

# REGIONS AND MARGINAL LOSS FACTORS: FY 2015–16

NATIONAL ELECTRICITY MARKET

Published: 5 June 2015









## IMPORTANT NOTICE

## **Purpose**

This document has been prepared by AEMO under clauses 2A.1.3 and 3.6 of the National Electricity Rules (Rules), and has effect only for the purposes set out in the Rules. The Rules and the National Electricity Law (Law) prevail over this document to the extent of any inconsistency.

#### **Disclaimer**

This document might also contain explanatory information. Explanatory information does not constitute legal or business advice, and should not be relied on as a substitute for obtaining detailed advice about the Law, the Rules, or any other applicable laws, procedures or policies. AEMO has made every effort to ensure the quality of the information but cannot guarantee its accuracy or completeness.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this document:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this document; and
- are not liable (whether by reason of negligence or otherwise) for any statements or representations
  in this document, or any omissions from it, or for any use or reliance on the information in it.

Copyright 2015. Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the copyright permissions on AEMO's website.

© 2014. The material in this publication may be used in accordance with the copyright permissions on AEMO's website.





# **VERSION RELEASE HISTORY**

| Version No. | Release date  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0         | 05 June 2015  | Updates to the following:  New TNI for Boco Rock Wind Farm. Addition of MLF for Canunda Wind Farm after change to Market Generator. Disaggregation of Laverton North units. Disaggregation of Valley Power units Correction of MLF for Morwell TS and Woodlawn Bioreactor. Carlingford (NCAR) allocated to Sydney West (NSW1) instead of Sydney North (NSN1) Correction of voltage information for some TNIs. Correction of typographical error for the 2014-15 MLF for Taralga Wind Farm. Correction of typographical error for the Hunter Valley GT TNI Correction of typographical error for the TNI associated to Eastern Creek Removal of Munmorah TNI NMN1 from the NSW Generation Table. Change of Kangaroo Valley (Shoalhaven) TNI from NSHL to NSHN. Removal of Brandy Hill TNI NBH1, as it is inactive. |
| 1.0         | 01 April 2015 | <ul> <li>Final document now includes modifications to MLFs due to:</li> <li>Correction to the network model at Boyne Island.</li> <li>Correction to volume weighting of MLFs for some TNIs.</li> <li>Reviewed TNIs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1         | 20 March 2015 | Draft version published                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |





## **EXECUTIVE SUMMARY**

This document details the 2015–16 Marginal Loss Factors (MLFs) that represent electrical transmission losses across the five regions in the National Electricity Market (NEM) – Queensland, NSW, Victoria, South Australia, and Tasmania. This is as required by clause 3.6 of the National Electricity Rules (Rules). This document also serves as the Regions Publication under clause 2A.1.3 of the Rules.

Other information in this document related to marginal losses for 2015–16 includes:

- Inter-regional loss factor and loss equations.
- Virtual Transmission Nodes (VTNs).
- Connection point Transmission Node Identifiers (TNIs).
- Regions, Regional Reference Nodes (RRNs), and region boundaries.
- Brief overview of the Forward Looking Loss Factors (FLLF) methodology used by AEMO to calculate MLFs and inter-regional loss factor equations.

Major changes in load and generation patterns have characterised the 2015–16 MLF calculation compared to the 2014–15 MLF study. The demand forecast has reduced in all regions. Reduced generation forecast in Tasmania has reduced modelled power exports to Victoria. Reduced thermal generation in South Australia has increased modelled power imports to South Australia. Reduced load in Queensland has increased power exports to NSW.

These flow changes have an impact on electrical losses, and drive significant changes in MLFs in 2015–16 from 2014–15. They are:

- An increase in MLFs at connection points in central and Southern Tasmania.
- A reduction in MLFs at connection points in the Riverland area in South Australia, and a reduction in MLFs at connection points in South-East of South Australia.
- · A reduction in MLFs at connection points in Northern Victoria.
- An increase in MLFs at connection points in Southern NSW, and a reduction in MLFs at connection points in northern NSW.
- A reduction in MLFs at connection points in Northern Queensland, and an increase in MLFs at connection points in Central and Southern Queensland.

AEMO appreciates that the MLFs have financial implications for NEM participants, and for this reason AEMO takes care in their calculation and applies a number of quality assurance steps during the process. This includes having AEMO's methods, data and results benchmarked and verified by external consultants each year.





# **CONTENTS**

| EXE                             | CUTIVE SUMMARY                                                                                                                                                                                                                       | 2                          |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1.                              | MARGINAL LOSS FACTORS BY REGION                                                                                                                                                                                                      | 6                          |
| 1.1<br>1.2<br>1.3               | Queensland Marginal Loss Factors  NSW Marginal Loss Factors  Victoria Marginal Loss Factors                                                                                                                                          | 6<br>11<br>18              |
| 1.4<br>1.5                      | South Australia Marginal Loss Factors Tasmania Marginal Loss Factors                                                                                                                                                                 | 22<br>25                   |
| 2.                              | CHANGES IN MARGINAL LOSS FACTORS                                                                                                                                                                                                     | 28                         |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.5 | Changes to Marginal Loss Factors in Queensland Changes to Marginal Loss Factors in NSW Changes to Marginal Loss Factors in Victoria Changes to Marginal Loss Factors in South Australia Changes to Marginal Loss Factors in Tasmania | 28<br>28<br>29<br>29<br>29 |
| 3.                              | INTER-REGIONAL LOSS FACTOR EQUATIONS                                                                                                                                                                                                 | 30                         |
| 4.                              | INTER-REGIONAL LOSS EQUATIONS                                                                                                                                                                                                        | 33                         |
| <b>5</b> .                      | BASSLINK, TERRANORA, MURRAYLINK LOSS                                                                                                                                                                                                 |                            |
|                                 | EQUATIONS                                                                                                                                                                                                                            | 35                         |
| 5.1<br>5.2<br>5.3               | Basslink<br>Murraylink<br>Terranora                                                                                                                                                                                                  | 35<br>36<br>38             |
| 6.                              | PROPORTIONING OF INTER-REGIONAL LOSSES TO                                                                                                                                                                                            |                            |
|                                 | REGIONS                                                                                                                                                                                                                              | 40                         |
| 7.                              | REGIONS AND REGIONAL REFERENCE NODES                                                                                                                                                                                                 | 41                         |
| 7.1<br>7.2                      | Regions and Regional Reference Nodes Region boundaries                                                                                                                                                                               | 41<br>41                   |
| 8.                              | VIRTUAL TRANSMISSION NODES                                                                                                                                                                                                           | 42                         |
| 8.1<br>8.2<br>8.3               | NSW Virtual Transmission Nodes South Australia Virtual Transmission Nodes Tasmania Virtual Transmission Nodes                                                                                                                        | 42<br>42<br>42             |
| APP                             | ENDIX A. BACKGROUND TO MARGINAL LOSS FACTO                                                                                                                                                                                           | DRS43                      |
| A.1<br>A.2                      | Rules requirements for the Marginal Loss Factor calculation<br>Interpretation of Marginal Loss Factors                                                                                                                               | 43<br>43                   |





| APPE     | NDIX B. METHODOLOGY, INPUTS AND ASSUMPTIONS                                  | 45 |
|----------|------------------------------------------------------------------------------|----|
| B.1      | Marginal Loss Factors calculation Methodology                                | 45 |
| B.2      | Load data requirements for the Marginal Loss Factors calculation             | 45 |
| B.3      | Generation data requirements for the Marginal Loss Factors calculation       | 46 |
| B.4      | Network representation in the Marginal Loss Factors calculation              | 47 |
| B.5      | Interconnector capability                                                    | 49 |
| B.6      | Calculation of Marginal Loss Factors                                         | 49 |
| GLOS     | SARY                                                                         | 51 |
| TABL     | ES                                                                           |    |
| Table 1  | Queensland Loads                                                             | 6  |
| Table 2  | Queensland Generation                                                        | 9  |
| Table 3  | Queensland Embedded Generation                                               | 10 |
| Table 4  | NSW Loads                                                                    | 11 |
| Table 5  | NSW Generation                                                               | 14 |
| Table 6  | NSW Embedded Generation                                                      | 15 |
| Table 7  | ACT Loads                                                                    | 16 |
| Table 8  | ACT Embedded Generation                                                      | 16 |
| Table 9  | Victoria Generation                                                          | 19 |
| Table 10 | Victoria Embedded Generation                                                 | 20 |
| Table 11 | South Australia Loads                                                        | 22 |
| Table 12 | South Australia Generation                                                   | 23 |
| Table 13 | South Australia Embedded Generation                                          | 24 |
| Table 14 | Tasmania Loads                                                               | 25 |
|          | Tasmania Generation                                                          | 26 |
|          | Tasmania Embedded Generation                                                 | 27 |
| Table 17 | South Pine 275 referred to Sydney West 330 MLF versus NSW to Queensland flow |    |
|          | Coefficient statistics                                                       | 31 |
| Table 18 | Sydney West 330 referred to Thomastown 66 MLF versus Victoria to NSW flow    |    |
|          | Coefficient statistics                                                       | 31 |
| FIGU     | IRES                                                                         |    |
| Figure 1 | MLF (South Pine 275 referred to Sydney West 330)                             | 31 |
| Figure 2 | MLF (Sydney West 330 referred toThomastown 66)                               | 31 |
| Figure 3 | MLF (Torrens Island 66 referred to Thomastown 66)                            | 32 |
| Figure 4 | Average Losses for New South Wales - Queensland Notional Link                | 34 |
| Figure 5 | Average Losses for Victoria - New South Wales Notional Link                  | 34 |
| Figure 6 | Average Losses for Victoria – SA National Link                               | 34 |
| Figure 7 | Murraylink MLF (Torrens Island 66 referred to Thomastown 66)                 | 36 |
| Figure 8 | Average Losses for Murraylink Interconnector (Torrens Island 66 referred to  |    |
|          | Thomastown 66)                                                               | 37 |





| Figure 9 Terranora Interconnector MLF (South Pine 275 referred to Sydney West 330)            | 39 |
|-----------------------------------------------------------------------------------------------|----|
| Figure 10 Average Losses for Terranora Interconnector (South Pine 275 referred to Sydney West |    |
| 330)                                                                                          | 39 |





# 1. MARGINAL LOSS FACTORS BY REGION

This section shows the 2015–16 MLFs values for every load or generation TNI in each region.

