detect and 

understand key trends. In response, AEMO continues to integrate new data streams obtained beyond the 

transmission grid, such as: 

¶ Consumer energy meter data. 

¶ Battery discharge profiles. 

¶ Complementary data from other agencies and sources, such as National Accounts data from the 

Australian Bureau of Statistics (ABS), to support greater understanding of structural change in the 

economy. 

¶ Granular high-frequency weather data from the Bureau of Meteorology (BoM). 

By integrating detailed data beyond the transmission grid, AEMO is shifting the forecast method towards 

an increasingly segmented ôbottom-upõ approach that embraces predictive analytics and behavioural 

forecasting.  

1.3 Consumer segmentation 

Consumption and demand forecasts are based on aggregated customer segments: 

¶ Residential: residential customers only. 

¶ Business: includes industrial and commercial users. This categorisation recognises the different drivers 

affecting forecasts. This sector is further categorised as follows: 

ð Coal seam gas (CSG) ð associated with the extraction and processing of CSG for export as liquefied 

natural gas (LNG) or supplied to the domestic market. 

ð Aluminium smelting, including the Bell Bay, Boyne Island, Portland, and Tomago aluminium smelters. 

ð Coal mining ð customers mainly engaged in open-cut or underground mining of bituminous thermal 

and metallurgical coal. 

ð Manufacturing ð traditional manufacturing business sectors, with energy-intensive operations. This 

excludes aluminium smelting as covered separately. 

ð Other business ð business customers not covered by the categories above, which are broadly 

correlated with population growth. This group is dominated by entities providing services such as 

education, health care, telecommunications, financial services, transport, and construction. 
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The business sector captures all non-residential consumers of electricity in the NEM. These have been 

segmented into two broad categories: 

1. Energy-intensive Manufacturing, and  

2. Relatively non-energy-intensive Other Business.  

For modelling purposes, these sectors were further segmented into sub-categories:  

i. Coal seam gas 

ii. Aluminium 

iii. Coal Mining 

iv. Electric Vehicles 

v. Manufacturing 

vi. Other Business.  

The key reason for this segmented sector modelling is to apply an integrated, sectoral-based approach to 

business forecasts to capture structural changes in the Australian economy. In doing so, business sectors 

exhibiting different levels of growth are identified, thereby mitigating the risk of bias which could otherwise 

arise due to the dominating effect of certain sectors. 

2.1 Data sources  

Business sector modelling relies on a combination of sources for input data where possible. 0 outlines the 

schedule of sources for each data series. 

Table 1  Historical and forecast input data sources for business sector modelling  

Data series  Source 1 Source 2 Source 3 

Electricity c onsumption data  AEMO Database 

Transmission 

and 

distribution 

industrial 

surveys 

 

Historical consumption data by industry sector  
Dept. of Energy and 

Environment 
  

Economic data * ABS 
Economic 

Consultancy 
  

Retail electricity price  Retail Standing Offers 

AEMC Price 

Trend Report 

2017  

Network Regulatory 

Information Notices 

Wholesale electricity price  Internal   
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Data series  Source 1 Source 2 Source 3 

Energy efficiency  Strategy. Policy. Research. 
Energy User 

Survey  
 

Rooftop PV/Battery/Electric vehicle generation  CSIRO    

* Economic data includes the Input Producer Price Index, Gross State Product and Household Disposable Income.  

2.2 Methodology 

The overall approach to forecasting business consumption is to measure the energy-intensive 

(Manufacturing) sector separately from the non-energy intensive (Other Business) sector, based on the 

observation they have each historically been subject to different underlying drivers.  

Either surveys or standard econometric methods were used to forecast consumption in these sectors: 

¶  Other Business sector: econometric modelling. 

¶  Manufacturing sector large industrial loads (LIL): survey-based forecasts. 

¶  Manufacturing sector remaining: econometric modelling. 

Figure 2 illustrates the process flow of splitting actual consumption (using the most recent data history) to 

initiate the start point for forecast development.  

Figure 2  Overview of business sector consumption  forecasting process  

 

 

2.2.1 Short-term forecast 

The business sector short-term forecast was developed using a linear regression model with ordinary least 

squares to estimate coefficients. The independent variables are described in Table 2 with subscript i 

representing days. 

The business forecasts for underlying annual consumption were aggregated by end-use components 

(base load2, heating, and cooling components).  

                                                      
2 Base load is the non-temperature sensitive demand, covering categories such as water heating, lighting, white goods, and home entertainment.  
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The short-term forecast, also referred to as the Base Year forecast, predicts the weather normalised starting 

year forecast in the absence of behavioural changes to economic drivers. This gives a refined starting point 

that considers intra-year variation to seasonality, holidays and weather. Long-term forecasts launch off base 

year forecasts. 

 

Table 2  Short-term base model variable description  

Variable  Abbreviation  Units Description  

Business consumption  Bus_Cons GWh Total business consumption 

including rooftop PV but 

excluding network losses. 

Adjustments were made to 

account for business closures. For 

businesses that have closed 

before the time of modelling, their 

consumption was removed from 

historical data. 

Heating Degree Days  HDD °C The number of degrees that a 

day's average temperature is 

below a critical temperature. It is 

used to account for deviation in 

weather from normal weather 

standards*. 

Cooling Degree Days  CDD °C The number of degrees that a 

day's average temperature is 

above a critical temperature. It is 

used to account for deviation in 

weather from normal weather 

standards*. 

Dummy for non -work day  non-workday {0,1} A dummy variable that captures 

the ramp-down in industrial 

processes and electricity 

consumption, for a non-work day 

(public holidays, Saturdays, and 

Sundays) 

*Weather standard is used as a proxy for weather conditions. The formulation for weather standard indicates that business loads react to 

extreme weather conditions by increasing the power of their climate control devices only when the temperature deviates from the 

ôcomfort zone,õ inducing a threshold effect. 

More detail on critical temperatures applied in the calculation of HDD and CDD is provided in Appendix A2. 

2.2.2 Data segmentation to attain starting point for long-term forecasting 

As outlined in Section 2.1, AEMO used a combination of internally sourced meter data and publicly available 

external sources to segment base year forecasts (from Section 2.2.1) into subsectors. This formed the starting 

point for the long -term modelling.  

Stage 1: Segmenting into Manufacturing and Other Business sector consumption  

The latest Australia Energy Statistics dataset3, published by the Department of Energy and Environment, was 

used to obtain the weighting assigned to Manufacturing and Other Business. 

The weightings were applied to the short-term forecast for the first year of projections, which was developed 

based on analysis of AEMO meter data (see Section 2.2.1). 

The weightings for the latest year of actual consumption are shown in 0.  

                                                      
3 Refer to Table F of Australian Energy Statistics data, available at https://www.energy.gov.au/publications/australian-energy-statistics. 

"ÕÓͅ#ÏÎÓɼ  ɼ($$  ɼ#$$ ɼÎÏÎ×ÏÒËÄÁÙʀ 

https://www.energy.gov.au/publications/australian-energy-statistics
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Table 3  Manufacturing to Other Business weightings  for 2018 

Region  Manufacturing (%)  Other Business (%)  

New South Wales  40.0 60.0 

Queensland  35.3 64.7 

South Australia  26.9 73.1 

Tasmania  70.6 29.4 

Victoria  36.6 63.4 

 

Stage 2: Segmenting into subsectors  

Manufacturing  

Manufacturing was divided into two categories: 

1. Aluminium ð AEMO surveyed all aluminium smelter loads in the NEM regions. The aggregate of these 

survey responses for the first year formed the base year forecast. 

2. Manufacturing ð the remaining Manufacturing sector consumption was derived by subtracting Aluminium 

from the total Manufacturing sector calculated in Stage 1. This was the starting point for longer-term 

econometric modelling. 

Other Business  

The starting points for longer-term forecasts were established for four categories of Other Business: 

1. CSG ð electricity consumption for CSG was forecast by Lewis Grey Advisory. The first year of forecast was 

used as the reference base year projection4. 

2. Coal Mining ð electricity consumption for Coal Mining does not generally vary significantly with weather, 

so AEMO used the latest available financial year of historical consumption, adjusted for any announced 

coal mine step changes, as the base starting point.   

3. Electric Vehicles ð the starting point for these forecasts was obtained for small, medium, and large electric 

vehicles, as well as large commercial electric vehicles (trucks and buses), from AEMOõs consultants5 (see 

Appendix A4).  

4. Other Business ð the consumption starting point was derived by subtracting the other sectors from the 

total Other Business sector calculated during Stage 1.  

2.2.3 Manufacturing sector long-term forecasting 

The following subsections detail the methodology for producing forecasts for each of the Manufacturing 

subsectors.  

Aluminium  

The aluminium forecast was based on a survey and interview process (see Section 2.2.5). To maintain 

confidentiality6, AEMO aggregated these forecasts with the econometric results prior to publishing the 

manufacturing forecast. 

Manufacturing  (remainder)  

The remainder of the manufacturing sector was modelled using linear regressions with some adjustments for 

likely step changes in large industrial loads not captured by the econometric trend.  

                                                      
4 See http://www.aemo.com.au/Gas/National-planning-and-forecasting/Gas-Statement-of-Opportunities. 

5 CSIRO consultancy report òProjections for small-scale embedded technologiesó, available at http://www.aemo.com.au/Electricity/Planning/Forecasting. 

6 As required by the National Electricity Law (NEL). 

http://www.aemo.com.au/Gas/National-planning-and-forecasting/Gas-Statement-of-Opportunities
http://www.aemo.com.au/Electricity/Planning/Forecasting
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Long-term regression  model  

The long-term manufacturing sector forecast was estimated using a log-linear regression model with ordinary 

least squares to estimate coefficients7, which were then benchmarked against those observed in academic 

literature. Specific variables are described in Table 4, with subscript i representing years. 

 

Table 4  Manufacturing model variable description  

* Coefficients for price elasticity of industrial consumers were benchmarked against a broad literature review8 by AEMO. 

Large industrial load (LIL) adjustments  

LIL step changes are a product of the survey-based process. For more details see Section 2.2.5. 

On the basis of interviews and surveys, AEMO adjusted the forecasts for step changes such as expansions and 

closures which would not be captured by the econometric models. This was performed as a post-model 

adjustment by identifying those LILs with a year-on-year variation in excess of ±10%. Those LILs with an 

excess variation relative to the econometric model result were adjusted on an iterative basis. Year 1 of the 

model result was estimated and was adjusted by the LIL step change before the model result for Year 2 was 

estimated. The iterative process continues for the 20-year period. The estimation and scaling process re-

bases LIL demand to updated values while retaining demand behaviour. 

2.2.4 Other Business sector long-term forecasting 

The following subsections detail the methodology for producing forecasts for each of the Other subsectors.  

Coal seam gas  

Electricity forecasts for the CSG sector reflect the grid-supplied electricity consumed predominantly in the 

extraction and processing of CSG to service sales to domestic consumers or exports of LNG. 

Surveys of CSG production forecasts were obtained directly from the east coast LNG consortia for projected 

demand over the next five years. Electricity consumption was adjusted to align with these responses. For 

longer-term indications, independent advice was obtained from external consultants.   