## 1.1 Queensland Marginal Loss Factors

Table 1 Queensland Loads

| Location                       | Voltage (kV) | TNI  | 2015-16 MLF | 2014-15 MLF |
|--------------------------------|--------------|------|-------------|-------------|
| Abermain                       | 33           | QABM | 0.9965      | 0.9943      |
| Abermain                       | 110          | QABR | 0.9945      | 0.9915      |
| Alan Sherriff                  | 132          | QASF | 1.0855      | 1.0948      |
| Algester                       | 33           | QALG | 1.0112      | 1.0127      |
| Alligator Creek                | 132          | QALH | 1.0627      | 1.0817      |
| Alligator Creek                | 33           | QALC | 1.0627      | 1.0809      |
| Ashgrove West                  | 33           | QAGW | 1.0152      | 1.0270      |
| Ashgrove West                  | 110          | QCBW | 1.0141      | 1.0237      |
| Belmont                        | 110          | QBMH | 1.0067      | 1.0061      |
| Belmont Wecker Road            | 33           | QBBS | 1.0012      | 1.0040      |
| Belmont Wecker Road            | 11           | QMOB | 1.0313      | 1.0335      |
| Biloela                        | 66/11        | QBIL | 0.9625      | 0.9497      |
| Blackstone                     | 110          | QBKS | 0.9953      | 0.9927      |
| Blackwater                     | 66/11        | QBWL | 1.0575      | 1.0548      |
| Blackwater                     | 132          | QBWH | 1.0565      | 1.0537      |
| Bluff                          | 132          | QBLF | 1.0594      | 1.0555      |
| Bolingbroke                    | 132          | QBNB | 1.0447      | 1.0543      |
| Bowen North                    | 66           | QBNN | 1.0586      | 1.0748      |
| Boyne Island                   | 275          | QBOH | 1.0050      | 0.9999      |
| Boyne Island                   | 132          | QBOL | 1.0054      | 0.9998      |
| Braemer - Kumbarilla Park      | 275          | QBRE | 0.9593      | 0.9510      |
| Bulli Creek (Essential Energy) | 132          | QBK2 | 0.9608      | 0.9523      |
| Bulli Creek (Waggamba)         | 132          | QBLK | 0.9608      | 0.9523      |
| Bundamba                       | 110          | QBDA | 0.9961      | 0.9938      |
| Burton Downs                   | 132          | QBUR | 1.0679      | 1.0845      |
| Cairns                         | 22           | QCRN | 1.0928      | 1.1148      |
| Cairns City                    | 132          | QCNS | 1.0914      | 1.1117      |
| Callemondah (Rail)             | 132          | QCMD | 0.9930      | 0.9873      |
| Calliope River                 | 132          | QCAR | 0.9906      | 0.9836      |
| Cardwell                       | 22           | QCDW | 1.0893      | 1.1025      |
| Chinchilla                     | 132          | QCHA | 0.9722      | 0.9726      |
| Clare                          | 66           | QCLR | 1.0990      | 1.1110      |
| Collinsville Load              | 33           | QCOL | 1.0637      | 1.0723      |
| Columboola                     | 132          | QCBL | 0.9651      | 0.9522      |
| Coppabella (Rail)              | 132          | QCOP | 1.0767      | 1.0974      |
| Dan Gleeson                    | 66           | QDGL | 1.0869      | 1.1035      |
| Dingo (Rail)                   | 132          | QDNG | 1.0481      | 1.0333      |
| Duaringa                       | 132          | QDRG | 1.0381      | 1.0332      |
| Dysart                         | 66/22        | QDYS | 1.0696      | 1.0834      |
|                                |              |      |             |             |





| Location                 | Voltage (kV) | TNI  | 2015-16 MLF | 2014-15 MLF |
|--------------------------|--------------|------|-------------|-------------|
| Eagle Downs Mine         | 132          | QEGD | 1.0798      | 1.1026      |
| Edmonton                 | 22           | QEMT | 1.0934      | 1.1188      |
| Egans Hill               | 66           | QEGN | 0.9880      | 0.9838      |
| El Arish                 | 22           | QELA | 1.0922      | 1.1123      |
| Garbutt                  | 66           | QGAR | 1.0887      | 1.1026      |
| Gin Gin                  | 132          | QGNG | 1.0024      | 1.0020      |
| Gladstone South          | 66/11        | QGST | 0.9961      | 0.9932      |
| Goodna                   | 33           | QGDA | 1.0013      | 1.0010      |
| Goonyella Riverside Mine | 132          | QGYR | 1.0973      | 1.1191      |
| Grantleigh (Rail)        | 132          | QGRN | 1.0116      | 0.9941      |
| Gregory (Rail)           | 132          | QGRE | 1.0288      | 1.0356      |
| Ingham                   | 66           | QING | 1.0936      | 1.1159      |
| Innisfail                | 22           | QINF | 1.0960      | 1.1195      |
| Invicta Load             | 132          | QINV | 1.1033      | 1.0877      |
| Kamerunga                | 22           | QKAM | 1.0949      | 1.1178      |
| Kemmis                   | 132          | QEMS | 1.0581      | 1.0702      |
| King Creek               | 132          | QKCK | 1.0700      | 1.0894      |
| Lilyvale                 | 66           | QLIL | 1.0373      | 1.0352      |
| Lilyvale (Barcaldine)    | 132          | QLCM | 1.0328      | 1.0314      |
| Loganlea                 | 33           | QLGL | 1.0118      | 1.0099      |
| Loganlea                 | 110          | QLGH | 1.0078      | 1.0055      |
| Mackay                   | 33           | QMKA | 1.0602      | 1.0731      |
| Middle Ridge (Energex)   | 110          | QMRX | 0.9729      | 0.9732      |
| Middle Ridge (Ergon)     | 110          | QMRG | 0.9729      | 0.9732      |
| Mindi (Rail)             | 132          | QMND | 1.0365      | 1.0406      |
| Molendinar               | 110          | QMAR | 1.0042      | 1.0042      |
| Molendinar               | 33           | QMAL | 1.0039      | 1.0037      |
| Moranbah (Mine)          | 66           | QMRN | 1.0890      | 1.1070      |
| Moranbah (Town)          | 11           | QMRL | 1.0824      | 1.1000      |
| Moranbah South (Rail)    | 132          | QMBS | 1.0871      | 1.1087      |
| Moranbah Substation      | 132          | QMRH | 1.0839      | 1.1058      |
| Moura                    | 66/11        | QMRA | 1.0056      | 0.9992      |
| Mt McLaren (Rail)        | 132          | QMTM | 1.0875      | 1.1259      |
| Mudgeeraba               | 33           | QMGL | 1.0041      | 1.0023      |
| Mudgeeraba               | 110          | QMGB | 1.0036      | 1.0016      |
| Murarrie (Belmont)       | 110          | QMRE | 1.0069      | 1.0071      |
| Nebo                     | 11           | QNEB | 1.0343      | 1.0388      |
| Newlands                 | 66           | QNLD | 1.0977      | 1.1173      |
| North Goonyella          | 132          | QNGY | 1.0981      | 1.1225      |
| Norwich Park (Rail)      | 132          | QNOR | 1.0559      | 1.0640      |
| Oakey                    | 110          | QOKT | 0.9725      | 0.9750      |
| Oonooie (Rail)           | 132          | QOON | 1.0703      | 1.0899      |
| Orana LNG                | 275          | QORH | 0.9625      | 0.9517      |
| Palmwoods                | 132/110      | QPWD | 1.0124      | 1.0155      |
| Pandoin                  | 132          | QPAN | 0.9914      | 0.9870      |
| Pandoin                  | 66           | QPAL | 0.9909      | 0.9854      |
| Peak Downs (Rail)        | 132          | QPKD | 1.0832      | 1.1030      |
| . ()                     | .02          |      |             |             |





| Location                                 | Voltage (kV)       | TNI  | 2015-16 MLF | 2014-15 MLF |
|------------------------------------------|--------------------|------|-------------|-------------|
| Pioneer Valley                           | 66                 | QPIV | 1.0568      | 1.0717      |
| Proserpine                               | 66                 | QPRO | 1.0937      | 1.0956      |
| Queensland Alumina Ltd (Gladstone South) | 132                | QQAH | 0.9974      | 0.9921      |
| Queensland Nickel (Yabulu)               | 132                | QQNH | 1.0779      | 1.0809      |
| Raglan                                   | 275                | QRGL | 0.9886      | 0.9809      |
| Redbank Plains                           | 11                 | QRPN | 0.9996      | 0.9978      |
| Richlands                                | 33                 | QRLD | 1.0099      | 1.0137      |
| Rockhampton                              | 66                 | QROC | 0.9949      | 0.9901      |
| Rocklands (Rail)                         | 132                | QRCK | 0.9858      | 0.9787      |
| Rocklea (Archerfield)                    | 110                | QRLE | 1.0039      | 1.0004      |
| Ross                                     | 132                | QROS | 1.0764      | 1.0870      |
| Runcorn                                  | 33                 | QRBS | 1.0123      | 1.0135      |
| South Pine                               | 110                | QSPN | 1.0057      | 1.0071      |
| Stony Creek                              | 132                | QSYC | 1.0805      | 1.0962      |
| Sumner                                   | 110                | QSUM | 1.0044      | 1.0027      |
| Tangkam (Dalby)                          | 110                | QTKM | 0.9747      | 0.9702      |
| Tarong                                   | 66                 | QTRL | 0.9711      | 0.9684      |
| Teebar Creek                             | 132                | QTBC | 1.0107      | 1.0126      |
| Tennyson                                 | 33                 | QTNS | 1.0076      | 1.0043      |
| Tennyson (Rail)                          | 110                | QTNN | 1.0056      | 1.0017      |
| Townsville East                          | 66                 | QTVE | 1.0886      | 1.1046      |
| Townsville South                         | 66                 | QTVS | 1.0872      | 1.1020      |
| Townsville South (KZ)                    | 132                | QTZS | 1.0916      | 1.1022      |
| Tully                                    | 22                 | QTLL | 1.1003      | 1.1317      |
| Turkinje                                 | 66                 | QTUL | 1.1137      | 1.1355      |
| Turkinje (Craiglee)                      | 132                | QTUH | 1.1127      | 1.1343      |
| Wandoan South                            | 132                | QWSH | 0.9744      | 0.9587      |
| Wandoo (Rail)                            | 132                | QWAN | 1.0387      | 1.0526      |
| Wivenhoe Pump                            | 275                | QWIP | 0.9941      | 0.9930      |
| Woolooga (Energex)                       | 132                | QWLG | 1.0062      | 1.0083      |
| Woolooga (Ergon)                         | 132                | QWLN | 1.0062      | 1.0083      |
| Woree                                    | 132                | QWRE | 1.0902      | 1.1127      |
| Wotonga (Rail)                           | <del>275</del> 132 | QWOT | 1.0769      | 1.0950      |
| Wycarbah                                 | 132                | QWCB | 0.9901      | 0.9859      |
| Yarwun – Boat Creek (Ergon)              | 132                | QYAE | 0.9901      | 0.9842      |
| Yarwun – Rio Tinto                       | 132                | QYAR | 0.9889      | 0.9840      |