Coal Mining  

Coal mining and port service companies were surveyed, and selected operations were interviewed, to obtain 

a baseline for the coal industry. The consumption forecast was based on these survey result9. 

                                                      
7 The coefficients ɼ ÁÎÄ ɼ represent elasticity response to the demand drivers which give the percentage change in consumption in response to a 1% 

change in electricity price and GSP respectively (all else being equal). 

8 See Appendix A8. 

9 This approach accounts for additional growth in existing assets as well as for new projects. 

 

Variable names  Abbreviation  Units Description  

Manufacturing 

consumption  
Man_Cons GWh Manufacturing consumption. 

Electricity price  Elec_P $MWh Large Industrial retail electricity price for business users*. 

Gross State Product  GSP $ million 

 

Real GSP is a measurement of the economic output of a state. It 

is the sum of all value added by industries within the state. 

Dummy variables  D {1,0} Dummy variables are added in to stabilise the historical data for 

temporary shocks that may otherwise bias the coefficients, e.g. 

the Global Financial Crisis (GFC). 

ÌÎ -ÁÎͅ#ÏÎÓ ɼ ɼÌÎ %ÌÅÃ0ͅ ɼÌÎ '30  ɿiDi  ʀ 
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Electr ic Vehicles  

Projections for electricity consumption by electric vehicles were produced by consultants10. For more detail 

refer to Appendix A4.  

Other Business  (remainder)  

The remainder of the Other Business sector was modelled using log-linear regressions with some adjustments 

for likely step changes in LIL not captured by the econometric trend.  

Long-term  regression  model  

The long-term Other Business sector forecast was developed using a log-linear regression model with 

ordinary least squares to estimate coefficients11, which were then benchmarked against those available in 

academic literature. Specific variables are described in Table 5 with subscript i representing years. 

Table 5  Othe r Business model variable description  

Variable names  Abbreviation  Units Description  

Other Business consumption  Oth_Cons GWh Other business consumption. 

Population  POP Persons Population of a state (net of deaths, births, and migration). 

Household Disposable 

Income  
HDI $ million 

 

Real level of money households have available for 

spending and saving, after income taxes are deducted. 

Electricity price  Elec_P $MWh Commercial retail electricity price for business users*. 

Dummy variables  D {1,0} Dummy variables are added in to stabilise the historical 

data for temporary shocks that may otherwise bias the 

coefficients, e.g. the Global Financial Crisis (GFC). 

* Coefficients for price elasticity of industrial consumers were benchmarked against a broad literature review by AEMO. 

Energy efficiency adjustment  

Forecast business sector energy efficiency improvements were provided by Strategy. Policy. Research. Pty Ltd 

consultants, and applied to the Other Business sector, since the majority of the improvements are targeting 

businesses within that category12.  

Based on calibration against estimated energy efficiency savings and observed metered consumption, AEMO 

only applied 60% of the forecast savings, accounting for the following: 

¶ Some energy efficiency improvements will be present in the forecast from the econometric model. 

¶ Some energy efficiency of state-based schemes addresses large-scale manufacturing (and is accounted 

therefore through AEMOõs surveys). 

¶ The rebound effect, where lower electricity bills from more energy efficient operation may increase 

consumption as customers cost of use decrease.  

For more details on trends and drivers on energy efficiency see the energy efficiency report produced by 

Strategy. Policy. Research. Pty Ltd13. 

                                                      
10 CSIRO consultancy report òProjections for small-scale embedded technologiesó, available at http://www.aemo.com.au/Electricity/Planning/Forecasting. 

11 These coefficients represent elasticity responses. 

12 The forecast included estimated savings from appliances and buildings, but excluded industrial processes, as these are covered directly by AEMO through 

its survey process of these industries.  

13 Strategy. Policy. Research. Pty Ltd. Energy Efficiency Impacts on Electricity and Gas Demand to 2037-38. June 2018. Available at: 

https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/NEM-Electricity-Statement-of-Opportunities 

 

ÌÎ /ÔÈͅ#ÏÎÓɼ ɼÌÎ 0/0 ɼÌÎ ($)  ɼÌÎ %ÌÅÃ0ͅ  ɿiDI   ʀ    
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Climate change ad justment  

This was the final step in producing the underlying consumption econometric forecast for the Other Business 

sector. While the forecasts were produced assuming normalised weather standards, these standards evolve 

over the forecast period due to climate change (see Appendix A2). 

A climate change index was used to adjust heating and cooling load14 forecast for industrial sector 

consumption. All heating and cooling loads were assumed to be from the Other Business sector. 

Manufacturing consumption is mainly through operational use of machinery, which is insensitive to 

temperature variation and captured in base load consumption. For this reason, the climate change 

adjustment was done to the Other Business section.  

This first required splitting Other Business consumption into Heat, Base, and Cool elements for the start year; 

growing the Heat and Cool load by the econometric growth rate, adjusted for the climate change index.  The 

base load was grown by the econometric growth rate only. 

The details of the climate change adjustment process are outlined below. 

Step 1: Split Other Business Sector into Heating , Cooling and  Base load in first year  

A short-term linear regression model (see Section 2.2.1) was used to estimate daily actual consumption data 

for the latest year available and regress against the Heating Degree Day (HDD) or Effective Degree Day 

(EDD)15 and Cooling Degree Day (CDD). This allowed AEMO to segment the base year forecast by heating 

load, cooling load and base load16. Model parameters were derived using OLS estimates. 

 

 

The total consumption for projected base year (ὸ) was split into heating load, cooling load and base load as 

follows17: 

 

 

 

 

 

 

 

 

Step 2A: Heating load forecast  

Heating load for the forecast period was computed by combining the climate change index with the 

regression model specified above. 

 

 

 

 

                                                      
14 Heating load is defined as consumption that is temperature dependent (e.g. electricity used for heating). Load that is independent of temperature (e.g. 

electricity used in cooking) is called Baseload or Non-heating load. 

15 Effective degree day is used in Victoria only. 

16 Cooling load is consumption that increases with warmer temperatures such as air conditioners; Heating load is consumption that increases with cooler 

temperatures such as heating appliances; Base load refers to load that does not vary with varying temperature such as lighting and cooking appliances.  

17 This is done at the annual level after projected the base year using a daily model and aggregating to annual consumption (GWh). 

ὃὧὸόὥὰ ὅέὲίόάὴὸὭέὲ  ὌὈὈ έὶ ὉὈὈ ὅὈὈ  Ὀȟ  

(ÅÁÔÉÎÇ ,ÏÁÄ ɼ (z$$ ÏÒ %$$ 

/ÔÈͅ(ÅÁÔ#ͅÏÎÓ /ÔÈͅ(ÅÁÔ#ͅÏÎÓz  
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Step 2B: Cooling load forecast  

Cooling load for the forecast period was computed by combining the climate change index with the 

regression model specified above. 

 

 

 

 

Step 2C: Base load forecast  

Base load for the forecast period was computed using the regression model specified above without a 

climate change adjustment. 

 

 

 

 

 

 

 

Rooftop  PV and battery storage  losses adjustment  

This adjustment was made to translate from an underlying consumption forecast to a delivered consumption 

forecast. Underlying consumption refers to behind the meter consumption for a business and does not 

distinguish between consumption met by energy delivered via the electricity grid or generated from rooftop 

PV. Delivered consumption is the metered consumption from the electricity grid and is derived by netting off 

rooftop PV generation from underlying consumption.  

An addition of battery losses was made to account for a round-trip efficiency of around 85 % associated with 

the utilisation of battery storage.  

For more details on trends and drivers see Appendix A3, and the CSIRO report18.  

2.2.5 Survey-based forecasting process 

AEMO maintains a list of large industrial users identified primarily by interrogating AEMOõs meter data. A cut 

off threshold criteria is used to identify those loads with greater than 10 MW for greater than 10% of the latest 

financial year. This threshold aims to capture the most energy intensive consumers. 

AEMO conducted a survey and interview process with a selection of these large industrial users, and, on this 

basis, derived the aggregated survey-based forecasts for each region. 

The survey process had five steps, illustrated in Figure 3. 

                                                      
18 CSIRO consultancy report òProjections for small-scale embedded technologiesó, available at http://www.aemo.com.au/Electricity/Planning/Forecasting. 
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Figure 3  Steps for large industrial load survey p rocess  

 
 

Large industrial users  

Large industrial users were identified through two methods: 

¶ Distribution and transmission surveys: request information on aggregate and new loads.  

¶ Media search: augmenting the existing portfolio of users with new users if AEMO is made aware of such 

users through public sources including media, conferences and industry forums. 

Update observed data  

Updated actual consumption data for each site of the large industrial loads was analysed to: 

¶ Understand consumption trends at the site level. 

¶ Prioritise industrial users to improve the effectiveness of the interview process. 

Request survey responses and  co nduct interviews  

Step 1: Initial survey  

AEMO surveys identified LILs19 requesting historical and forecast electricity consumption information by site. 

The survey requested annual electricity consumption and maximum demand forecasts for three scenarios: 

1. Neutral Scenario ð electricity consumption when economy follows the most likely economic pathway. 

2. Fast Change Scenario ð electricity consumption when economy follows a stronger economic pathway. 

3. Slow Change Scenario ð electricity consumption when economy follows a weaker economic pathway. 

Step 2: Detailed interviews  

After the survey, large industrial users were contacted to expand on their responses. This included discussions 

about: 

¶ Key electricity consumption drivers, such as exchange rates, commodity pricing, availability of feedstock, 

current and potential plant capacity, mine life, and cogeneration. 

                                                      
19 Defined by AEMO as those who had a maximum demand of 10 MW or more for at least 10% of the time in a year. 
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¶ Current exposure of business to spot pricing and management of price exposures, such as contracting 

with retailers, Power Purchase Agreements and hedging.  

¶ Future management of prices and impact of prices on consumption, based on AEMO provided guidelines. 

¶ Potential drivers of major change in electricity consumption (e.g. expansion, closure, cogeneration, fuel 

substitution). 

¶ Assumptions governing the Fast, Neutral, and Slow scenarios. 

Not all large industrial loads were interviewed. Interviews with large industrial loads were prioritised based on 

the following criteria: 

¶ Volume of load (highest to lowest) ð movement in the largest volume consumers can have broader 

market ramifications (such as an impact on realised market prices). 

¶ Year-on-year percentage variation ð assess volatility in load, noting that those with higher usage variability 

influences forecast accuracy. 

¶ Year-on-year absolute variation ð relative weighting of industrial load is needed to assess materiality of 

individual variations. 

¶ Forecast vs actual consumption and load for historic survey responses ð forecast accuracy is an evolving 

process of improvement and comparisons between previous year actual consumption and load against 

the forecast will help improve model development. 

2.2.6 Total business forecasts 

The aggregation of all sector forecasts was used to obtain total underlying business forecasts. These 

aggregations are shown in Figure 4 and 5. 

Figure 4  Aggregation process for final underlying forecast  

 
 

Figure 5  Aggregation process for final delivered forecast  
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This chapter outlines the methodology used in preparing residential annual consumption forecasts for each 

NEM region.  

3.1 Data sources  

Residential consumption forecasts require large datasets to adequately represent the complex consumption 

behaviours of residential users. Data sources are presented in Table 6 and Table 7. 

Table 6  Historical input data sources for residential sector modelling  

Data series  Reference  

Total daily residential connections for each region* AEMO metering database 

Total daily underlying consumption for all residential customers for each region** AEMO metering database  

Daily actual weather measured in HDD and CDD*** Bureau of Meteorology temperature 

observations 

* Daily residential connections were estimated by interpolating annual values. 

** See Appendix A7 for more information 

*** See Appendix A2 for more information 

Table 7  Forecast input data sources for residential sector modelling  

Data series  Reference  

Forecast annual HDD and CDD in standard weather conditions Appendix A2 

Forecast annual residential connections Appendix A5 

Forecast climate change impact on annual HDD and CDD Appendix A2 

Forecast residential retail electricity prices Appendix A1 

Forecast annual energy efficiency savings for residential base load, heating and cooling 

consumption 

Strategy. Policy. Research. Pty Ltd* 

Forecast gas to electric appliance switching 2018 GSOO** 

Forecast annual rooftop PV generation Appendix A3 

Forecast electric appliance uptake Appendix A5 

Forecast electric vehicles CSIRO*** 

* Strategy. Policy. Research. Pty Ltd. Energy Efficiency Impacts on Electricity and Gas Demand to 2037-38. June 2018. Available at: 

https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/NEM-Electricity-Statement-of-

Opportunities 

** AEMO 2018 Gas Statement of Opportunities Methodology Information Paper. Available at: http://www.aemo.com.au/Gas/National-

planning-and-forecasting/National-Gas-Forecasting-Report . 

*** CSIRO consultancy report. Projections for small-scale embedded technologies. Available at: 

http://www.aemo.com.au/Electricity/Planning/Forecasting. 

https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/NEM-Electricity-Statement-of-Opportunities
https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/NEM-Electricity-Statement-of-Opportunities
http://www.aemo.com.au/Gas/National-planning-and-forecasting/National-Gas-Forecasting-Report
http://www.aemo.com.au/Gas/National-planning-and-forecasting/National-Gas-Forecasting-Report
http://www.aemo.com.au/Electricity/Planning/Forecasting
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3.2 Methodology 

3.2.1  Process overview 

AEMO applied a ògrowthó model to generate 20-year annual residential electricity consumption forecasts. At 

the core of the forecast were the following stages: 

¶ The average annual base load, heating load, and cooling load at a per-connection level were estimated. 

This was based on projected annual heating degree days (HDD) and cooling degree days (CDD) under 

ôstandardõ weather conditions. 

¶ The forecast then considered the impact of the modelled consumption drivers including electric appliance 

uptake, energy efficiency savings, changes in retail prices, climate change impacts, gas-to-electricity 

switching, and the rooftop PV rebound effect. 

¶ The forecasts were then scaled up with the connections growth forecast to project future base, heating, 

and cooling consumption by region over the forecast period20. 

¶ The forecast of underlying residential consumption was estimated as the sum of base, heating, and 

cooling load as well as the consumption from electric vehicles. The contribution from rooftop PV was then 

subtracted to compute the forecast of delivered residential consumption, as well as adding back the losses 

incurred in operating battery systems. 

Figure 6 illustrates the steps undertaken to derive the underlying residential consumption forecast. Analysis of 

the historical residential consumption trend is based on daily consumption per connection, on a regional 

basis. The analysis conducted for each of these steps is discussed below.  

 

                                                      
20 The connection forecast methodology has been refined with a split of residential and non-residential connections. Only the residential 

connections are used. For further information, see Appendix A5. 
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Figure 6  Process flow for residential consumption forecasts  
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3.2.2 Model process 

Step 1: Weather normalisation of residential consumption  

Historical residential consumption was analysed to estimate average annual temperature-insensitive 

consumption (base load) and average annual temperature-sensitive consumption in winter and summer 

(heating load and cooling load) at a per-connection level. The estimates were independent of the impact 

from year-to-year weather variability and the installed rooftop PV generation. The process is described in 

more detail in the following steps. 

Step 1.1: Analyse historical residential consumption  

Daily average consumption per connection was determined by: 

¶ Estimating the underlying consumption by removing the impact of rooftop PV generation. 

¶ Calculating the daily average underlying consumption in each region. 

¶ Estimating the daily underlying consumption per residential connection by dividing by the total 

connections. 

Daily consumption per connection was regressed against temperature measures (namely, CDD and HDD) 

over a two-year window (training data) leading up to the reference year, using OLS estimates.  

A similar regression approach was applied to all regions, except Tasmania (due to cooler weather conditions 

in this region). The models are expressed as follows: 

Regression model applied to all regions except Tasmania: 

ὙὩίͅὅέὲȟ  ȟ  ȟὌὈὈȟ  ȟὅὈὈȟ  ȟὔέὲύέὶὯὨὥώȟ ‐ȟ 

 

Regression model applied to Tasmania: 

ὙὩίͅὅέὲȟ  ȟ  ȟὌὈὈȟ  ȟὌὈὈȟ  ȟὔέὲύέὶὯὨὥώȟ ‐ȟ 

The above parameters were then used to estimate the sensitivities of residential loads per connection to 

warm and cool weather. 

For all regions (excluding Tasmania) this is expressed as: 

ὅέέὰὭὲὫὒέὥὨὖὩὶὅὈὈ ȟ 

ὌὩὥὸὭὲὫὒέὥὨὖὩὶὌὈὈ ȟ 

For Tasmania this is expressed as: 

ὅέέὰὭὲὫὒέὥὨὖὩὶὅὈὈπ 

ὌὩὥὸὭὲὫὒέὥὨὖὩὶὅὈὈ
В  ȟ  ὌὈὈ  ȟ ὌὈὈ

В ὌὈὈ
 

Where ὲ is the total number of days in the two-year training data set.  

Step 1.2:  Estimate average annual base load, heating load and cooling load  per connection , 

excluding impacts from weather conditions and installed rooftop PV generation  

 

ὄὥίὩὰέὥὨὅͅέὲ=  ȟ σφυ 

ὌὩὥὸὭὲὫὒέὥὨὅͅέὲ= ὌὩὥὸὭὲὫὒέὥὨὖὩὶὅὈὈὃὲὲόὥὰὌὈὈ 

ὅέέὰὭὲὫὒέὥὨὅͅέὲ= ὅέέὰὭὲὫὒέὥὨὖὩὶὅὈὈὃὲὲόὥὰὅὈὈ 
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The variables of the model are defined in Table 8. 

Table 8  Weather normalisation model variable description  

Variable  Description  

ὙὩίͅὅέὲȟ Daily average underlying consumption per residential connection for region i on day t 

ὌὈὈȟ Average heating degree days for region i on day t 

ὅὈὈȟ Average cooling degree days for region i on day t 

ὌὈὈȟ Square of average heating degree days for region i on day t which is to capture the quadratic 

relationship between daily average consumption and HDD 

ὔέὲύέὶὯὨὥώȟ Dummy variable to flag a day-off for region i on day t. This includes public holidays and weekends. 

ὅέέὰὭὲὫὒέὥὨὖὩὶὅὈὈ Estimated cooling load per CDD for region i. 

ὌὩὥὸὭὲὫὒέὥὨὖὩὶὌὈὈ Estimated heating load per HDD for region i 

ὃὲὲόὥὰὌὈὈ Projected annual HDD in standard weather conditions for region i 

ὃὲὲόὥὰὅὈὈ Projected annual CDD in standard weather conditions for region i 

ὄὥίὩὰέὥὨὅͅέὲ Estimated average annual base load per connection for region i 

ὌὩὥὸὭὲὫὰέὥὨὅͅέὲ Estimated average annual heating load per connection for region i 

ὅέέὰὭὲὫὰέὥὨὅͅέὲ Estimated average annual cooling load per connection for region i 

 

Step 2:  Apply forecast trends and adjustments  

The average annual base load, heating load and cooling load per connection estimated in Step 1 will not 

change over the forecast horizon, being unaffected by the external driving factors. The adjustment that 

accounts for external impacts, was performed in this second step. 

For the purpose of forecasting changes to the annual consumption: 

¶ Forecast residential retail prices are expressed as year-on-year percentage change. 

¶ Forecast impact of annual energy efficiency savings, appliance uptake, and climate change are expressed 

as indexed change to the reference year. 

Step 2.1: Estimating the impact of electrical appliance uptake  

The change in electrical appliance uptake is expressed using indices for each forecast year (set to 1 for the 

reference year), for each region and split by base load, heating load and cooling load. The indices reflect 

growth in appliance ownership, and also changes in the sizes of appliances over time (larger refrigerators and 

televisions) and hours of use per year. See Appendix A5 for more detailed discussion of appliance uptake. 

Excluded, however, were impacts from energy efficiency, which are captured in Step 2.6 below.  

Certain appliances affect base load (such as fridges and televisions) while others are weather-sensitive (such 

as reverse-cycle air-conditioners). The annual base load, heating load, and cooling load per connection is 

scaled with the relevant indices to reflect the increase or decrease in consumption over time, relative to the 

base year.  
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Step 2.2: Estimating the impact of gas -to -electricity fuel switching  

Gas-to-electric appliance switching relates to gas hot water heating being switched to electric-boosted solar 

hot water heaters or heat pumps, and gas space heating being switched to electric heating using 

reverse-cycle air-conditioners21. 

The following adjustments were made to convert the reduction in gas load to a forecast increase in electricity 

consumption: 

¶ An assumed 50% of the reduction in gas hot water heating was attributed to electric boosted solar water 

heaters. 

¶ A heating Coefficient of Performance (COP) of 5 was assumed for reverse-cycle air-conditioners, which 

use 80% less energy than the gas space heater they replace. 

¶ Heat loss through ducted systems for gas central heating was assumed to be 25%. 

Step 2.3: Estimating the impact of solar PV reboun d effect  

It was assumed that households with installed rooftop PV are likely to increase consumption due to lower 

electricity bills. The PV rebound effect was set equal to 20% of average forecast PV generation allocated 

proportionally to base load, heating, and cooling load per connection.   

Step 2.4: Estimating impact of climate change  

The Bureau of Meteorology and CSIRO assisted AEMO in understanding the impact of climate change on 

projected temperatures. AEMO then adjusted the consumption forecast to account for the impact of 

increasing temperatures (see Appendix A2 for more information). Climate change is anticipated to cause 

milder winters and warmer summers which, as a result, reduce heating load while increasing cooling load in 

the forecast. Due to the opposing effects of climate change on weather-sensitive loads, the annual net impact 

of climate change can take a positive or negative value depending on which effect, on average, is larger.  

Step 2.5: Estimating impact of consumer behavioural response to retail price changes  

Changes in electricity prices have an impact on how consumers use electricity. Household response to price 

change that was not captured by energy efficiency and rooftop PV was modelled through consumer 

behavioural response. The asymmetric response of consumers to price changes is reflected in the price 

elasticity estimation, with price impacts being estimated in the case of increases, but not for price reductions. 