Table 2 Queensland Generation

| Location Queensland Gene             | Voltage       | DUID     | Connection      | TNI  | 2015-16 MLF | 2014-15 MLF |
|--------------------------------------|---------------|----------|-----------------|------|-------------|-------------|
| Barron Gorge PS Unit 1               | ( <b>kV</b> ) | BARRON-1 | Point ID  QBGH1 | QBGH | 1.0677      | 1.0883      |
| Barron Gorge PS Unit 2               | 132           | BARRON-2 | QBGH2           | QBGH | 1.0677      | 1.0883      |
| Braemar PS Unit 1                    | 275           | BRAEMAR1 | QBRA1           | QBRA | 0.9567      | 0.9480      |
| Braemar PS Unit 2                    | 275           | BRAEMAR2 | QBRA2           | QBRA | 0.9567      | 0.9480      |
| Braemar PS Unit 3                    | 275           | BRAEMAR3 | QBRA3           | QBRA | 0.9567      | 0.9480      |
| Braemar Stage 2 PS Unit 5            | 275           | BRAEMAR5 | QBRA5B          | QBRA | 0.9567      | 0.9480      |
| Braemar Stage 2 PS Unit 6            | 275           | BRAEMAR6 | QBRA6B          | QBRA | 0.9567      | 0.9480      |
| Braemar Stage 2 PS Unit 7            | 275           | BRAEMAR7 | QBRA7B          | QBRA | 0.9567      | 0.9480      |
| Callide PS Load                      | 132           | CALLNL1  | QCAX            | QCAX | 0.9590      | 0.9412      |
| Callide A PS Unit 4                  | 132           | CALL_A_4 | QCAA4           | QCAA | 0.9563      | 0.9365      |
| Callide A PS Unit 4 Load             | 132           | CALLNL4  | QCAA2           | QCAA | 0.9563      | 0.9365      |
| Callide B PS Unit 1                  | 275           | CALL_B_1 | QCAB1           | QCAB | 0.9671      | 0.9525      |
| Callide B PS Unit 2                  | 275           | CALL_B_2 | QCAB2           | QCAB | 0.9671      | 0.9525      |
| Callide C PS Unit 3                  | 275           | CPP_3    | QCAC3           | QCAC | 0.9648      | 0.9525      |
| Callide C PS Unit 4                  | 275           | CPP_4    | QCAC4           | QCAC | 0.9648      | 0.9525      |
| Condamine PS                         | 132           | CPSA     | QCND1C          | QCND | 0.9642      | 0.9519      |
| Darling Downs PS                     | 275           | DDPS1    | QBRA8D          | QBRA | 0.9567      | 0.9480      |
| Gladstone PS (132 kV) Unit 3         | 132           | GSTONE3  | QGLD3           | QGLL | 0.9855      | 0.9777      |
| Gladstone PS (132 kV) Unit 4         | 132           | GSTONE4  | QGLD4           | QGLL | 0.9855      | 0.9777      |
| Gladstone PS (132kV) Load            | 132           | GLADNL1  | QGLL            | QGLL | 0.9855      | 0.9777      |
| Gladstone PS (275 kV) Unit 1         | 275           | GSTONE1  | QGLD1           | QGLH | 0.9868      | 0.9807      |
| Gladstone PS (275 kV) Unit 2         | 275           | GSTONE2  | QGLD2           | QGLH | 0.9868      | 0.9807      |
| Gladstone PS (275 kV) Unit 5         | 275           | GSTONE5  | QGLD5           | QGLH | 0.9868      | 0.9807      |
| Gladstone PS (275 kV) Unit 6         | 275           | GSTONE6  | QGLD6           | QGLH | 0.9868      | 0.9807      |
| Kareeya PS Unit 1                    | 132           | KAREEYA1 | QKAH1           | QKYH | 1.0690      | 1.0870      |
| Kareeya PS Unit 2                    | 132           | KAREEYA2 | QKAH2           | QKYH | 1.0690      | 1.0870      |
| Kareeya PS Unit 3                    | 132           | KAREEYA3 | QKAH3           | QKYH | 1.0690      | 1.0870      |
| Kareeya PS Unit 4                    | 132           | KAREEYA4 | QKAH4           | QKYH | 1.0690      | 1.0870      |
| Kogan Creek PS                       | 275           | KPP_1    | QBRA4K          | QWDN | 0.9582      | 0.9493      |
| Koombooloomba                        | 132           | KAREEYA5 | QKYH5           | QKYH | 1.0690      | 1.0870      |
| Millmerran PS Unit 1<br>(Millmerran) | 330           | MPP_1    | QBCK1           | QMLN | 0.9612      | 0.9532      |
| Millmerran PS Unit 2<br>(Millmerran) | 330           | MPP_2    | QBCK2           | QMLN | 0.9612      | 0.9532      |
| Mt Stuart PS Unit 1                  | 132           | MSTUART1 | QMSP1           | QMSP | 1.0156      | 1.0041      |
| Mt Stuart PS Unit 2                  | 132           | MSTUART2 | QMSP2           | QMSP | 1.0156      | 1.0041      |
| Mt Stuart PS Unit 3                  | 132           | MSTUART3 | QMSP3M          | QMSP | 1.0156      | 1.0041      |
| Oakey PS Unit 1                      | 110           | OAKEY1   | QOKY1           | QOKY | 0.9498      | 0.9519      |
| Oakey PS Unit 2                      | 110           | OAKEY2   | QOKY2           | QOKY | 0.9498      | 0.9519      |
| Stanwell PS Load                     | 132           | STANNL1  | QSTX            | QSTX | 0.9897      | 0.9858      |
| Stanwell PS Unit 1                   | 275           | STAN-1   | QSTN1           | QSTN | 0.9784      | 0.9693      |
| Stanwell PS Unit 2                   | 275           | STAN-2   | QSTN2           | QSTN | 0.9784      | 0.9693      |
| Stanwell PS Unit 3                   | 275           | STAN-3   | QSTN3           | QSTN | 0.9784      | 0.9693      |
| Stanwell PS Unit 4                   | 275           | STAN-4   | QSTN4           | QSTN | 0.9784      | 0.9693      |
| Swanbank E GT                        | 275           | SWAN_E   | QSWE            | QSWE | 0.9972      | 0.9934      |
| Tarong North PS                      | 275           | TNPS1    | QTNT            | QTNT | 0.9707      | 0.9678      |





| Location                   | Voltage<br>(kV) | DUID     | Connection Point ID | TNI  | 2015–16 MLF | 2014–15 MLF |
|----------------------------|-----------------|----------|---------------------|------|-------------|-------------|
| Tarong PS Unit 1           | 275             | TARONG#1 | QTRN1               | QTRN | 0.9708      | 0.9677      |
| Tarong PS Unit 2           | 275             | TARONG#2 | QTRN2               | QTRN | 0.9708      | 0.9677      |
| Tarong PS Unit 3           | 275             | TARONG#3 | QTRN3               | QTRN | 0.9708      | 0.9677      |
| Tarong PS Unit 4           | 275             | TARONG#4 | QTRN4               | QTRN | 0.9708      | 0.9677      |
| Wivenhoe Generation Unit 1 | 275             | W/HOE#1  | QWIV1               | QWIV | 0.9895      | 0.9891      |
| Wivenhoe Generation Unit 2 | 275             | W/HOE#2  | QWIV2               | QWIV | 0.9895      | 0.9891      |
| Wivenhoe Pump 1            | 275             | PUMP1    | QWIP1               | QWIP | 0.9941      | 0.9930      |
| Wivenhoe Pump 2            | 275             | PUMP2    | QWIP2               | QWIP | 0.9941      | 0.9930      |
| Yabulu PS                  | 132             | YABULU   | QTYP                | QTYP | 1.0337      | 1.0292      |
| Yarwun PS                  | 132             | YARWUN_1 | QYAG1R              | QYAG | 0.9879      | 0.9837      |

Table 3 Queensland Embedded Generation

| Location                                        | Voltage<br>(kV)    | DUID     | Connection<br>Point ID | TNI  | 2015–16 MLF | 2014-15 MLF |
|-------------------------------------------------|--------------------|----------|------------------------|------|-------------|-------------|
| Barcaldine PS - Lilyvale                        | 132                | BARCALDN | QBCG                   | QBCG | 0.9935      | 0.9871      |
| Browns Plains Landfill Gas PS                   | 110                | BPLANDF1 | QLGH3B                 | QLGH | 1.0078      | 1.0055      |
| Daandine PS                                     | 110                | DAANDINE | QTKM1                  | QTKM | 0.9747      | 0.9702      |
| German Creek Generator                          | 66                 | GERMCRK  | QLIL2                  | QLIL | 1.0373      | 1.0352      |
| Isis CSM                                        | 132                | ICSM     | QGNG1I                 | QTBC | 1.0107      | 1.0126      |
| Mackay GT                                       | 33                 | MACKAYGT | QMKG                   | QMKG | 1.0550      | 1.0305      |
| Moranbah Gen                                    | 11                 | MORANBAH | QMRL1M                 | QMRL | 1.0824      | 1.1000      |
| Moranbah North PS                               | 66                 | MBAHNTH  | QMRN1P                 | QMRN | 1.0890      | 1.1070      |
| Oakey Creek Generator                           | 66                 | OAKYCREK | QLIL1                  | QLIL | 1.0373      | 1.0352      |
| Rochedale Renewable Energy<br>Plant             | 110                | ROCHEDAL | QBMH2                  | QBMH | 1.0067      | 1.0061      |
| Rocky Point Gen (Loganlea 110kV)                | 110                | RPCG     | QLGH2                  | QLGH | 1.0078      | 1.0055      |
| Roghan Road Generator                           | 110                | EDLRGNRD | QSPN2                  | QSPN | 1.0057      | 1.0071      |
| Roma PS Unit 7 - Columboola                     | 132                | ROMA_7   | QRMA7                  | QRMA | 0.9591      | 0.9404      |
| Roma PS Unit 8 - Columboola                     | 132                | ROMA_8   | QRMA8                  | QRMA | 0.9591      | 0.9404      |
| Southbank Institute Of Technology               | 110                | STHBKTEC | QCBD1S                 | QCBW | 1.0141      | 1.0237      |
| Suncoast Gold Macadamias Co-<br>Gen (Palmwoods) | <del>110</del> 132 | SUNCOAST | QPWD1                  | QPWD | 1.0124      | 1.0155      |
| Ti Tree BioReactor                              | 33                 | TITREE   | QABM1T                 | QABM | 0.9965      | 0.9943      |
| Whitwood Rd Renewable Energy Plant              | 110                | WHIT1    | QSBK1                  | QBKS | 0.9953      | 0.9927      |
| Windy Hill WF                                   | 66                 | WHILL1   | QTUL                   | QTUL | 1.1137      | 1.1355      |
| Wivenhoe Small Hydro                            | 110                | WIVENSH  | QABR1                  | QABR | 0.9945      | 0.9915      |
| Yabulu Steam Turbine (Garbutt 66kV)             | 66                 | YABULU2  | QGAR1                  | QYST | 1.0428      | 1.0285      |





#### **NSW Marginal Loss Factors**<sup>1</sup> 1.2

Table 4 **NSW Loads** 

| Location                              | Voltage (kV) | TNI         | 2015-16 MLF | 2014-15 MLF |
|---------------------------------------|--------------|-------------|-------------|-------------|
| Albury                                | 132          | NALB        | 0.9779      | 0.9420      |
| Alcan                                 | 132          | NALC        | 0.9943      | 0.9922      |
| Armidale                              | 66           | NAR1        | 0.9905      | 1.0266      |
| Australian Newsprint Mill             | 132          | NANM        | 0.9824      | 0.9421      |
| Balranald                             | 22           | NBAL        | 1.0259      | 0.9728      |
| Beaconsfield North                    | 132          | NBFN        | 1.0065      | 1.0058      |
| Beaconsfield South                    | 132          | NBFS        | 1.0065      | 1.0058      |
| Beaconsfield West                     | 132          | NBFW        | 1.0065      | 1.0058      |
| Belmore Park                          | 132          | NBM1        | 1.0061      | 1.0056      |
| Beresfield                            | 33           | NBRF        | 0.9973      | 0.9958      |
| Beryl                                 | 66           | NBER        | 1.0077      | 1.0155      |
| BHP (Waratah)                         | 132          | NWR1        | 0.9923      | 0.9919      |
| Boambee South                         | 132          | NWST        | 1.0157      | 1.1322      |
| Boggabri East                         | 132          | NBGE        | 1.0578      |             |
| Boggabri North                        | <u>132</u>   | <u>NBGN</u> | 1.0609      |             |
| Brandy Hill                           | 132          | NBH1        | 0.9959      | 0.9941      |
| Brandy Hill                           | 11           | NBHL        | 0.9958      | 0.9941      |
| Broken Hill                           | 22           | NBKG        | 1.0480      | 0.9978      |
| Broken Hill                           | 220          | NBKH        | 1.0427      | 0.9901      |
| Bunnerong                             | 132          | NBG1        | 1.0054      | 1.0054      |
| Bunnerong                             | 33           | NBG3        | 1.0090      | 1.0089      |
| Burrinjuck                            | 132          | NBU2        | 0.9764      | 0.9597      |
| Canterbury                            | 33           | NCTB        | 1.0114      | 1.0090      |
| Canterbury                            | 132          | NCB1        | 1.0041      |             |
| Carlingford                           | 132          | NCAR        | 1.00130018  | 1.0001      |
| Casino                                | 132          | NCSN        | 1.0213      | 1.0907      |
| Charmhaven                            | 11           | NCHM        | 0.9944      | 0.9933      |
| Chullora                              | 132          | NCHU        | 1.0072      | 1.0065      |
| Coffs Harbour                         | 66           | NCH1        | 1.0124      | 1.0631      |
| Coleambally                           | 132          | NCLY        | 1.0004      | 0.9637      |
| Cooma                                 | 66           | NCMA        | 0.9763      | 0.9683      |
| Cooma (AusNet Services)               | 66           | NCM2        | 0.9763      | 0.9683      |
| Cowra                                 | 66           | NCW8        | 1.0099      | 1.0040      |
| Dapto (Endeavour Energy)              | 132          | NDT1        | 0.9916      | 0.9883      |
| Dapto (Essential Energy)              | 132          | NDT2        | 0.9916      | 0.9883      |
| Darlington Point                      | 132          | NDNT        | 0.9961      | 0.9593      |
| Deniliquin                            | 66           | NDN7        | 1.0154      | 0.9833      |
| Dorrigo                               | 132          | NDOR        | 1.0044      | 1.0507      |
| Drummoyne                             | 11           | NDRM        | 1.0122      | 1.0101      |
| Dunoon                                | 132          | NDUN        | 1.0251      | 1.1151      |
| Far North VTN                         |              | NEV1        | 0.9819      | 0.9756      |
| Finley <sup>2</sup> – Dual MLF - Load | 66           | NFNY        | 1.0235      | 0.9752      |
|                                       |              |             |             |             |

The NSW region includes the ACT. ACT generation and load are detailed separately for ease of reference. The dual MLF for Finley TNI (NFNY), is due to the impact of in-feed at Finley.