A price rise was estimated to have minimal impact on residential base load, which is largely from the 

operation of appliances such as refrigerators, washing machines, microwaves, and lights. Hence, the price 

elasticity for base load was set to be 0. For weather-sensitive loads, price elasticity was projected to be -0.1, 

applied to both heating and cooling load per connection.  

Step 2.6: Estimating impact of energy efficiency savings  

Ongoing improvements in energy efficiency affect appliance consumption and the energy required to achieve 

desired temperature settings within houses. Historical and forecast energy efficiency savings were forecast for 

a number of programs by a consultancy22:  

¶ Current federal and state energy efficiency programs for appliances and buildings. 

¶ Future programs, expecting additional initiatives to be implemented over time to assist meeting the target 

set in the National Energy Productivity Plan for a 40% improvement in energy productivity by 2030. 

The applied energy efficiency savings represent the expected achievable energy efficiency savings, accounting 

for a consumption rebound effect. The energy efficiency rebound effect was estimated by AEMO to be 40%, 

                                                      
21 AEMO 2018 Gas Statement of Opportunities Methodology Information Paper. Available at: http://www.aemo.com.au/Gas/National-planning-and-

forecasting/National-Gas-Forecasting-Report. 

22 Strategy. Policy. Research. Pty Ltd. Energy Efficiency Impacts on Electricity and Gas Demand to 2037-38. June 2018. Available at: 

https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/NEM-Electricity-Statement-of-Opportunities. 

http://www.aemo.com.au/Gas/National-planning-and-forecasting/National-Gas-Forecasting-Report
http://www.aemo.com.au/Gas/National-planning-and-forecasting/National-Gas-Forecasting-Report
https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/NEM-Electricity-Statement-of-Opportunities


 

© AEMO 2018 | Demand Forecasting Methodology Information Paper 25 

 

based on the calibration and OLS regression against residential consumption meter data. This means the 

effective savings from energy efficiency are 60% of the S.P.R forecast estimate. The impact of energy 

efficiency savings on residential annual consumption was apportioned to base, heating, and cooling loads per 

connection within the estimation model.  

Step 2.7:  Estimating the forecasts of annual base load, cooling load and heating load per 

connection accounting for external impacts  

The forecasts of base load, heating load and cooling load per connection are then adjusted, considering the 

impacts of external drivers estimated from Step 2.1 to 2.6. The external impacts are added to or subtracted 

from the forecasts depending on how they affect each of the loads.  

 

ὝὕὝὄὥίὩὰέὥὨὅͅέὲȟ
ὄὥίὩὰέὥὨὅͅέὲὃὖὍͅὄὒͅὅέὲȟ  ὊὛὍͅὄὒͅὅέὲȟ ὖὠὙὄͅὄὒͅὅέὲȟ ὉὉὍͅὄὒͅὅέὲȟ 

 

ὝὕὝὌὩὥὸὭὲὫὰέὥὨὅͅέὲȟ
ὌὩὥὸὭὲὫὰέὥὨὅͅέὲὃὖὍͅὌὒͅὅέὲȟ ὊὛὍͅὌὒͅὅέὲȟ ὖὠὙὄͅὌὒͅὅέὲȟ ὉὉὍ

ȟ

ὅὅὍͅὌὒͅὅέὲȟ ὖὍͅὌὒͅὅέὲȟ 

 

ὝὕὝὅέέὰὭὲὫὰέὥὨὅͅέὲȟ
ὅέέὰὭὲὫὰέὥὨὅͅέὲὃὖὍͅὅὒͅὅέὲȟ ὖὠὙὄͅὅὒͅὅέὲȟ ὉὉὍ

ȟ
 ὅὅὍͅὅὒͅὅέὲȟ

ὖὍͅὅὒͅὅέὲȟ 

Variables and their descriptions are detailed in Error! Reference source not found.. 

Table 9  Variables and descriptions for residential consumption model  

Variable  Description  

ὝὕὝὄὥίὩὰέὥὨὅͅέὲȟ Forecast total base load per connection for region i in year j  

ὝὕὝὌὩὥὸὭὲὫὰέὥὨὅͅέὲȟ Forecast total heating load per connection for region i in year j 

ὝὕὝὅέέὰὭὲὫὰέὥὨὅͅέὲȟ Forecast total cooling load per connection for region i in year j 

ὃὖὍͅὄὒͅὅέὲȟ Impact of electrical appliances uptake on annual base load per connection for region i in year j 

ὃὖὍͅὌὒͅὅέὲȟ Impact of electrical appliances uptake on annual heating load per connection for region i in year j 

ὃὖὍͅὅὒͅὅέὲȟ Impact of electrical appliances uptake on annual cooling load per connection for region i in year j 

ὊὛὍͅὄὒͅὅέὲȟ Impact of fuel switching on annual base load per connection for region i in year j 

ὊὛὍͅὌὒͅὅέὲȟ Impact of fuel switching on annual heating load per connection for region i in year j 

ὖὠὙὄͅὄὒͅὅέὲȟ Impact of rooftop PV rebound effect on annual base load per connection for region i in year j 

ὖὠὙὄͅὌὒͅὅέὲȟ Impact of rooftop PV rebound effect on annual heating load per connection for region i in year j 

ὖὠὙὄͅὅὒͅὅέὲȟ Impact of rooftop PV rebound effect on annual cooling load per connection for region i in year j 

ὅὅὍͅὌὒͅὅέὲȟ Impact of climate change on average heating load per connection for region i in year j 

ὅὅὍͅὅὒͅὅέὲȟ Impact of climate change on average cooling load per connection for region i in year j 

ὖὍͅὌὒͅὅέὲȟ Impact of consumer behavioural response to price changes on annual heating load per connection for 

region i in year j. This takes negative value, reflecting reduction in consumption due to price rises. 

ὖὍͅὅὒͅὅέὲȟ Impact of consumer behavioural response to price changes on annual cooling load per connection for 

region i in year j. This takes negative value, reflecting reduction in consumption due to price rises. 

ὉὉὍͅὄὒͅὅέὲȟ Impact of energy efficiency savings on annual base load per connection for region i in year j 

ὉὉὍͅὌὒͅὅέὲȟ Impact of energy efficiency savings on annual heating load per connection for region i in year j 

ὉὉὍͅὅὒͅὅέὲȟ Impact of energy efficiency savings on annual cooling load per connection for region i in year j 

¶  
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Step 3: Scale by connections forecasts  

Forecasts of annual base load, cooling load, and heating load at per connection level, after adjustment for 

future appliance and technology trends, were then scaled up by connections forecast over the projection 

period.  

Forecasts of annual base load, heating load and cooling load were modelled as follows: 

ὝὕὝὄὥίὩὰέὥὨȟ ὝὕὝὄὥίὩὰέὥὨὅͅέὲȟ ὝέὸὥὰὔὓὍȟ 

ὝὕὝὌὩὥὸὭὲὫὰέὥὨȟ ὝὕὝὌὩὥὸὭὲὫὰέὥὨὅͅέὲȟ ὝέὸὥὰὔὓὍȟ 

ὝὕὝὅέέὰὭὲὫὰέὥὨȟ ὝὕὝὅέέὰὭὲὫὰέὥὨὅͅέὲȟ ὝέὸὥὰὔὓὍȟ 

Table 10  Residential base load, heating load and cooling load model  variable s and  description s 

Variable  Description  

ὝέὸὥὰὔὓὍȟ Total connections for region i in year j 

ὝὕὝὄὥίὩὰέὥὨȟ Forecast total base load for region i in year j 

ὝὕὝὌὩὥὸὭὲὫὰέὥὨȟ Forecast total heating load for region i in year j 

ὝὕὝὅέέὰὭὲὫὰέὥὨȟ Forecast total cooling load for region i in year j 

 

 

Step 4:  Estimate underlying  and delivered  annual consumption forecast  

The forecast underlying annual consumption is expressed as the sum of base, heating and cooling loads and 

residential electric vehicles: 

Figure 7  Aggregation process for final residential underlying forecast  

 

 

 

 

 

 

 

 

 

 

 

External advice was obtained from CSIRO for estimates of historical and forecast electric vehicle uptake23. 

Forecast delivered annual consumption refers to underlying consumption, adjusted for consumption offsets 

due to solar PV and customer battery storage system losses (assumed round trip efficiency of 85%), forecast 

by CSIRO (see Appendix A3 for more information):  

 

 

                                                      
23 See Appendix A4 for more information 
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Figure 8  Aggregation process for final residential delivered for ecast  
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AEMO forecasts operational consumption, representing consumption from residential and business 

consumers, as supplied by scheduled, semi-scheduled and significant non-scheduled generating units24. The 

remainder of non-scheduled generators are referred to as small non-scheduled generation (NSG). When 

calculating operational consumption, energy supplied by small NSG was subtracted from delivered residential 

and business sector consumption. Estimations of the transmission and distribution losses are added to the 

delivered consumption to arrive at the operational consumption forecast. 

. 

Figure 9  Demand relationships  

 

 

 

 

 

4.1 Small non-scheduled generation 

This section discusses the methodology of the PV non-scheduled generation (PVNSG) and Other non-

scheduled generation (ONSG). 

4.1.1 Data sources 

AEMO forecast small NSG based on the following data sources: 

                                                      
24 Operational definition: https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/EFI/2018/Operational-Consumption-definition-

--2018-update.pdf.  

 

https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/EFI/2018/Operational-Consumption-definition---2018-update.pdf
https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/EFI/2018/Operational-Consumption-definition---2018-update.pdf
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¶ AEMOõs generation information pages25. 

¶ Publicly available information. 

¶ Data provided by network businesses. 

¶ Projection of PV uptake26. 

4.1.2 Methodology 

The small NSG forecast was split into two components: 

¶ PVNSG: PV installations above 100 kW but below 30 MW. Until 2016, this was combined with ONSG. In 

2017 this was forecast separately for the first time, though based on growth rates for commercial rooftop 

PV. In 2018, this sector was forecast with a different approach; Larger projects require special purpose 

financing and their uptake has been forecast by the CSIRO by modelling whether the return on investment 

for different size systems meets a required rate of return threshold for a given year and region. 

¶ ONSG: All other technologies, such as small-scale wind power, hydro power, gas or biomass-based 

cogeneration, generation from landfill gas or wastewater treatment plants, and smaller peaking plants or 

emergency backup generators.  

PVNSG 

The PVNSG annual generation forecast was developed using: 

¶ Forecast PV capacity in the 100 kW to 30 MW range. 

¶ A simulated normalised generation trace. 

Annual PVNSG generation was obtained by multiplying the normalised generation trace by the capacity 

forecast to produce a MW generation trace at half-hourly resolution, which was then aggregated to 

determine annual energy in MWh. 

The normalised generation trace was produced by: 

¶ Simulating historical normalised generation of single axis tracking PV systems for a selection of 

geographic locations across the NEM, using NREL's System Advisor Model27 software. Satellite solar 

irradiance observations and ground station temperature measurements are used to estimate PV 

generation for every half hour back to 2009. 

¶ Determining regional normalised generation traces by averaging traces for all Renewable Energy Zones in 

each region. 