© AEMO 2014 11





| Location                                    | Voltage (kV) | TNI  | 2015-16 MLF | 2014-15 MLF |
|---------------------------------------------|--------------|------|-------------|-------------|
| Finley <sup>2</sup> – Dual MLF - Generation | 66           | NFNY | 0.9670      | 0.9752      |
| Forbes                                      | 66           | NFB2 | 1.0411      | 1.0517      |
| Gadara                                      | 132          | NGAD | 0.9934      | 0.9652      |
| Glen Innes                                  | 66           | NGLN | 1.0217      | 1.0672      |
| Gosford                                     | 66           | NGF3 | 1.0017      | 1.0001      |
| Gosford                                     | 33           | NGSF | 1.0019      | 0.9992      |
| Green Square                                | 11           | NGSQ | 1.0069      | 1.0060      |
| Griffith                                    | 33           | NGRF | 1.0146      | 0.9773      |
| Gunnedah                                    | 66           | NGN2 | 1.0360      | 1.0571      |
| Haymarket                                   | 132          | NHYM | 1.0068      | 1.0055      |
| Heron's Creek                               | 132          | NHNC | 1.0462      | 1.0860      |
| Holroyd                                     | 132          | NHLD | 1.0029      | 1.0008      |
| Homebush Bay                                | 11           | NHBB | 1.0108      | 1.0082      |
| Ilford                                      | 132          | NLFD | 0.9895      | 0.9882      |
| Ingleburn                                   | 66           | NING | 0.9991      | 0.9977      |
| Inverell                                    | 66           | NNVL | 1.0377      | 1.0786      |
| Kemps Creek                                 | 330          | NKCK | 0.9954      | 0.9943      |
| Kempsey                                     | 66           | NKS2 | 1.0360      | 1.0803      |
| Kempsey                                     | 33           | NKS3 | 1.0391      | 1.0824      |
| Koolkhan                                    | 66           | NKL6 | 1.0250      | 1.0839      |
| Kurnell                                     | 132          | NKN1 | 1.0039      | 1.0037      |
| Kurri                                       | 33           | NKU3 | 0.9969      | 0.9949      |
| Kurri                                       | 11           | NKU1 | 0.9942      | 0.9919      |
| Kurri                                       | 132          | NKUR | 0.9944      | 0.9833      |
| Lake Munmorah                               | 132          | NMUN | 0.9885      | 0.9859      |
| Lane Cove                                   | 132          | NLCV | 1.0082      | 1.0054      |
| Liddell                                     | 33           | NLD3 | 0.9740      | 0.9755      |
| Lismore                                     | 132          | NLS2 | 1.0268      | 1.1047      |
| Liverpool                                   | 132          | NLP1 | 1.0010      | 1.0004      |
| Macarthur                                   | 132          | NMC1 | 0.9913      | 0.9928      |
| Macarthur                                   | 66           | NMC2 | 0.9959      | 0.9950      |
| Macksville                                  | 132          | NMCV | 1.0272      | 1.0735      |
| Macquarie Park                              | 11           | NMQP | 1.0109      | 1.0088      |
| Manildra                                    | 132          | NMLD | 1.0342      | 1.0387      |
| Marrickville                                | 11           | NMKV | 1.0117      | 1.0113      |
| Marulan (Endeavour Energy)                  | 132          | NMR1 | 0.9844      | 0.9772      |
| Marulan (Essential Energy)                  | 132          | NMR2 | 0.9844      | 0.9772      |
| Mason Park                                  | 132          | NMPK | 1.0086      | 1.0059      |
| Meadowbank                                  | 11           | NMBK | 1.0112      | 1.0092      |
| Molong                                      | 132          | NMOL | 1.0302      | 1.0330      |
| Moree                                       | 66           | NMRE | 1.0847      | 1.1208      |
| Morven                                      | 132          | NMVN | 0.9844      | 0.9419      |
| Mt Piper                                    | 66           | NMP6 | 0.9754      | 0.9696      |
| Mudgee                                      | 132          | NMDG | 1.0042      | 1.0089      |
| Mullumbimby                                 | 11           | NML1 | 1.0346      | 1.1466      |
| Mullumbimby                                 | 132          | NMLB | 1.0336      | 1.1416      |





| Location                        | Voltage (kV) | TNI  | 2015-16 MLF | 2014-15 MLF |
|---------------------------------|--------------|------|-------------|-------------|
| Munmorah 330 kV <sup>3</sup>    | 330          | NMN1 | 0.9899      |             |
| Munyang                         | 11           | NMY1 | 0.9549      | 0.9885      |
| Munyang                         | 33           | NMYG | 0.9549      | 0.9885      |
| Murrumbateman                   | 132          | NMBM | 0.9800      | 0.9656      |
| Murrumburrah                    | 66           | NMRU | 0.9950      | 0.9722      |
| Muswellbrook                    | 132          | NMRK | 0.9828      | 0.9757      |
| Nambucca Heads                  | 132          | NNAM | 1.0237      | 1.0721      |
| Narrabri                        | 66           | NNB2 | 1.0699      | 1.1056      |
| Newcastle                       | 132          | NNEW | 0.9926      | 0.9900      |
| North of Broken Bay VTN         |              | NEV2 | 0.9949      | 0.9931      |
| Orange                          | 66           | NRGE | 1.0398      | 1.0421      |
| Orange                          | 132          | NRG1 | 1.0387      | 1.0396      |
| Orange North                    | 132          | NONO | 1.0367      | 1.0406      |
| Ourimbah                        | 33           | NORB | 0.9994      | 0.9990      |
| Ourimbah                        | 132          | NOR1 | 0.9981      | 0.9968      |
| Ourimbah                        | 66           | NOR6 | 0.9981      | 0.9967      |
| Panorama                        | 66           | NPMA | 1.0246      | 1.0083      |
| Parkes                          | 66           | NPK6 | 1.0432      | 1.0514      |
| Parkes                          | 132          | NPKS | 1.0413      | 1.0493      |
| Peakhurst                       | 33           | NPHT | 1.0059      | 1.0054      |
| Peakhurst                       | 132          | NPH1 | 1.0033      | 1.0026      |
| Pt Macquarie                    | 33           | NPMQ | 1.0518      | 1.0931      |
| Pyrmont                         | 33           | NPT3 | 1.0073      | 1.0061      |
| Pyrmont                         | 132          | NPT1 | 1.0069      | 1.0056      |
| Raleigh                         | 132          | NRAL | 1.0166      | 1.0651      |
| Regentville                     | 132          | NRGV | 0.9984      | 0.9972      |
| Rookwood Road                   | 132          | NRWR | 1.0013      | 1.0011      |
| Rozelle                         | 132          | NRZH | 1.0085      | 1.0064      |
| Rozelle                         | 33           | NRZL | 1.0097      | 1.0069      |
| Snowy Adit                      | 132          | NSAD | 0.9763      | 0.9612      |
| Somersby                        | 11           | NSMB | 1.0027      | 1.0012      |
| South of Broken Bay VTN         |              | NEV3 | 1.0050      | 1.0044      |
| St Peters                       | 11           | NSPT | 1.0096      | 1.0089      |
| Stroud                          | 132          | NSRD | 1.0096      | 1.0119      |
| Sydney East                     | 132          | NSE2 | 1.0051      | 1.0041      |
| Sydney North (Ausgrid)          | 132          | NSN1 | 1.0013      | 1.0001      |
| Sydney North (Endeavour Energy) | 132          | NSN2 | 1.0013      | 1.0001      |
| Sydney South                    | 132          | NSYS | 1.0016      | 1.0011      |
| Sydney West (Ausgrid)           | 132          | NSW1 | 1.0018      | 1.0026      |
| Sydney West (Endeavour Energy)  | 132          | NSW2 | 1.0018      | 1.0026      |
| Tamworth                        | 66           | NTA2 | 0.9830      | 1.0044      |
| Taree (Essential Energy)        | 132          | NTR2 | 1.0462      | 1.0680      |
| Tenterfield                     | 132          | NTTF | 1.0259      | 1.0802      |
| Terranora                       | 110          | NTNR | 1.0347      | 1.0956      |
| Tomago                          | 330          | NTMG | 0.9931      | 0.9925      |
| Tomago (Ausgrid)                | 132          | NTME | 0.9928      | 0.9911      |

 $<sup>^{3}\,\,</sup>$  TNI NMNP (33 kV) has been changed to NMN1 (330 kV).





| Location                       | Voltage (kV) | TNI  | 2015-16 MLF | 2014-15 MLF |
|--------------------------------|--------------|------|-------------|-------------|
| Tomago (Essential Energy)      | 132          | NTMC | 0.9928      | 0.9911      |
| Top Ryde                       | 11           | NTPR | 1.0091      | 1.0066      |
| Tuggerah                       | 132          | NTG3 | 0.9946      | 0.9933      |
| Tumut                          | 66           | NTU2 | 0.9910      | 0.9666      |
| Vales Pt.                      | 132          | NVP1 | 0.9898      | 0.9858      |
| Vineyard                       | 132          | NVYD | 0.9996      | 0.9998      |
| Wagga                          | 66           | NWG2 | 0.9889      | 0.9533      |
| Wagga North                    | 132          | NWGN | 0.9910      | 0.9545      |
| Wagga North                    | 66           | NWG6 | 0.9923      | 0.9545      |
| Wallerawang (Endeavour Energy) | 132          | NWW6 | 0.9741      | 0.9691      |
| Wallerawang (Essential Energy) | 132          | NWW5 | 0.9741      | 0.9691      |
| Wallerawang 66                 | 66           | NWW7 | 0.9748      | 0.9700      |
| Wallerawang 330 PS Load        | 330          | NWWP | 0.9760      | 0.9729      |
| Wellington                     | 132          | NWL8 | 0.9903      | 0.9875      |
| West Gosford                   | 11           | NGWF | 1.0033      | 1.0018      |
| Williamsdale                   | 132          | NWDL | 0.9830      | 0.9655      |
| Wyong                          | 11           | NWYG | 0.9966      | 0.9955      |
| Yanco                          | 33           | NYA3 | 1.0049      | 0.9672      |
| Yass                           | 66           | NYS6 | 0.9806      | 0.9661      |
| Yass                           | 132          | NYS1 | 0.9742      | 0.9609      |