¶ Finding a median normalised generation value for each half hour of the year, based on the historical 

traces. This median trace is used as a proxy for future PV generation in each forecast year. 

ONSG 

For the other technologies, AEMO reviewed the list of generators making up the current ONSG fleet, and 

made adjustments to add newly commissioned or committed generators and remove retired generators or 

units that may already be captured though net metering of the load it is embedded under. This resulted in a 

forecast capacity, for each NEM region, for each technology.  

The forecast capacity was converted into annual energy generation projections, based on historical capacity 

factors for these technologies in each region. The capacity factors used for the projections were calculated 

using up to five years of historical data. AEMO assumed that the installed capacity of existing projects would 

                                                      
25 https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/Generation-information. 

26 CSIRO consultancy report òProjections for small-scale embedded technologiesó is available on AEMOõs website: 

http://www.aemo.com.au/Electricity/Planning/Forecasting. 

27 NREL System Advisor Model is available at https://sam.nrel.gov/. 

http://www.aemo.com.au/Electricity/Planning/Forecasting
https://sam.nrel.gov/
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remain unchanged over the 20-year outlook period, unless a site has been decommissioned or announced to 

retire.  

All new projects were assumed to begin operation at the start of the financial year in which they are due for 

completion and remain at this level over the 20-year outlook period. 

Capacity factors for existing projects were estimated using a weighted average of the historical capacity 

factors for each project, based on the past five years of data.   

For future ONSG projects, where historical output is not available, AEMO estimated capacity factors using the 

following methods: 

¶ Where similar projects already exist, in terms of NEM region and generator class (fuel source), AEMO used 

the total historical output from all similar, existing projects, divided by their combined rated capacity. 

¶ Where no similar projects exist typically a new generator class in a particular NEM region, AEMO either 

used the regional average for all existing generators or applied the capacity factor of similar generators 

from another region. 

AEMO then combined the resulting capacity factor profile with the expected capacities of all future generator 

projects and used this to forecast the expected generation per project over the outlook period. 

Similarly, the forecast impact on maximum and minimum demand is calculated based on the technologiesõ 

historical generation at time of maximum or minimum demand28.  

 

4.2 Network losses and auxiliary loads  

4.2.1 Network losses 

Transmission losses forecast methodology  

Transmission losses represent energy lost due to electrical resistance and the heating of conductors as 

electricity flows through the transmission network. 

The Australian Energy Regulator (AER) and the network operators provide AEMO with historical transmission 

loss factors. AEMO use the transmission loss factors to calculate historical losses across the transmission 

network for each region. 

AEMO forecast annual transmission losses by using the historical normalised transmission losses averaged 

over the last five years. Annual transmission losses were normalised by electricity consumption by large 

industrial customers as well as residential and commercial customers. 

Distribution losses  

To calculate operational demand from estimated delivered demand, distribution losses are needed in 

addition to transmission losses. The distribution losses were estimated as a volume weighted average per 

region, generally based on recent losses reported to the Australian Energy Regulator (AER) by distribution 

companies as part of the Distribution Loss Factor approvals process.  

4.2.2 Auxiliary loads methodology 

Auxiliary loads account for energy used within power stations (the difference between òas generatedó energy 

and òsent-outó energy).  

                                                      
28 For maximum demand, the top 10 highest demand half-hours each year were used to calculate the average generation at time of maximum demand. For 

minimum demand, the bottom 10 demand periods were used.  
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Auxiliary loads (historical)  

Analysis for auxiliary loads requires historical data obtained from the wholesale market system ð Market 

Management System (MMS). Auxiliary loads are not directly measured and so are modelled with the 

assumption that they are equal to the difference between total generation as measured at generator 

terminals and the electricity that is sent out into the grid. The amount of energy that is sent out to the grid is 

estimated by multiplying the metered generation for an individual generating unit by using an estimated 

auxiliary percentage29 for the generation station such that: 

 

!ÕØÉÌÁÒÙ ,ÏÁÄ-ÅÔÅÒÅÄ 'ÅÎÅÒÁÔÉÏÎ Ø !ÕØÉÌÁÒÙ 0ÅÒÃÅÎÔÁÇÅ 

 

For example, a new combined cycle gas turbine has an assumed auxiliary factor of 3%, such that if the 

metered generation in a day was 30 MWh will have a calculated auxiliary load of 0.9 MWh. The sent out 

energy for this power station is therefore determined to be 29.1 MWh. 

This method is applied for approximately 250 generating units in the NEM to arrive at the calculated historical 

auxiliary load and operational demand as sent out on a half hourly basis. 

Auxiliary loads (forecast ) 

The annual auxiliary loads in each region was forecast using the auxiliary loads from a future generation 

forecast that have a mix of technologies. Forecasts of the future generation mix are based on the 2018 

Integrated System Plan (ISP) auxiliary Load forecasts in the corresponding Fast, Neutral and Slow scenarios. 

As the ISP forecasts were based on the 2017 ESOO consumption forecasts they needed to be rebased to 

reflect the ISP consumption forecasts but preserve a similar percentage of auxiliary loads. To arrive at this 

adjustment, the forecast auxiliary factor for each financial year and for each NEM region in the 2018 ESOO 

was defined as: 

 

!ÕØÉÌÉÁÒÙ ,ÏÁÄ &ÁÃÔÏÒ ςπρψ %3//
4ÏÔÁÌ !ÕØÉÌÉÌÁÒÙ ,ÏÁÄ )30

/ÐÅÒÁÔÉÏÎÁÌ #ÏÎÓÕÍÐÔÉÏÎ &ÏÒÅÃÁÓÔ ÁÓ ÓÅÎÔ ÏÕÔ )30
 

 

The annual auxiliary load forecast was then determined by first calculating the operational consumption 

forecast (as generated) by dividing the 2018 ESOO operational consumption forecast (as sent-out) by the 

2018 ESOO Auxiliary Load Factor. The auxiliary load forecast is then the difference between the operational 

consumption forecast (as generated) and the operational forecast (as sent out).  

 

                                                      
29 Fuel and Technology Cost Review (ACIL Allen), Available at: https://www.aemo.com.au/-

/media/Files/XLS/Fuel_and_Technology_Cost_Review_Data_ACIL_Allen.xlsx  

https://www.aemo.com.au/-/media/Files/XLS/Fuel_and_Technology_Cost_Review_Data_ACIL_Allen.xlsx
https://www.aemo.com.au/-/media/Files/XLS/Fuel_and_Technology_Cost_Review_Data_ACIL_Allen.xlsx
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Regional minimum and maximum demands sent-out are developed by season using a probabilistic 

methodology. Demand is heavily dependent on weather conditions and random variability in response to 

weather.  

Due to this variability, forecast maximum demand (MD) is expressed as probability of exceedance (POE) 

values from a distribution, rather than a point forecast. For any given season or year:  

¶ A 10% POE MD value is expected to be exceeded, on average, one year in ten.  

¶ A 50% POE MD value is expected to be exceeded, on average, one year in two.  

¶ A 90% POE MD value is expected to be exceeded, on average, nine years in ten.  

For the purpose of forecasting demand, AEMO defined summer as the period from November to March 

(inclusive) except for Tasmania where summer was defined as the period from December to February 

(inclusive). Winter was defined as being from June to August for all jurisdictions.  

5.1 Data preparation 

Data preparation for both the minimum and maximum demand models was similar to the requirements for 

annual consumption, however each requires the use of half-hourly data. The requirement for 

higher-frequency data drives the need to consider the load profile of small-scale technologies and large 

industrial loads. 

At a half-hour frequency by region the following data inputs were used: 

¶ Historical and forecast rooftop PV capacity, generation and normalised generation. 

¶ Historical and forecast PVNSG installed capacity, generation and normalised generation. 

¶ Forecast electric vehicles numbers and charge profile. 

¶ Forecast ESS installed capacity and charge/discharge profile  

ð a proportion of ESS is considered virtual power plant (VPP) or distributed energy resource (DER) with 

the proportion varying by scenario. This proportion is included in operational demand. 

¶ National Meter Identifier (NMI) data for the top 100 large industrial loads (loads over 10 MW, 10% of the 

time). 

¶ Historical and forecast Large industrial loads. 

¶ Projected climate change adjusted dry temperature.  

¶ Historical underlying demand. 

AEMO sourced half-hourly weather data from the BoM for the weather stations listed in Appendix A.2. The 

weather data was climate change-adjusted for temperatures expected in the forecast horizon based on 

information available on www.climatechangeinaustralia.gov.au. 

http://www.climatechangeinaustralia.gov.au/
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The model aimed to generate forecasts of underlying demand less large industrial load. Large industrial load 

was subtracted from underlying demand before constructing the model. Large industrial load may be 

seasonal but is not considered to be weather-sensitive, although it can have the potential to cause structural 

shifts in demand. 

Forecasts were defined to represent the power required to be sent out from generating sources (operational 

demand as sent out (OPSO)).  

5.2 Exploratory data analysis 

Exploratory data analysis (EDA) was used to detect outliers and identify important demand drivers during 

model development. 

5.2.1 Outlier detection and removal 

Outlier detection procedures were used to detect and remove outliers caused by data errors and outages. A 

basic linear model was specified to examine all observations to ensure values do not lie more than three 

standard deviations from the predicted value at each half-hour.  

The resulting list of outliers and the known list of network outages was used to remove these data points to 

constrain the dataset. Any data errors detected through this process were tracked to determine cause 

followed by appropriate data corrections. No augmentation of data was performed for missing data. 

5.2.2 EDA to identify important short-term demand drivers 

EDA was used to identify key variables that drive demand over the course of the year, by examining summary 

statistics of each variable, correlations between explanatory variables to identify multicollinearity, and 

correlations between explanatory variables and demand.  

Broadly, the EDA process examined: 

¶ Weather data ð temperature variables including:  

ð Instantaneous cooling degree (CDs) and heating degree (HDs) as half-hourly up to three hour rolling 

average of temperature. 

ð  Heatwaves and ôcoolwavesõ as daily up to three day rolling average of temperature. 

ƺ Heatwaves were collinearly related with temperature variables derived from humidity. To avoid 

multicollinearity, the heatwave variables were retained and the temperature variables derived 

from humidity were dropped. 

ð Dry bulb temperature ð both instantaneous and heatwave/coolwave. 

ð Apparent temperature30 ð both instantaneous and heatwave/coolwave. 

ð EHF ð excess heating factor is a measure of heatwave intensity. When maximum daily temperatures are 

above the 95th percentile for three consecutive days, then these days are deemed to be in heatwave 

conditions with the variable increasing with the intensity. 

ð Heat index31 ð both instantaneous and heatwave. 

¶ Calendar/seasonal variables, including weekday/weekend and public holiday Boolean (true/false) variables. 

Alternative critical temperature cut-offs were explored to formulate the CD and HD variables. The critical 

temperature cut-offs that best captured inflection points between temperature and demand were selected for 

the model.  

 

                                                      
30 Measures the temperature perceived by humans. Ii is a function of dry bulb air temperature, relative humidity and wind speed. 