Table 5 NSW Generation

| Location                 | Voltage<br>(kV) | DUID     | Connection<br>Point ID | TNI  | 2015-16 MLF | 2014-15 MLF |
|--------------------------|-----------------|----------|------------------------|------|-------------|-------------|
| Bayswater PS Unit 1      | 330             | BW01     | NBAY1                  | NBAY | 0.9668      | 0.9656      |
| Bayswater PS Unit 2      | 330             | BW02     | NBAY2                  | NBAY | 0.9668      | 0.9656      |
| Bayswater PS Unit 3      | 500             | BW03     | NBAY3                  | NBYW | 0.9668      | 0.9650      |
| Bayswater PS Unit 4      | 500             | BW04     | NBAY4                  | NBYW | 0.9668      | 0.9650      |
| Blowering                | 132             | BLOWERNG | NBLW8                  | NBLW | 0.9431      | 0.9368      |
| Broken Hill GT 1         | 22              | GB01     | NBKG1                  | NBKG | 1.0480      | 0.9978      |
| Burrinjuck               | 132             | BURRIN   | NBUK                   | NBUK | 0.9589      | 0.9481      |
| Capital Wind Farm        | 330             | CAPTL_WF | NCWF1R                 | NCWF | 0.9748      | 0.9618      |
| Colongra PS Unit 1       | 330             | CG1      | NCLG1D                 | NCLG | 0.9793      | 0.9855      |
| Colongra PS Unit 2       | 330             | CG2      | NCLG2D                 | NCLG | 0.9793      | 0.9855      |
| Colongra PS Unit 3       | 330             | CG3      | NCLG3D                 | NCLG | 0.9793      | 0.9855      |
| Colongra PS Unit 4       | 330             | CG4      | NCLG4D                 | NCLG | 0.9793      | 0.9855      |
| Eraring 330 PS Unit 1    | 330             | ER01     | NEPS1                  | NEP3 | 0.9856      | 0.9842      |
| Eraring 330 PS Unit 2    | 330             | ER02     | NEPS2                  | NEP3 | 0.9856      | 0.9842      |
| Eraring 500 PS Unit 3    | 500             | ER03     | NEPS3                  | NEPS | 0.9867      | 0.9857      |
| Eraring 500 PS Unit 4    | 500             | ER04     | NEPS4                  | NEPS | 0.9867      | 0.9857      |
| Eraring PS Load          | 500             | ERNL1    | NEPSL                  | NEPS | 0.9867      | 0.9857      |
| Gullen Range Wind Farm   | 330             | GULLRWF1 | NGUR1G                 | NGUR | 0.9770      | 0.9667      |
| Guthega                  | 132             | GUTHEGA  | NGUT8                  | NGUT | 0.8882      | 0.8987      |
| Guthega Auxiliary Supply | 11              | GUTHNL1  | NMY11                  | NMY1 | 0.9549      | 0.9885      |
| Hume (NSW Share)         | 132             | HUMENSW  | NHUM                   | NHUM | 0.9483      | 0.9232      |





| Location                                                            | Voltage<br>(kV) | DUID     | Connection<br>Point ID | TNI            | 2015-16 MLF | 2014-15 MLF |
|---------------------------------------------------------------------|-----------------|----------|------------------------|----------------|-------------|-------------|
| Kangaroo Valley – Bendeela<br>(Shoalhaven) Generation - dual<br>MLF | 330             | SHGEN    | NSHL                   | NSH <u>N</u> L | 0.9838      | 0.9737      |
| Kangaroo Valley (Shoalhaven)<br>Pumps - dual MLF                    | 330             | SHPUMP   | NSHP1                  | NSH <u>N</u> L | 0.9941      | 0.9877      |
| Liddell 330 PS Load                                                 | 330             | LIDDNL1  | NLDPL                  | NLDP           | 0.9676      | 0.9663      |
| Liddell 330 PS Unit 1                                               | 330             | LD01     | NLDP1                  | NLDP           | 0.9676      | 0.9663      |
| Liddell 330 PS Unit 2                                               | 330             | LD02     | NLDP2                  | NLDP           | 0.9676      | 0.9663      |
| Liddell 330 PS Unit 3                                               | 330             | LD03     | NLDP3                  | NLDP           | 0.9676      | 0.9663      |
| Liddell 330 PS Unit 4                                               | 330             | LD04     | NLDP4                  | NLDP           | 0.9676      | 0.9663      |
| Lower Tumut Generation - dual MLF                                   | 330             | TUMUT3   | NLTS8                  | NLTS           | 0.9465      | 0.9309      |
| Lower Tumut Pipeline Auxiliary                                      | 66              | TUMT3NL3 | NTU2L3                 | NTU2           | 0.9910      | 0.9666      |
| Lower Tumut Pumps - dual MLF                                        | 330             | SNOWYP   | NLTS3                  | NLTS           | 0.9773      | 0.9490      |
| Lower Tumut T2 Auxiliary                                            | 66              | TUMT3NL1 | NTU2L1                 | NTU2           | 0.9910      | 0.9666      |
| Lower Tumut T4 Auxiliary                                            | 66              | TUMT3NL2 | NTU2L2                 | NTU2           | 0.9910      | 0.9666      |
| Mt Piper PS Load                                                    | 330             | MPNL1    | NMPPL                  | NMTP           | 0.9744      | 0.9698      |
| Mt Piper PS Unit 1                                                  | 330             | MP1      | NMTP1                  | NMTP           | 0.9744      | 0.9698      |
| Mt Piper PS Unit 2                                                  | 330             | MP2      | NMTP2                  | NMTP           | 0.9744      | 0.9698      |
| Munmorah 330 Load                                                   | 330             | MMNL1    | NMNPL                  | NMN1           | 0.9899      | 0.9894      |
| Taralga Wind Farm                                                   | 132             | TARALGA1 | NMR22T                 | NMR1           | 0.9844      | 0.97629772  |
| Upper Tumut                                                         | 330             | UPPTUMUT | NUTS8                  | NUTS           | 0.9538      | 0.9363      |
| Uranquinty PS Unit 11                                               | 132             | URANQ11  | NURQ1U                 | NURQ           | 0.8970      | 0.8675      |
| Uranquinty PS Unit 12                                               | 132             | URANQ12  | NURQ2U                 | NURQ           | 0.8970      | 0.8675      |
| Uranquinty PS Unit 13                                               | 132             | URANQ13  | NURQ3U                 | NURQ           | 0.8970      | 0.8675      |
| Uranquinty PS Unit 14                                               | 132             | URANQ14  | NURQ4U                 | NURQ           | 0.8970      | 0.8675      |
| Vales Point 330 PS Load                                             | 330             | VPNL1    | NVPPL                  | NVPP           | 0.9877      | 0.9865      |
| Vales Point 330 PS Unit 5                                           | 330             | VP5      | NVPP5                  | NVPP           | 0.9877      | 0.9865      |
| Vales Point 330 PS Unit 6                                           | 330             | VP6      | NVPP6                  | NVPP           | 0.9877      | 0.9865      |
| Woodlawn Wind Farm                                                  | 330             | WOODLWN1 | NCWF2W                 | NCWF           | 0.9748      | 0.9618      |

Table 6 NSW Embedded Generation

| Location                        | Voltage<br>(kV) | DUID     | Connection<br>Point ID | TNI         | 2015-16 MLF | 2014–15<br>MLF |
|---------------------------------|-----------------|----------|------------------------|-------------|-------------|----------------|
| Awaba Renewable Energy Facility | 132             | AWABAREF | NNEW2                  | NNEW        | 0.9926      | 0.9900         |
| Bankstown Sport Club            | 132             | BANKSPT1 | NSYS3R                 | NSYS        | 1.0016      | 1.0011         |
| Boco Rock Wind Farm             | 132             | BOCORWF1 | NCMA3B                 | <u>NBCO</u> | 0.9602      |                |
| Broadwater PS                   | 132             | BWTR1    | NLS21B                 | NLS2        | 1.0268      | 1.1047         |
| Brown Mountain                  | 66              | BROWNMT  | NCMA1                  | NCMA        | 0.9763      | 0.9683         |
| Burrendong Hydro PS             | 132             | BDONGHYD | NWL81B                 | NWL8        | 0.9903      | 0.9875         |
| Campbelltown WSLC               | 66              | WESTCBT1 | NING1C                 | NING        | 0.9991      | 0.9977         |
| Condong PS                      | 110             | CONDONG1 | NTNR1C                 | NTNR        | 1.0347      | 1.0956         |
| Copeton Hydro PS                | 66              | COPTNHYD | NNVL1C                 | NNVL        | 1.0377      | 1.0786         |
| Cullerin Range Wind Farm        | 132             | CULLRGWF | NYS11C                 | NYS1        | 0.9742      | 0.9609         |
| Eastern Creek                   | 132             | EASTCRK  | NSW21                  | NSW1NSW2    | 1.0018      | 1.0026         |
| Eraring 330 BS UN (GT)          | 330             | ERGT01   | NEP35B                 | NEP3        | 0.9856      | 0.9842         |
| Glenbawn Hydro PS               | 132             | GLBWNHYD | NMRK2G                 | NMRK        | 0.9828      | 0.9757         |





| Location                                                        | Voltage<br>(kV)  | DUID     | Connection<br>Point ID | TNI   | 2015–16 MLF | 2014–15<br>MLF |
|-----------------------------------------------------------------|------------------|----------|------------------------|-------|-------------|----------------|
| Glenn Innes (Pindari PS)                                        | 66               | PINDARI  | NGLN1                  | NGLN  | 1.0217      | 1.0672         |
| Grange Avenue                                                   | 132              | GRANGEAV | NVYD1                  | NVYD  | 0.9996      | 0.9998         |
| Gunning Wind Farm                                               | 132              | GUNNING1 | NYS12A                 | NYS1  | 0.9742      | 0.9609         |
| HEZ PS                                                          | 33               | HEZ      | NKU31H                 | NKU3  | 0.9969      | 0.9949         |
| Jindabyne Generator                                             | 66               | JNDABNE1 | NCMA2                  | NCMA  | 0.9763      | 0.9683         |
| Jounama PS                                                      | 66               | JOUNAMA1 | NTU21J                 | NTU2  | 0.9910      | 0.9666         |
| Keepit                                                          | 66               | KEEPIT   | NKPT                   | NKPT  | 1.0360      | 1.0571         |
| Kincumber Landfill                                              | 66               | KINCUM1  | NGF31K                 | NGF3  | 1.0017      | 1.0001         |
| Liddell 33 – Hunter Valley GTs                                  | 33               | HVGTS    | NLD31                  | NLD34 | 0.9740      | 0.9755         |
| Liverpool 132 (Jacks Gully)                                     | 132              | JACKSGUL | NLP11                  | NSW2  | 1.0018      | 1.0026         |
| Lucas Heights II Power Plant                                    | 132              | LUCASHGT | NSYS2G                 | NSYS  | 1.0016      | 1.0011         |
| Lucas Heights Stage 2 PS                                        | 132              | LUCAS2S2 | NSYS1                  | NSYS  | 1.0016      | 1.0011         |
| Nine Willoughby                                                 | 132              | NINEWIL1 | NSE21R                 | NSE2  | 1.0051      | 1.0041         |
| Nyngan Solar Farm                                               | 132              | NYNGAN1  | NWL82N                 | NWL8  | 0.9903      | 0.9875         |
| Redbank PS Unit 1                                               | 132              | REDBANK1 | NMRK1                  | NRED  | 0.9843      | 0.9744         |
| Sithe                                                           | 132              | SITHE01  | NSYW1                  | NSW2  | 1.0018      | 1.0026         |
| St George Leagues Club                                          | 33               | STGEORG1 | NPHT1E                 | NPHT  | 1.0059      | 1.0054         |
| Tallawarra PS                                                   | 132              | TALWA1   | NDT13T                 | NTWA  | 0.9912      | 0.9839         |
| Teralba PS                                                      | 132              | TERALBA  | NNEW1                  | NNEW  | 0.9926      | 0.9900         |
| The Drop PS – Dual MLF associated to Finley (NFNY) - Load       | <del>22</del> 66 | THEDROP1 | NFNY1D                 | NFNY  | 1.0235      | 0.9752         |
| The Drop PS – Dual MLF associated to Finley (NFNY) - Generation | <del>22</del> 66 | THEDROP1 | NFNY1D                 | NFNY  | 0.9670      | 0.9752         |
| West Nowra                                                      | 132              | AGLNOW1  | NDT12                  | NDT1  | 0.9916      | 0.9883         |
| Wests Illawara Leagues Club                                     | 132              | WESTILL1 | NDT14E                 | NDT1  | 0.9916      | 0.9883         |
| Wilga Park A                                                    | 66               | WILGAPK  | NNB21W                 | NNB2  | 1.0699      | 1.1056         |
| Wilga Park B                                                    | 66               | WILGB01  | NNB22W                 | NNB2  | 1.0699      | 1.1056         |
| Woodlawn Bioreactor                                             | 132              | WDLNGN01 | NMR21W                 | NMR2  | 0.98369844  | 0.9772         |
| Woy Woy Landfill                                                | 66               | WOYWOY1  | NGF32W                 | NGF3  | 1.0017      | 1.0001         |
| Wyangala A PS                                                   | 66               | WYANGALA | NCW81A                 | NCW8  | 1.0099      | 1.0040         |
| Wyangala B PS                                                   | 66               | WYANGALB | NCW82B                 | NCW8  | 1.0099      | 1.0040         |

## Table 7 ACT Loads

| Location                      | Voltage (kV) | TNI  | 2015-16 MLF | 2014-15 MLF |
|-------------------------------|--------------|------|-------------|-------------|
| Canberra                      | 132          | ACA1 | 0.9828      | 0.9642      |
| Queanbeyan (ACTEW)            | 66           | AQB1 | 0.9924      | 0.9752      |
| Queanbeyan (Essential Energy) | 66           | AQB2 | 0.9924      | 0.9752      |

#### Table 8 ACT Embedded Generation

| Location                | Voltage<br>(kV) | DUID     | Connection<br>Point ID | TNI  | 2015–16 MLF | 2014-15 MLF |
|-------------------------|-----------------|----------|------------------------|------|-------------|-------------|
| Capital East Solar Farm | 66              | CESF1    | AQB21C                 | AQB2 | 0.9924      | 0.9752      |
| Royalla Solar Farm      | 132             | ROYALLA1 | ACA11R                 | ACA1 | 0.9828      | 0.9642      |





The regional reference node for ACT load and generation is the Sydney West 330kV node.





# 1.3 Victoria Marginal Loss Factors

Table 9 Victorian Loads

| Location                        | Voltage (kV) | TNI  | 2015-16 MLF | 2014-15 MLF |
|---------------------------------|--------------|------|-------------|-------------|
| Altona                          | 66           | VATS | 1.0032      | 1.0036      |
| Altona                          | 220          | VAT2 | 0.9985      | 0.9972      |
| Ballarat                        | 66           | VBAT | 1.0207      | 1.0239      |
| Bendigo                         | 66           | VBE6 | 1.0672      | 1.0784      |
| Bendigo                         | 22           | VBE2 | 1.0684      | 1.0781      |
| BHP Western Port                | 220          | VJLA | 0.9910      | 0.9893      |
| Brooklyn (Jemena)               | 22           | VBL2 | 1.0039      | 1.0039      |
| Brooklyn (Jemena)               | 66           | VBL6 | 1.0053      | 1.0034      |
| Brooklyn (Powercor)             | 22           | VBL3 | 1.0039      | 1.0039      |
| Brooklyn (Powercor)             | 66           | VBL7 | 1.0053      | 1.0034      |
| Brunswick (CitiPower)           | 22           | VBT2 | 0.9995      | 0.9994      |
| Brunswick (Jemena)              | 22           | VBTS | 0.9995      | 0.9994      |
| Cranbourne                      | 220          | VCB2 | 0.9901      | 0.9878      |
| Cranbourne (AusNet Services)    | 66           | VCBT | 0.9919      | 0.9904      |
| Cranbourne (United Energy)      | 66           | VCB5 | 0.9919      | 0.9904      |
| East Rowville (AusNet Services) | 66           | VER2 | 0.9931      | 0.9916      |
| East Rowville (United Energy)   | 66           | VERT | 0.9931      | 0.9916      |
| Fishermens Bend (CitiPower)     | 66           | VFBT | 1.0043      | 1.0053      |
| Fishermens Bend (Powercor)      | 66           | VFB2 | 1.0043      | 1.0053      |
| Fosterville                     | 220          | VFVT | 1.0649      | 1.0800      |
| Geelong                         | 66           | VGT6 | 0.9987      | 0.9982      |
| Glenrowan                       | 66           | VGNT | 1.0532      | 1.0799      |
| Heatherton                      | 66           | VHTS | 0.9985      | 0.9990      |
| Heywood                         | 22           | VHY2 | 1.0007      | 0.9984      |
| Horsham                         | 66           | VHOT | 1.0680      | 1.0760      |
| Keilor (Jemena)                 | 66           | VKT2 | 1.0014      | 1.0015      |
| Keilor (Powercor)               | 66           | VKTS | 1.0014      | 1.0015      |
| Kerang                          | 22           | VKG2 | 1.0988      | 1.1077      |
| Kerang                          | 66           | VKG6 | 1.0986      | 1.1070      |
| Khancoban                       | 330          | NKHN | 1.0468      | 1.0826      |
| Loy Yang Substation             | 66           | VLY6 | 0.9765      | 0.9703      |
| Malvern                         | 22           | VMT2 | 0.9964      | 0.9960      |
| Malvern                         | 66           | VMT6 | 0.9953      | 0.9947      |
| Morwell TS                      | 66           | VMWT | 0.97989799  | 0.9777      |
| Mt Beauty                       | 66           | VMBT | 1.0368      | 1.0539      |
| Portland                        | 500          | VAPD | 1.0033      | 1.0005      |
| Red Cliffs                      | 22           | VRC2 | 1.1205      | 1.1260      |
| Red Cliffs                      | 66           | VRC6 | 1.1212      | 1.1243      |
| Red Cliffs (Essential Energy)   | 66           | VRCA | 1.1212      | 1.1243      |
| Richmond                        | 22           | VRT2 | 0.9977      | 0.9969      |
| Richmond (CitiPower)            | 66           | VRT7 | 1.0023      | 0.9993      |
| Richmond (United Energy)        | 66           | VRT6 | 1.0023      | 0.9993      |
| Ringwood (AusNet Services)      | 22           | VRW3 | 0.9998      | 0.9998      |
| Ringwood (AusNet Services)      | 66           | VRW7 | 0.9993      | 0.9992      |





| Location                       | Voltage (kV) | TNI  | 2015-16 MLF | 2014-15 MLF |
|--------------------------------|--------------|------|-------------|-------------|
| Ringwood (United Energy)       | 22           | VRW2 | 0.9998      | 0.9998      |
| Ringwood (United Energy)       | 66           | VRW6 | 0.9993      | 0.9992      |
| Shepparton                     | 66           | VSHT | 1.0639      | 1.0869      |
| South Morang (Jemena)          | 66           | VSM6 | 0.9987      | 0.9992      |
| South Morang (AusNet Services) | 66           | VSMT | 0.9987      | 0.9992      |
| Springvale (CitiPower)         | 66           | VSVT | 0.9970      | 0.9965      |
| Springvale (United Energy)     | 66           | VSV2 | 0.9970      | 0.9965      |
| Templestowe (CitiPower)        | 66           | VTS2 | 0.9993      | 0.9991      |
| Templestowe (Jemena)           | 66           | VTST | 0.9993      | 0.9991      |
| Templestowe (AusNet Services)  | 66           | VTS3 | 0.9993      | 0.9991      |
| Templestowe (United Energy)    | 66           | VTS4 | 0.9993      | 0.9991      |
| Terang                         | 66           | VTGT | 1.0300      | 1.0262      |
| Thomastown (Jemena)            | 66           | VTTS | 1.0000      | 1.0000      |
| Thomastown (AusNet Services)   | 66           | VTT2 | 1.0000      | 1.0000      |
| Tyabb                          | 66           | VTBT | 0.9924      | 0.9909      |
| Wemen TS                       | 66           | VWET | 1.1206      | 1.1240      |
| West Melbourne                 | 22           | VWM2 | 1.0023      | 1.0026      |
| West Melbourne (CitiPower)     | 66           | VWM7 | 1.0039      | 1.0043      |
| West Melbourne (Jemena)        | 66           | VWM6 | 1.0039      | 1.0043      |
| Wodonga                        | 22           | VWO2 | 1.0495      | 1.0756      |
| Wodonga                        | 66           | VWO6 | 1.0480      | 1.0733      |
| Yallourn                       | 11           | VYP1 | 0.9597      | 0.9564      |

Table 10 Victoria Generation

| Location                                                     | Voltage<br>(kV) | DUID    | Connection Point ID | TNI  | 2015-16 MLF | 2014-15 MLF |
|--------------------------------------------------------------|-----------------|---------|---------------------|------|-------------|-------------|
| Anglesea PS                                                  | 220             | APS     | VAPS                | VPTH | 0.9915      | 0.9849      |
| Banimboola                                                   | 220             | BAPS    | VDPS2               | VDPS | 1.0004      | 1.0097      |
| Basslink (Loy Yang PS<br>Switchyard) Tasmania to<br>Victoria | 500             | BLNKVIC | VLYP13              | VTBL | 0.9828      | 0.9684      |
| Dartmouth PS                                                 | 220             | DARTM1  | VDPS                | VDPS | 1.0004      | 1.0097      |
| Eildon PS Unit 1                                             | 220             | EILDON1 | VEPS1               | VEPS | 1.0026      | 1.0078      |
| Eildon PS Unit 2                                             | 220             | EILDON2 | VEPS2               | VEPS | 1.0026      | 1.0078      |
| Hazelwood PS Load                                            | 220             | HWPNL1  | VHWPL               | VHWP | 0.9723      | 0.9691      |
| Hazelwood PS Unit 1                                          | 220             | HWPS1   | VHWP1               | VHWP | 0.9723      | 0.9691      |
| Hazelwood PS Unit 2                                          | 220             | HWPS2   | VHWP2               | VHWP | 0.9723      | 0.9691      |
| Hazelwood PS Unit 3                                          | 220             | HWPS3   | VHWP3               | VHWP | 0.9723      | 0.9691      |
| Hazelwood PS Unit 4                                          | 220             | HWPS4   | VHWP4               | VHWP | 0.9723      | 0.9691      |
| Hazelwood PS Unit 5                                          | 220             | HWPS5   | VHWP5               | VHWP | 0.9723      | 0.9691      |
| Hazelwood PS Unit 6                                          | 220             | HWPS6   | VHWP6               | VHWP | 0.9723      | 0.9691      |
| Hazelwood PS Unit 7                                          | 220             | HWPS7   | VHWP7               | VHWP | 0.9723      | 0.9691      |
| Hazelwood PS Unit 8                                          | 220             | HWPS8   | VHWP8               | VHWP | 0.9723      | 0.9691      |
| Jeeralang A PS Unit 1                                        | 220             | JLA01   | VJLGA1              | VJLG | 0.9667      | 0.9647      |
| Jeeralang A PS Unit 2                                        | 220             | JLA02   | VJLGA2              | VJLG | 0.9667      | 0.9647      |
| Jeeralang A PS Unit 3                                        | 220             | JLA03   | VJLGA3              | VJLG | 0.9667      | 0.9647      |
| Jeeralang A PS Unit 4                                        | 220             | JLA04   | VJLGA4              | VJLG | 0.9667      | 0.9647      |