31 Measures the perception of temperature above 27 degrees. It is a function of dry bulb air temperature and humidity. 
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5.3 Model development and selection 

Models for each region were specified using the variables identified as statistically significant during the EDA 

process. Models were trained on the previous 3-4 years of historical data (region-dependent) at a half-hourly 

frequency. 

The models aimed to describe the relationship between underlying demand and key explanatory variables 

including calendar effects such as public holidays, day of the week and month in the year and weather effects 

(such as CD, HD, CD² and HD²). 

An array of linear models using available variables was ranked by explanatory power. The model with the 

optimal combination of variables was chosen for each region. 

An algorithm was used to discard models that had: 

¶ Variance Inflation Factor > 432. 

¶ Illogical coefficients. 

¶ Non-statistically significant coefficients. 

The algorithm then ranked and selected the best model, based on: 

¶ Goodness-of-fit ð R-Squared, Akaike information criterion, and Bayesian information criterion. 

¶ Out-of-sample goodness-of-fit ð for each model, AEMO performed 10-fold cross validation33 to calculate 

the out-of-sample forecast accuracy. 

¶ Histogram of the residuals, quantile-quantile (Q-Q) plot, and residual plots to ensure no discernible 

patterns that could indicate missing explanatory factors. 

Table 11 details the variables selected as important in the EDA process after rejecting the other variables for 

reason of weak correlation with demand or multicollinearity with other explanatory variables. In the case of 

multicollinearity, the EDA process opted for simplicity by selecting more easily understood variables such as 

dry temperature. These variables were then used in the final minimum/maximum demand model.  

Table 11  List of Variables included for minimum/maximum demand model  

Variable  Description  

Public holiday Dummy flag for public holiday 

Weekend dummy Dummy flag for weekend 

Month factor A factor variable with values for each months of the year 

Dry temperature CD Half-hourly dry temperature with a CD cut off 

Dry temperature HD Half-hourly dry temperature with a HD cut off 

Dry temperature CD2 Half-hourly dry temperature with a CD cut off squared 

Dry temperature HD2 Half-hourly dry temperature with a HD cut off squared 

Dry temperature 3-day rolling average CD Three-day rolling average of dry temperate with a CD cut off 

Dry temperature 3-day rolling average HD Three-day rolling average of dry temperate with a CD cut off 

Dry temperature 2-day rolling average CD Two-day rolling average of dry temperate with a CD cut off 

Dry temperature 2-day rolling average HD Two-day rolling average of dry temperate with a CD cut off 

Dry temperature 1-day rolling average CD One-day rolling average of dry temperate with a CD cut off 

Dry temperature 1-day rolling average HD One-day rolling average of dry temperate with a CD cut off 

                                                      
32 The variance inflation factor is a measure of multicollinearity between the explanatory variables in the model. Multicollinearity occurs when multiple 

explanatory variables are linearly related and is undesirable because it could have the effect of increasing the variance of the model. 

33 A 10-fold cross validation was performed by breaking the data set randomly into 10 smaller sample sets (folds). The model was trained on 9 of the folds 

and validated against the remaining fold. The model was trained and validated 10 times until each fold was used in the training sample and the validation 

sample. The forecast accuracy for each fold was calculated and compared between models. 
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5.4 Simulate base year (weather normalisation) 

The linear models selected from the above process were used to simulate demand for each region. Historical 

weather events were simulated to develop a weather distribution to weather-normalise demand and random 

shocks in response to demand drivers: 

 ὟὲὨὩὶὰώὭὲὫὪὼ  ‐  

where 

¶ Ὢὼ  is the relationship between demand and the demand drivers such as weather. 

¶ ‐  represents random normally distributed34 changes in demand not explained by the model demand 

drivers.  

The weather was simulated for the base year by bootstrapping historical weather observations (ὼ ) to create 

a year consisting of 17,520 half-hourly weather observations. A synthetic weather-year was constructed by 

randomly selecting 26 fortnightly weather patterns (òweather blocksó), ensuring that a weather block was 

assigned to the corresponding time of the year. A total of 20 years of historical weather data was 

bootstrapped35. A total of 1,000 weather simulations were created to derive 1,000 weather years of data (at 

half-hourly observations)36. 

Linear regression models were used to estimate demand for the given conditions of a synthetic year, which 

accounts for the correlation between demand and the conditions implied by the models. Simultaneously, a 

random shock was simulated to account for the component of demand variability unexplained by weather 

conditions and other demand drivers captured in the linear model (‐ ). This shock recognised random 

variability that is not captured through the weather correlation estimate but was needed to appropriately 

simulate stochastic variability observed in a weather-sensitive process. The synthetic half-hourly demand 

traces were estimated for 1,000 simulated years. 

The simulation process recognised that there are several drivers of demand including weather, day of week, 

and hour of day, as well as random shocks in demand. The process also preserved the probabilistic 

relationship between demand and its key drivers. 

5.5 Forecast probability of exceedance 

The forecast process grows half-hourly demand by economic conditions such as price and GSP, demographic 

conditions such as connections growth, and technological conditions such as electric vehicle uptake to derive 

an annual growth index.   

The forecast year-on-year change was applied to each of the 17,520 half-hours for each simulation and to 

each forecast year. 

The process then calculated demand not met by solar by subtracting rooftop PV and PVNSG generation. 

This process yields minimum/maximum demand values at each half-hour over a simulated year. This 

represents the minimum/maximum half-hourly prediction of the 17,520 half-hourly predictions in a given 

year, for each year in the forecast horizon. After simulating 1,000 times there were 1,000 values for each 

forecast year, for each season for each scenario. From the 1,000 simulated minima/maxima, AEMO then 

                                                      
34 A fundamental assumption of Ordinary Least Squares (OLS) is that the error term follows a normal distribution. This assumption was tested using graphical 

analysis and the JarqueðBera test. 

35 Bootstrapping with replacement preserves empirical correlations between time-of-year, temperature, and solar irradiance time series. 

36 Previous tests have found that 500 Monte Carlo simulations is a sufficient number of simulations to converge to a stable result that varies by less than half 

a percent. 
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extracted the 50% and 10% POEs as well as the characteristics at times of the minimum/maximum (such as 

weather conditions and calendar positioning at the time of minimum/maximum). 

In Figure 10: 

¶ The first distribution represents the variability of 17,520 half-hour demand for each simulation. This is 

obtained for all years needed to produce a forecast year. Data for one half-hour representing the largest 

predicted MD (indicated by the red box and arrow) was then extracted from the 17,520 half-hours and 

added to the distribution of annual maxima (represented by the smaller bell curve). This extraction was 

repeated 1,000 times, once for each simulation.  

¶ The second smaller bell curve represents the distribution of maxima which may or may not be normally 

distributed.37 

AEMO extracts minimum/maximum values by region from this minima/maxima distribution by selecting the 

10th, 50th and 90th percentile as 90%, 50% POE and 10% POE values, respectively. 

Figure 10  Theoretical distribution of annual half -hourly data to derive maxima distribution  

 
 

Auxiliary losses  

AEMO forecast auxiliary losses during maximum and minimum demand by estimating the average 

percentage of auxiliary by time-of-day and day-of-year. AEMO then applied the average auxiliary percentage 

for the relevant time of minimum and maximum demand to the auxiliary forecast. For instance, if the 

maximum operational demand value in the simulation occurs at 18:00, then the average auxiliary percentage 

at 18:00 is applied to calculate auxiliary at that time.  

                                                      
37 It is not necessary for the minima or maxima to follow a normal distribution. Regardless of whether the distribution is skewed, leptokurtic, mesokurtic or 

platykurtic, the percentiles can be found by ranking the minimum/maximum demand values and extracting the desired percentile. 
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Demand traces (referred to as demand time-series in general terms) were prepared by deriving a trace from a 

historical reference year and growing (scaling) it to meet specified future characteristics using a constrained 

optimization function to minimize the differences between the grown trace and the targets.  

The traces were prepared on a financial year basis, to various targets, categorised as: 

¶ Maximum summer demand (at a specified probability of exceedance level). 

¶ Maximum winter demand (at a specified probability of exceedance level). 

¶ Minimum demand (at a specified probability of exceedance level). 

¶ Annual energy (consumption). 

Traces were differentiated by: 

¶ NEM region. 

¶ Historical reference year. 

¶ Target year. 

¶ Scenario. 

¶ POE level. 

The trace development process was conducted in two passes: 

¶ Pass 1. Growing the reference year trace on an operational demand as sent-out lite (OPSO-lite) basis 

(demand trace has technology components removed, refer to Section 6.2 for full description).  

¶ Pass 2. Reinstating technology components and reconciling the time series to meet the OPSO 

characteristics. 

The trace development process is summarised as a flow diagram in Figure 11. 
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Figure 11  Trace development process flow diagram  

 
 

6.1 Growth (scaling) algorithm 

Demand from the particular reference year was scaled to match the targets of the forecast year using a 

constrained optimisation algorithm. Each pass of the two-pass approach followed this growth algorithm. The 

algorithm found scaling factors for each half-hour which minimised the difference between the adjusted 

demand and the demand and consumption targets such that seasonality, weekly and intra-day demand 

patterns are preserved. The demand trace was adjusted for each period so that the target was met for each 

pass. 

The approach: 

1. Categorised each day in the reference year into day-type groups (high-demand days in summer, high-

demand days in winter, low-demand days, and other). A threshold number of days in each group was 

nominated as an input parameter. The threshold number of days was configurable by region and was 

based on the characteristics of the region and analyst judgement to optimise the demand targets. 

2. Applied a day-swapping algorithm, such that weekends or public holidays in the reference year align with 

weekdays or public holidays in the forecast year. 

3. Scaled the maximum demand value of the higher demand days in the reference year up to the maximum 

demand targets for summer and winter.  

4. Scaled the minimum demand of the low demand days in the reference year to the annual minimum 

demand target.  

5. Determined the scaling factor for each day-type group such that the sum of demand across the year 

equals the annual energy target. 

6. Calculated future annual energy for each day-type group by multiplying the energy in each day-type 

group with demand scaling factors.  
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7. The òotheró day type had no scaling factor for the purpose of meeting a demand target. As such, the 

approach allocated the remainder of future energy to the ôotherõ day-type category for purpose of 

meeting the annual energy target. 

8. Checked the grown traces against the targets. If all targets were met, the process was complete. If any of 

the targets were not fully met, the algorithm re-grew the demand traces for the reference year recursively 

by repeating steps 1 to 4 until the targets were met. 

In the case of negative operational demand, the process managed the handling of periods near or below 

zero by adding a fixed amount to all periods before growing. This was then removed after growing. 

6.2 Pass 1 ð grow to OPSO-lite targets 

As highlighted in Figure 11, the first pass grew the OPSO-lite reference year traces to the forecast year 

OPSO-lite targets. OPSO-lite is operational demand that has been cleaned to remove atypical demand events 

and has had the impact of the following technologies removed:  

¶ Rooftop PV (PVROOF).  

¶ Non-scheduled PV (PVNSG).  

¶ Energy storage systems (ESS).  

¶ Electric vehicles (EV).  

¶ Demand side participation (DSP). 