| Location                     | Voltage<br>(kV) | DUID          | Connection<br>Point ID | TNI         | 2015-16 MLF | 2014–15 MLF |
|------------------------------|-----------------|---------------|------------------------|-------------|-------------|-------------|
| Jeeralang B PS Unit 1        | 220             | JLB01         | VJLGB1                 | VJLG        | 0.9667      | 0.9647      |
| Jeeralang B PS Unit 2        | 220             | JLB02         | VJLGB2                 | VJLG        | 0.9667      | 0.9647      |
| Jeeralang B PS Unit 3        | 220             | JLB03         | VJLGB3                 | VJLG        | 0.9667      | 0.9647      |
| Jindabyne pump at<br>Guthega | 132             | SNOWYGJP      | NGJP                   | NGJP        | 1.1380      | 1.1865      |
| Laverton PS (LNGS1)          | 220             | LAVNORTHLNGS1 | VAT21 <u>L</u>         | VAT2        | 0.9985      | 0.9972      |
| Laverton PS (LNGS2)          | <u>220</u>      | LNGS2         | VAT22L                 | VAT2        | 0.9985      | 0.9972      |
| Loy Yang A PS Load           | 500             | LYNL1         | VLYPL                  | VLYP        | 0.9742      | 0.9704      |
| Loy Yang A PS Unit 1         | 500             | LYA1          | VLYP1                  | VLYP        | 0.9742      | 0.9704      |
| Loy Yang A PS Unit 2         | 500             | LYA2          | VLYP2                  | VLYP        | 0.9742      | 0.9704      |
| Loy Yang A PS Unit 3         | 500             | LYA3          | VLYP3                  | VLYP        | 0.9742      | 0.9704      |
| Loy Yang A PS Unit 4         | 500             | LYA4          | VLYP4                  | VLYP        | 0.9742      | 0.9704      |
| Loy Yang B PS Unit 1         | 500             | LOYYB1        | VLYP5                  | VLYP        | 0.9742      | 0.9704      |
| Loy Yang B PS Unit 2         | 500             | LOYYB2        | VLYP6                  | VLYP        | 0.9742      | 0.9704      |
| MacArthur Wind Farm          | 500             | MACARTH1      | VTRT1M                 | VTRT        | 0.9940      | 0.9946      |
| McKay Creek / Bogong<br>PS   | 220             | MCKAY1        | VMKP1                  | VT14        | 0.9883      | 1.0083      |
| Mortlake Unit 1              | 500             | MORTLK11      | VM0P1O                 | VM0P        | 0.9942      | 0.9922      |
| Mortlake Unit 2              | 500             | MORTLK12      | VM0P2O                 | VM0P        | 0.9942      | 0.9922      |
| Morwell PS G1, 2 and 3       | 66              | MOR1          | VMWT1                  | VMWG        | 0.9704      | 0.9682      |
| Morwell PS G4                | 11              | MOR2          | VMWP4                  | VMWP        | 0.9732      | 0.9698      |
| Morwell PS G5                | 11              | MOR3          | VMWP5                  | VMWP        | 0.9732      | 0.9698      |
| Morwell PS Load              | 66              | MORNL1        | VMWTL                  | VMWT        | 0.9799      | 0.9777      |
| Mt Mercer Windfarm           | 220             | MERCER01      | VELT1M                 | VELT        | 1.0033      | 1.0064      |
| Murray                       | 330             | MURRAY        | NMUR8                  | NMUR        | 0.9885      | 1.0178      |
| Newport PS                   | 220             | NPS           | VNPS                   | VNPS        | 0.9952      | 0.9953      |
| Valley Power PSUnit 1        | 500             | VPGS <u>1</u> | VLYP <u>0</u> 7        | VLYP        | 0.9742      | 0.9704      |
| Valley Power Unit 2          | <u>500</u>      | VPGS2         | VLYP08                 | <u>VLYP</u> | 0.9742      | 0.9704      |
| Valley Power Unit 3          | <u>500</u>      | VPGS3         | VLYP09                 | <u>VLYP</u> | 0.9742      | 0.9704      |
| Valley Power Unit 4          | <u>500</u>      | VPGS4         | <u>VLYP010</u>         | <u>VLYP</u> | 0.9742      | 0.9704      |
| Valley Power Unit 5          | <u>500</u>      | VPGS5         | <u>VLYP011</u>         | <u>VLYP</u> | 0.9742      | 0.9704      |
| Valley Power Unit 6          | <u>500</u>      | VPGS6         | <u>VLYP012</u>         | <u>VLYP</u> | 0.9742      | 0.9704      |
| Waubra Wind Farm             | 220             | WAUBRAWF      | VWBT1A                 | VWBT        | 1.0122      | 1.0157      |
| West Kiewa PS Unit 1         | 220             | WKIEWA1       | VWKP1                  | VWKP        | 1.0247      | 1.0416      |
| West Kiewa PS Unit 2         | 220             | WKIEWA2       | VWKP2                  | VWKP        | 1.0247      | 1.0416      |
| Yallourn W PS 220 Load       | 220             | YWNL1         | VYP2L                  | VYP2        | 0.9563      | 0.9536      |
| Yallourn W PS 220 Unit 1     | 220             | YWPS1         | VYP21                  | VYP3        | 0.9589      | 0.9538      |
| Yallourn W PS 220 Unit 2     | 220             | YWPS2         | VYP22                  | VYP2        | 0.9563      | 0.9536      |
| Yallourn W PS 220 Unit 3     | 220             | YWPS3         | VYP23                  | VYP2        | 0.9563      | 0.9536      |
| Yallourn W PS 220 Unit 4     | 220             | YWPS4         | VYP24                  | VYP2        | 0.9563      | 0.9536      |

Table 11 Victoria Embedded Generation

| Location                       | Voltage<br>(kV) | DUID  | Connection<br>Point ID | TNI  | 2015-16 MLF | 2014-15 MLF |
|--------------------------------|-----------------|-------|------------------------|------|-------------|-------------|
| Bairnsdale PS                  | 66              | BDL01 | VMWT2                  | VBDL | 0.9771      | 0.9745      |
| Bairnsdale PS Generator Unit 2 | 66              | BDL02 | VMWT3                  | VBDL | 0.9771      | 0.9745      |





| Location                                 | Voltage<br>(kV)  | DUID      | Connection<br>Point ID | TNI  | 2015-16 MLF | 2014-15 MLF |
|------------------------------------------|------------------|-----------|------------------------|------|-------------|-------------|
| Balds Hill WF (NEW)                      | 66               | BALDHWF1  | VMWT9B                 | VMWT | 0.9799      | 0.9777      |
| Ballarat Health Services                 | 66               | BBASEHOS  | VBAT1H                 | VBAT | 1.0207      | 1.0239      |
| Brooklyn Landfill & Recycling Facility   | 66               | BROOKLYN  | VBL61                  | VBL6 | 1.0053      | 1.0034      |
| Clayton Landfill Gas PS                  | <del>22</del> 66 | CLAYTON   | VSV21B                 | VSV2 | 0.9970      | 0.9965      |
| Codrington Wind Farm                     | 66               | CODRNGTON | VTGT2C                 | VTGT | 1.0300      | 1.0262      |
| Corio LFG PS                             | <del>22</del> 66 | CORIO1    | VGT61C                 | VGT6 | 0.9987      | 0.9982      |
| Glenmaggie Hydro PS                      | 66               | GLENMAG1  | VMWT8G                 | VMWT | 0.9799      | 0.9777      |
| Hallam Mini Hydro                        | 66               | HLMSEW01  | VER21H                 | VER2 | 0.9931      | 0.9916      |
| Hallam Road Renewable<br>Energy Facility | 66               | HALLAMRD1 | VER22L                 | VER2 | 0.9931      | 0.9916      |
| Hepburn Community WF                     | 66               | HEPWIND1  | VBAT2L                 | VBAT | 1.0207      | 1.0239      |
| Hume (Victorian Share)                   | 66               | HUMEV     | VHUM                   | VHUM | 0.9768      | 0.9912      |
| Longford                                 | 66               | LONGFORD  | VMWT6                  | VMWT | 0.9799      | 0.9777      |
| Mornington Landfill Site<br>Generator    | 66               | MORNW     | VTBT1                  | VTBT | 0.9924      | 0.9909      |
| Mortons Lane Wind Farm                   | 66               | MLWF1     | VTGT4M                 | VTGT | 1.0300      | 1.0262      |
| Oaklands Hill Wind Farm                  | 66               | OAKLAND1  | VTGT3A                 | VTGT | 1.0300      | 1.0262      |
| Shepparton Waste Gas                     | 66               | SHEP1     | VSHT2S                 | VSHT | 1.0639      | 1.0869      |
| Somerton PS                              | 66               | AGLSOM    | VTTS1                  | VSOM | 0.9946      | 0.9927      |
| Springvale Power Plant                   | <del>22</del> 66 | SVALE1    | VSV22S                 | VSV2 | 0.9970      | 0.9965      |
| Tatura                                   | 66               | TATURA01  | VSHT1                  | VSHT | 1.0639      | 1.0869      |
| Toora Wind Farm                          | 66               | TOORAWF   | VMWT5                  | VMWT | 0.9799      | 0.9777      |
| Traralgon NSS                            | <del>22</del> 66 | TGNSS1    | VMWT1T                 | VMWT | 0.9799      | 0.9777      |
| William Horvell Hydro PS                 | 66               | WILLHOV1  | VW061W                 | VWO6 | 1.0480      | 1.0733      |
| Wollert Renewable Energy Facility        | 66               | WOLLERT1  | VSMT1W                 | VSMT | 0.9987      | 0.9992      |
| Wonthaggi Wind Farm                      | 66               | WONWP     | VMWT7                  | VMWT | 0.9799      | 0.9777      |
| Wyndham Landfill Site<br>Generator       | 66               | WYNDW     | VATS1                  | VATS | 1.0032      | 1.0036      |
| Yambuk Wind Farm                         | 66               | YAMBUKWF  | VTGT1                  | VTGT | 1.0300      | 1.0262      |
| Yarawonga Hydro PS                       | 66               | YWNGAHYD  | VSHT3Y                 | VSHT | 1.0639      | 1.0869      |