¶ In the case of Queensland, CSG. 

After growing the traces, the technology components were reinstated. This produced an unreconciled OPSO. 

The technology components were also prepared to reflect changing installed capacities, vehicle numbers, 

installation numbers or, in the case of CSG, demand, such that these components were consistent with the 

forecasts for the forecast year.  

6.3 Reconciling to the OPSO targets 

The second pass sought to ensure that the grown maximum operational demand met the OPSO targets.  

Generally, because the trace is based on historical information, the unreconciled OPSO maximum demand 

doesnõt always meet the OPSO target once rooftop PV and PVNSG were taken into account, as well as DSP. 

This is because the OPSO targets were based on simulating weather 1,000 times, while the reference year is a 

single weather year. Further, the reference year may be an unexceptional demand year grown to a 10% POE 

demand year and this stretching can cause the OPSO targets to be missed. 

The second pass re-ran the growth algorithm in Section 5.2 to ensure the OPSO characteristics were met. The 

technology components were not modified, therefore this process, in effect, ensured that OPSO targets were 

met but could only be done if proximity to OPSO-lite targets was relaxed.  

6.4 Reporting 

AEMO prepared the traces with all the components such that they were modular, and the user could apply 

the components to calculate the desired demand definition. The choice of trace definition depended on the 

purpose of the modelling performed. For example, the market modelling strategy could elect to model PV 

separately or model ESS as a virtual power plant, in turn necessitating control over how those resources were 

discharged. 
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AEMO assesses behavioural and structural changes of consumers in response to real or perceived high retail 

prices. AEMO calculated the retail price forecasts sourcing a combination of AEMO internal modelling and 

publicly available information. Separate prices have been prepared for three market segments: 

1. Residential prices 

2. Commercial prices 

3. Industrial prices  

The electricity retail price projections were formed from bottom-up projections based on separate forecasts 

of the various components of retail prices. The key components of retail prices included: 

¶ Network costs. 

¶ Wholesale costs. 

¶ Environmental costs. 

¶ Retail costs and margins. 

In the 2018 ESOO, AEMO developed wholesale price forecasts for the three scenarios, separating the network, 

environmental, and retail components for different customer classes, based on the method used in the Retail 

Electricity Price History and Projected Trends Jacobs Report38.  

Residential pricing was modelled and estimated against published pricing data and recent price trends 

discussed in the 2017 Residential Electricity Price Trends AEMC Report39. The process of residential pricing 

modelling is summarised in 0. 

  

                                                      
38 Jacobs, Retail Electricity Price History and Projections, available at https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-

forecasting/Electricity-Forecasting-Insights/2017-Electricity-Forecasting-Insights. 

39 AEMC, 2017 Residential Electricity Price Trends, available at https://www.aemc.gov.au/markets-reviews-advice/2017-residential-electricity-price-trends. 

https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/Electricity-Forecasting-Insights/2017-Electricity-Forecasting-Insights
https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/Electricity-Forecasting-Insights/2017-Electricity-Forecasting-Insights
https://www.aemc.gov.au/markets-reviews-advice/2017-residential-electricity-price-trends
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Table 12  Residential pricing model  component summary  

Component  Process summary  

Wholesale costs*  ¶ Employ wholesale cost methodology from Retail Electricity Price History and Projected Trends Jacobs 

Report and apply to AEMO's wholesale spot price. 

Network costs  ¶ Use 2017 Residential Electricity Price Trends AEMC Report. 

¶ Employ network costs methodology from Retail Electricity Price History and Projected Trends Jacobs 

Report and apply to extrapolate the trajectories. 

¶ Benchmark against published network tariffs. 

Environmental costs  ¶ Use 2017 Residential Electricity Price Trends AEMC Report. 

¶ Refine parameters using Retail Electricity Price History and Projected Trends Jacobs Report 

¶ Extrapolate the trajectories based on publicly available information of environmental schemes. These 

include federal and state-based renewable energy, energy efficiency and feed-in-tariff schemes. 

Retail costs and 

margin  
¶ Use 2017 Residential Electricity Price Trends AEMC Report. 

* The wholesale costs component of retail price consists of wholesale price, hedging cost, ancillary services, market fees and energy 

losses from networks. 

Commercial and industrial pricing models were developed using the residential pricing model as a baseline. 

Each component is then adjusted based on methodology from the Retail Electricity Price History and 

Projected Trends report. 
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A2.1 Heating Degree Days (HDD) and Cooling Degree Days (CDD) 

HDD and CDD are measures of heating and cooling demand, respectively. They are estimated by differencing 

air temperature from a critical temperature.40 

Table 13  Critical regional temperature s for HDD and CDD  

Region  Critical Temperature in degrees C  

HDD critical temperature  CDD critical temperature  

New South Wales 17.0 19.5 

Queensland 17.0 20.0 

South Australia 16.5 19.0 

Tasmania 16.0 20.0 

Victoria 16.5 18.0 

Note: The critical HDD and CDD temperatures for each region are not industry-standard values but are selected for each region based 

on the temperature at which a demand response is detected. 

The formula for HDD41 is: 

ὌὈὈ ὓὥὼπȟ Ὕ #4 

The formula for CDD42 is: 

ὅὈὈ ὓὥὼπȟ#4 Ὕ 

where Ὕ is average 30 minute temperature between 9:00 PM to 9:00 PM the following day and CT is the 

critical temperature threshold in relation to the relevant region. 

HDD and CDD are used in modelling and forecasting of consumption and are calculated at the regional level. 

The weather station temperature data is sourced from the BoM 43 and the stations used are given below. 

Table 14  Weather stations used for HDD  and CDD  

Region  Station name  Data range  

New South Wales BANKSTOWN AIRPORT AWS 1989/01 ~ Now 

Queensland ARCHERFIELD AIRPORT 1994/07 ~ Now 

South Australia ADELAIDE (KENT TOWN) 44 1993/10 ~ Now 

Tasmania HOBART (ELLERSLIE ROAD) 1882/01 ~ Now 

Victoria MELBOURNE (OLYMPIC PARK) 2013/05 ~ Now 

Victoria MELBOURNE REGIONAL OFFICE 1997/10 ~ 2015/01 

                                                      
40  Critical temperature is a threshold temperature for electricity heating. 

41  All the HDDs in a year are aggregated to obtain the annual HDD. 

42  All the CDDs in a year are aggregated to obtain the annual CDD. 

43  Bureau of Meteorology Climate Data, http://www.bom.gov.au/climate/data/ .  

44 Kent Town station is anticipated to close permanently. Adelaide Airport weather station will be used for South Australia once Kent Town is unavailable. 

http://www.bom.gov.au/climate/data/
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A2.2 Determining HDD and CDD Standards 

The data used to derive a median weather trend are from 2000 to the reference year. AEMO has used the 

derived median weather standard for future HDD/CDD projections using a probabilistic methodology for a 

given region. This was calculated based on the following formulas:  

!ÎÎÕÁÌ($$ 0/%υπ ὌὈὈσφυ   

!ÎÎÕÁÌ#$$  0/%υπὅὈὈσφυ    

where HDD365 is heating degree days over a 365-day period, based on a daily-rolling period starting from 

1 January 2000 until the latest available data point in the reference year, and POE50 is where 50% Probability 

of Exceedance is expected for the given total heating/cooling degree days within that 365-day period. 

Dry-bulb temperature (DBT) is the temperature measured by a thermometer freely exposed to air but 

shielded from radiation and moisture. DBT is equivalent to air temperature. In contrast, wet-bulb temperature 

(WBT) is the temperature read by a wet-bulb thermometer (a thermometer shrouded in a water-soaked cloth) 

over which air is passed. At 100% relative humidity, the wet-bulb temperature is equal to the air temperature 

(dry-bulb temperature) and is lower at lower humidity. 

A2.3 Climate change 

AEMO incorporated climate change into its minimum and maximum demand forecast as well as its annual 

consumption forecast. For the annual consumption forecast, average annual temperatures are increasing by a 

constant rate. However, half-hourly temperatures have higher variability and increasing extremes due to the 

higher frequency of the data.  

AEMO collaborated with the BoM and CSIRO to develop a climate change methodology for the purpose of 

half-hourly demand forecasting. This process recognised that climate change is impacting temperature 

differently across the temperature distribution. Generally, higher temperatures are increasing by more than 

average temperatures which are increasing more than low temperatures. This results in higher extreme 

temperatures relevant to maximum demand. 

The methodology adopted a quantile-to-quantile marching algorithm to statistically downscale publicly 

available daily minimum, mean and maximum temperature projects out to 20 to 50 years.  

The methodology can be broken into six steps: 

¶ Step 1. Collect climate projection data from www.climatechangeinaustralia.gov.au for weather stations 

relevant to the region. 

¶ Step 2. Collect historical actual half-hourly weather station observations from the BoM and calculate the 

daily minimum, mean and maximum temperature. 

¶ Step 3. Calculate the empirical temperature cumulative density function (CDF) in the projection period for 

the daily minimum, mean and maximum temperatures. 

¶ Step 4. Calculate the empirical temperature CDF of the historical weather data for the daily minimum, 

median and maximum temperatures. 

¶ Step 5. Match the temperature quantiles of the projected temperature distribution with the quantiles of 

the historical temperature distribution. Assign a scaling factor for each quantile for daily minimum, 

mean/median and maximum temperature. 

¶ Step 6. Interpolate the daily minimum, mean/median and maximum scaling factor for each quantile down 

to the half-hourly level. 

http://www.climatechangeinaustralia.gov.au/
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Step 1 ð Collect daily temperature projection data  

¶ Collect daily minimum and maximum temperature projection data from: 

https://www.climatechangeinaustralia.gov.au/en/climate-projections/explore-data/data-download/station-

data-download/ 

¶ Collect data for each climate model: 

ð ACCESS1-0, CanESM2, CESM1-CAM5, CNRM-CM5, GFDL-ESM2M, HadGEM2, MIROC5, NorESM1 

¶ The mean temperature for each day is calculated (i.e., simple average equated as (daily minimum + daily 

maximum)/2). 

Step 2 ð Collect historical act ual half -hourly temperature observations and calculate daily 

minimum, median and maximum  

¶ Collect half-hourly temperature data for weather stations in each region relevant to the energy demand 

centres of those regions. 

¶ Find the daily minimum, median and maximum temperatures. 

¶ To ensure that the daily mid-point matches to an actual half-hourly value the median is used in place of 

the daily mean. As temperature is (normally) normally distributed the median should be roughly equal to 

the mean to within a fraction of a percent. 

Step 3 ð Calculate the empirical temperature CDF of projected daily temperatures data  

¶ Set up an 11-year rolling window to account for variability in weather between different years including the 

8 different weather models in the same window (in effect 8 * 11 years in the window).  

¶ Rank the daily minimum, mean and maximum temperatures from lowest to highest for the 11-year window 

including the 8 weather models. 

¶ Attribute a percentile to each temperature value in the forecast horizon. 

Step 4 ð Calculate the empirical temperature CDF of historical daily observations  

¶ Set up an 11-year rolling window to account for variability in weather between different years. 

¶ Rank the daily minimum, median and maximum temperatures from lowest to highest for the 11-year 

window. 

¶ Attribute a percentile to each temperature value in history. 

Step 5 ð Map historical temperature quantiles to projected temperature quantiles and assign a 

scaling factor  

¶ Map quantiles of the forecast model daily CDF onto quantiles of the historical CDF. 

¶ Calculate a scaling factor for each quantile for daily minimum, mean/median and maximum temperatures. 

Step 6 ð Interpolate daily scaling factors to half -hourly and scale  

¶ Rank the 48 half-hourly temperature observations for each day from the daily minimum to the daily 

mid-point and to the daily maximum. 

¶ Interpolate the scaling factor for each half-hour. 

¶ Scale up each historical half-hour for each historical weather year to match each projected weather years. 

The final result is a table with dimensions Ὕ Ὕ ρχυςπ, where: 

¶ Ὕ is the number of historical actual weather years; 

¶ Ὕ  is the number of projected weather years in the forecast horizon; and 

¶ 17520 half-hourly data points in each weather year. 

https://www.climatechangeinaustralia.gov.au/en/climate-projections/explore-data/data-download/station-data-download/
https://www.climatechangeinaustralia.gov.au/en/climate-projections/explore-data/data-download/station-data-download/
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A3.1 Rooftop PV forecast 

A3.1.1 Installed capacity forecast 

AEMOõs 2018 forecast of installed capacity for rooftop PV (installations with a capacity < 100 kW) was based 

on advice from external consultancy CSIRO, whose report provides details of the approach45.   

The main drivers behind the forecast rooftop PV uptake were: 

¶ Financial incentives, such as Small Technology Certificates (STCs) and feed-in tariffs (FiTs). 

¶ Installation costs, including both system/component costs and non-hardware òsoft costsó, including 

marketing and customer acquisition, system design, installation labour, permitting and inspection costs, 

and installer margins.  

¶ The payback period considering forecast retail electricity prices and feed-in tariffs. 

¶ Population growth across most states in Australia, allowing for more rooftop PV systems to be adopted 

before saturation is reached.  

CSIRO forecast effective capacity, which is the capacity adjusted for degradation of panels over time. AEMO 

rebased the CSIRO forecast so the forecast starts from the most recent Clean Energy Regulator (CER) data. 

A3.1.2 Rooftop PV generation 

AEMO has developed, with the University of Melbourne, a rooftop PV generation model which, for each 

region, estimates the historical 30-minute generation of installed systems. The historical generation is based 

on weather data since 1 January 2000.  

This model produces a measure of total generation, as well as the average generation of a notional 1 kW unit 

of capacity, with the average generation being the 50th percentile of the observed annual generation since 

2000. 

For each region, two profiles were calculated, one for north-facing PV panels and one for west-facing PV 

panels.  

The generation profiles were used to calculate total rooftop PV generation in future years, by multiplying with 

the forecast effective rooftop PV capacity. The north-facing and west-facing profiles were blended, starting 

from purely the north-facing profiles. Further to this, AEMO has assumed that over time there will be a shift 

towards a more westerly shift in rooftop panel orientation, reaching 10% of the forecast effective capacity 

after 20 years. This reflects AEMOõs assumptions that: 

¶ As more and more solar generation is connected to the NEM, grid-supplied electricity will increase in cost, 

relative to the value of exporting rooftop PV generation to the grid around the time of the evening peak. 

                                                      
45 CSIRO consultancy report òProjections for small-scale embedded technologiesó, available at  http://www.aemo.com.au/Electricity/Planning/Forecasting. 

http://www.aemo.com.au/Electricity/Planning/Forecasting
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¶ Consumer incentives will continue to evolve over the forecast period to reflect the lower value of 

generation mid-day and increasing value towards the evening peak. 

¶ West-facing panels, which better align rooftop PV generation with the period of peak consumption and 

assumed higher energy cost, will remain economic for installation and use and add approximately 10% to 

generation output during the late afternoon compared to north-facing panels. As illustrated in Figure 9, 

west-facing panels generate around 15% less power at midday and 15% more power towards sunset 

relative to north-facing panels. The proportion of west-facing panels is estimated to reach 10% by 2027-28 

so the change in PV output from west-facing panels will amount to around 1.5% at the time of maximum. 

This is immaterial relative to total operational demand. 

Figure 12  North -facing vs west -facing PV generation  

 

Source: Melbourne University 

A3.2 Energy Storage Systems forecast 

A3.2.1 Installed capacity forecast 

The CSIRO provided AEMOõs forecast of Energy Storage Systems (ESS). The ESS forecast is behind-the-meter 

residential and business batteries integrated with PV systems less than 100 kW. These forecasts do not include 

grid-connected batteries.  

The main drivers for the ESS installed capacity forecast were: 

¶ State and Federal incentive schemes. 

¶ The payback period for integrated PV and ESS systems considering forecast retail prices. 

¶ Population growth. 

¶ The uptake of rooftop PV systems (as ESS is forecast as an integrated PV and ESS system) 

A3.2.2 ESS charge discharge profile used in minimum and maximum demand 
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CSIRO also provided AEMO the daily charge and discharge profile for behind-the-meter ESS used in the 

minimum and maximum demand modelling. The profiles were based on historical solar irradiance (as ESS 

charges of the rooftop PV) and with the strategy to minimise household/commercial business bills without 

any concern for whether the aggregate outcome is also optimised for the electricity system. In the strategy, 

the consumer considers the price of electricity at the time, the feed-in-tariff to export to the grid, the retail 

price as well as the opportunity cost for the energy being available later in the day. 

A3.2.3 ESS in annual consumption 

For the purpose of annual consumption, ESS simply stores energy to use later ð it does not generate energy 

like rooftop PV. So, ESS consumes energy due to its round-trip efficiency of around 90%. That is, for the 

amount of installed capacity in the system in kWh, ESS suffers 10% losses, effectively acting like consumption 

in a similar way as network losses. This load is accounted for in business and residential consumption 

forecasts. 
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A4.1.1 Electric vehicles forecast 

The CSIRO provided AEMOõs forecast of electric vehicles (EVs), including residential, light commercial, and 

heavy commercial such as buses and trucks. The CSIRO report is available on AEMOõs forecasting website46. 

The main drivers for the EV forecast were: 

¶ Relative price between EV and alternatives. 

¶ Payback period ð EVs have higher upfront costs in the initial period of the forecast but lower òfueló cost as 

kW per km. 

¶ Level of increased ride sharing ð reducing the number of vehicles. 

¶ Battery and technology improvements. 

A4.1.2 Electric vehicles charge profiles used in minimum and maximum demand 

CSIRO also provided AEMO the daily charge and discharge profile for EVs used in the minimum and 

maximum demand modelling. The profiles were based on a study of around 1,000 vehicles in the UK and 

adjusted for Australian driving patterns and retail pricing structures.  

CSIRO provided three different charge profiles: 

¶ Convenience charging, where the average driver plugs their vehicle into charge as soon as they get home 

in the case of residential. This charge profile represents about a 40% diversity factor recognising that 

residential vehicles get home at different times of day. 

¶ Smart day charge, where the assumption is made that vehicles are incentivised and able to charge in the 

middle of the day during the solar trough and avoiding charging during peak electricity demand times. 

¶ Smart night charge ð where the assumption is made that vehicles are incentivised and able to charge 

overnight outside of peak hours. 

The charge profiles were used in the minimum and maximum demand simulation process. 

A4.1.3 Electric vehicles annual consumption 

For the purpose of annual consumption, EVs travel a certain number of kilometres in a year, with a certain 

level of efficiency per charge. The time of charge is not important when considering annual consumption. 

 

                                                      
46 https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/NEM-Electricity-Statement-of-Opportunities 
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A5.1 Connections 

As the retail market operator for most Australian electricity retail markets (except NT and TAS), AEMO has 

access to historical connections data for these markets, historical connections data for the other markets are 

acquired from a confidential survey. AEMO forecast the number of new connections to the electricity network, 

starting from the most recent data history, as this is a key driver for residential electricity demand. The 

number of new connections is driven by demographic and social factors like population projections and 

changes to household density.  

The electricity connection forecasts were made up of two components, residential and non-residential 

electricity connection forecasts. AEMO only used the residential electricity connections to forecast residential 

sector consumption. The non-residential component was captured by the commercial sector which is driven 

by economic indicators. Therefore, AEMO underwent a process of splitting the residential connections 

projections from the non-residential connections47.  

Residential electricity connections are determined by:  

¶ Forecasting the total number of households for each state: 

ð To forecast the number of households for each state, AEMO projected the number of dwellings based 

on the Housing Industry Association (HIA) dwelling completion forecasts and the Australian Bureau of 

Statistics (ABS) population and density forecasts.  

ð The starting point was the current number of residential connections as reported by network 

businesses, used as proxy for households. The HIA growth forecasts were applied to the historical 

number of households from the previous year, with HIAõs forecasts implemented for the short-term 

forecast (the first three years) before transitioning into the ABS population and density forecasts over 

the medium to long-term. 

¶ Forecasting the number of residential electricity connections. The total number of electricity connections 

was assumed to be a single connection for each household over the outlook period. This assumption 

appears to be consistent with the historical number of electricity connections of each network operator for 

each state. 

HIA forecasts have been slightly modified by AEMO so that the long-term growth rate converges smoothly 

into the growth rate of the long-term ABS population projections.48 HIA provided forecasts for the period 

2018-19 to 2025-26. Beyond 2026, the number of connections was forecast using the same year-on-year 

growth rate as the ABS population projections.  

                                                      
47 Residential connections forecasts are available on AEMOõs Forecasting Data Portal. Please see http://forecasting.aemo.com.au. 

48 Australian Bureau of Statistics, 2013, Population Projections, Australia 2012 (base), cat. no. 3222.0. 

http://forecasting.aemo.com.au/
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A5.2 Uptake and use of electric appliances 

AEMO uses appliance data from the Australian Government Department of the Environment and Energy49 to 

forecast growth in electricity consumption by the residential sector.  

The data allowed AEMO to estimate changes to the level of energy services supplied by electricity per 

households across the NEM.  Energy services here is a measure based on the number of appliances per 

category across the NEM, their usage hours, and their capacity and size. Figure 13 illustrates the difference 

between energy services and energy consumption.  

Figure 13  Energy services vs energy consumption  

 

 
 

A5.2.1 Appliance growth calculation 

The following lists how AEMO calculates energy services by appliance group per connection. òAppliance 

penetrationó is the number of appliances in total divided by the number of connections. 

¶ Heating/cooling: Appliance penetration × output capacity of appliance × hours used per year. 

¶ White goods: Appliance penetration × capacity (volume of freezer/refrigerators/washing machine) × 

number of times used per year (dishwashers, washing machines and dryers only). 

¶ Home entertainment: Number of appliances × hours used per year × size (TVs only). 

¶ Lighting: Number of light fittings. 

                                                      
49 AEMO would like to thank the E3 Committee for access to the appliance model underpinning the 2015 Residential Baseline Study for Australia 2000 ð 2030, 

available at: www.energyrating.com.au .  

http://www.energyrating.com.au/



