# 1.4 South Australia Marginal Loss Factors

Table 12 South Australia Loads

| Location                     | Voltage<br>(kV) | TNI  | 2015-16 MLF | 2014-15 MLF |
|------------------------------|-----------------|------|-------------|-------------|
| Angas Creek                  | 33              | SANC | 1.0115      | 1.0120      |
| Ardrossan West               | 33              | SARW | 0.9382      | 0.9459      |
| Back Callington              | 11              | SBAC | 1.0133      | 1.0155      |
| Baroota                      | 33              | SBAR | 0.9918      | 0.9918      |
| Berri                        | 66              | SBER | 1.0536      | 1.1204      |
| Berri (Powercor)             | 66              | SBE1 | 1.0536      | 1.1204      |
| Blanche                      | 33              | SBLA | 0.9903      | 1.0241      |
| Blanche (Powercor)           | 33              | SBL1 | 0.9903      | 1.0241      |
| Brinkworth                   | 33              | SBRK | 0.9928      | 0.9928      |
| Bungama Industrial           | 33              | SBUN | 0.9874      | 0.9879      |
| Bungama Rural                | 33              | SBUR | 0.9984      | 0.9880      |
| City West                    | 66              | SACR | 1.0054      | 1.0047      |
| Clare North                  | 33              | SCLN | 0.9906      | 0.9931      |
| Dalrymple                    | 33              | SDAL | 0.8995      | 0.9157      |
| Davenport                    | 275             | SDAV | 0.9886      | 0.9890      |
| Davenport                    | 33              | SDAW | 0.9891      | 0.9895      |
| Dorrien                      | 33              | SDRN | 1.0082      | 1.0048      |
| East Terrace                 | 66              | SETC | 1.0055      | 1.0050      |
| Happy Valley                 | 66              | SHVA | 1.0068      | 1.0070      |
| Hummocks                     | 33              | SHUM | 0.9599      | 0.9613      |
| Kadina East                  | 33              | SKAD | 0.9648      | 0.9680      |
| Kanmantoo                    | 11              | SKAN | 1.0133      | 1.0153      |
| Keith                        | 33              | SKET | 1.0062      | 1.0258      |
| Kilburn                      | 66              | SKLB | 1.0029      | 1.0030      |
| Kincraig                     | 33              | SKNC | 0.9975      | 1.0262      |
| Lefevre                      | 66              | SLFE | 1.0002      | 0.9995      |
| Leigh Creek                  | 33              | SLCC | 1.0482      | 1.0348      |
| Leigh Creek South            | 33              | SLCS | 1.0477      | 1.0383      |
| Magill                       | 66              | SMAG | 1.0053      | 1.0050      |
| Mannum                       | 33              | SMAN | 1.0140      | 1.0176      |
| Mannum - Adelaide Pipeline 1 | 3.3             | SMA1 | 1.0199      | 1.0232      |
| Mannum - Adelaide Pipeline 2 | 3.3             | SMA2 | 1.0191      | 1.0224      |
| Mannum - Adelaide Pipeline 3 | 3.3             | SMA3 | 1.0177      | 1.0205      |
| Middleback                   | 33              | SMDL | 0.9880      | 0.9878      |
| Middleback                   | 132             | SMBK | 0.9893      | 0.9889      |
| Millbrook                    | 132             | SMLB | 1.0061      | 1.0047      |
| Mobilong                     | 33              | SMBL | 1.0126      | 1.0162      |
| Morgan - Whyalla Pipeline 1  | 3.3             | SMW1 | 1.0292      | 1.0540      |
| Morgan - Whyalla Pipeline 2  | 3.3             | SMW2 | 1.0163      | 1.0309      |
| Morgan - Whyalla Pipeline 3  | 3.3             | SMW3 | 1.0028      | 1.0093      |
| Morgan - Whyalla Pipeline 4  | 3.3             | SMW4 | 0.9957      | 0.9995      |
| Morphett Vale East           | 66              | SMVE | 1.0075      | 1.0080      |
|                              |                 |      |             |             |





| Location                            | Voltage<br>(kV)   | TNI  | 2015-16 MLF | 2014–15 MLF |
|-------------------------------------|-------------------|------|-------------|-------------|
| Mt Barker                           | 66                | SMBA | 1.0072      | 1.0077      |
| Mt Gambier                          | 33                | SMGA | 0.9908      | 1.0231      |
| Mt Gunson                           | 33                | SMGU | 0.9969      | 0.9747      |
| Murray Bridge - Hahndorf Pipeline 1 | 11                | SMH1 | 1.0173      | 1.0192      |
| Murray Bridge - Hahndorf Pipeline 2 | 11                | SMH2 | 1.0193      | 1.0200      |
| Murray Bridge - Hahndorf Pipeline 3 | 11                | SMH3 | 1.0166      | 1.0170      |
| Neuroodla                           | 33                | SNEU | 1.0164      | 1.0138      |
| New Osborne                         | 66                | SNBN | 0.9998      | 0.9992      |
| North West Bend                     | 66                | SNWB | 1.0261      | 1.0567      |
| Northfield                          | 66                | SNFD | 1.0042      | 1.0029      |
| Para                                | 66                | SPAR | 1.0059      | 1.0036      |
| Parafield Gardens West              | 66                | SPGW | 1.0045      | 1.0024      |
| Penola West 33                      | 33                | SPEN | 0.9861      | 1.0194      |
| Pimba                               | 132               | SPMB | 0.9991      | 0.9845      |
| Playford                            | <del>33</del> 132 | SPAA | 0.9929      | 0.9993      |
| Port Lincoln                        | 33                | SPLN | 0.9645      | 0.9726      |
| Port Pirie                          | 33                | SPPR | 0.9957      | 0.9906      |
| Roseworthy                          | 11                | SRSW | 1.0111      | 1.0092      |
| Snuggery Industrial                 | 33                | SSNN | 0.9704      | 1.0081      |
| Snuggery Rural                      | 33                | SSNR | 0.9701      | 1.0030      |
| South Australian VTN                |                   | SJP1 | 1.0012      | 1.0049      |
| Stony Point                         | 11                | SSPN | 0.9947      | 0.9947      |
| Tailem Bend                         | 33                | STAL | 1.0096      | 1.0161      |
| Templers                            | 33                | STEM | 1.0062      | 1.0048      |
| Torrens Island                      | 66                | STSY | 1.0000      | 1.0000      |
| Waterloo                            | 33                | SWAT | 0.9881      | 0.9924      |
| Whyalla Central Substation          | 33                | SWYC | 0.9930      | 0.9933      |
| Whyalla Terminal BHP                | 33                | SBHP | 0.9943      | 0.9938      |
| Woomera                             | 132               | SWMA | 0.9984      | 0.9664      |
| Wudina                              | 66                | SWUD | 0.9855      | 0.9905      |
| Yadnarie                            | 66                | SYAD | 0.9731      | 0.9777      |

Table 13 South Australia Generation

| Location                  | Voltage<br>(kV) | DUID     | Connection<br>Point ID | TNI  | 2015-16 MLF | 2014–15 MLF |
|---------------------------|-----------------|----------|------------------------|------|-------------|-------------|
| Cathedral Rocks Wind Farm | 132             | CATHROCK | SCRK                   | SCRK | 0.8775      | 0.8774      |
| Clements Gap Wind Farm    | 132             | CLEMGPWF | SCGW1P                 | SCGW | 0.9701      | 0.9658      |
| Dry Creek PS Unit 1       | 66              | DRYCGT1  | SDCA1                  | SDPS | 1.0018      | 1.0022      |
| Dry Creek PS Unit 2       | 66              | DRYCGT2  | SDCA2                  | SDPS | 1.0018      | 1.0022      |
| Dry Creek PS Unit 3       | 66              | DRYCGT3  | SDCA3                  | SDPS | 1.0018      | 1.0022      |
| Hallet 2 WF               | 275             | HALLWF2  | SMOK1H                 | SMOK | 0.9811      | 0.9843      |
| Hallet PS                 | 275             | AGLHAL   | SHPS1                  | SHPS | 0.9835      | 0.9869      |
| Hallet WF                 | 275             | HALLWF1  | SHPS2W                 | SHPS | 0.9835      | 0.9869      |
| Ladbroke Grove PS Unit 1  | 132             | LADBROK1 | SPEW1                  | SPEW | 0.9563      | 0.9884      |
| Ladbroke Grove PS Unit 2  | 132             | LADBROK2 | SPEW2                  | SPEW | 0.9563      | 0.9884      |
| Lake Bonney Wind Farm     | 33              | LKBONNY1 | SMAY1                  | SMAY | 0.9352      | 0.9665      |





| Location                       | Voltage<br>(kV) | DUID     | Connection<br>Point ID | TNI  | 2015-16 MLF | 2014–15 MLF |
|--------------------------------|-----------------|----------|------------------------|------|-------------|-------------|
| Lake Bonney Wind Farm Stage 2  | 33              | LKBONNY2 | SMAY2                  | SMAY | 0.9352      | 0.9665      |
| Lake Bonney Wind Farm Stage 3  | 33              | LKBONNY3 | SMAY3W                 | SMAY | 0.9352      | 0.9665      |
| Leigh Creek Northern PS Load 2 | 33              | NPSNL2   | SLCCL                  | SLCC | 1.0482      | 1.0348      |
| Mintaro PS                     | 132             | MINTARO  | SMPS                   | SMPS | 0.9736      | 0.9879      |
| Mt Millar Wind Farm            | 33              | MTMILLAR | SMTM1                  | SMTM | 0.9016      | 0.8971      |
| North Brown Hill Wind Farm     | 275             | NBHWF1   | SBEL1A                 | SBEL | 0.9767      | 0.9795      |
| Northern PS Unit 1             | 275             | NPS1     | SNPA1                  | SNPS | 0.9826      | 0.9744      |
| Northern PS Unit 2             | 275             | NPS2     | SNPA2                  | SNPS | 0.9826      | 0.9744      |
| O.C.P.L. Unit 1                | 66              | OSB-AG   | SNBN1                  | SOCP | 0.9995      | 0.9990      |
| Pelican Point PS               | 275             | PPCCGT   | SPPT                   | SPPT | 1.0010      | 0.9994      |
| Playford Northern PS Load 1    | 132             | NPSNL1   | SPAAL                  | SPAA | 0.9929      | 0.9993      |
| Playford PS                    | 275             | PLAYB-AG | SPSD1                  | SPPS | 0.9881      | 0.9882      |
| Port Lincoln 3                 | 33              | POR03    | SPL31P                 | SPL3 | 0.8976      | 0.9108      |
| Port Lincoln PS                | 132             | POR01    | SPLN1                  | SPTL | 0.9520      | 0.9447      |
| Quarantine PS Unit 1           | 66              | QPS1     | SQPS1                  | SQPS | 0.9932      | 0.9939      |
| Quarantine PS Unit 2           | 66              | QPS2     | SQPS2                  | SQPS | 0.9932      | 0.9939      |
| Quarantine PS Unit 3           | 66              | QPS3     | SQPS3                  | SQPS | 0.9932      | 0.9939      |
| Quarantine PS Unit 4           | 66              | QPS4     | SQPS4                  | SQPS | 0.9932      | 0.9939      |
| Quarantine PS Unit 5           | 66              | QPS5     | SQPS5Q                 | SQPS | 0.9932      | 0.9939      |
| Snowtown WF Stage 2 - North    | 275             | SNOWNTH1 | SBLWS1                 | SBLW | 0.9782      | 0.9861      |
| Snowtown WF Stage 2 - South    | 275             | SNOWSTH1 | SBLWS2                 | SBLW | 0.9782      | 0.9861      |
| Snowtown Wind Farm             | 33              | SNOWTWN1 | SNWF1T                 | SNWF | 0.9198      | 0.9136      |
| Snuggery PS Units 1 to 3       | 132             | SNUG1    | SSGA1                  | SSPS | 0.9829      | 0.9944      |
| The Bluff wind Farm            | 275             | BLUFF1   | SBEL2P                 | SBEL | 0.9767      | 0.9795      |
| Torrens Island PS A Unit 1     | 275             | TORRA1   | STSA1                  | STPS | 1.0019      | 1.0004      |
| Torrens Island PS A Unit 2     | 275             | TORRA2   | STSA2                  | STPS | 1.0019      | 1.0004      |
| Torrens Island PS A Unit 3     | 275             | TORRA3   | STSA3                  | STPS | 1.0019      | 1.0004      |
| Torrens Island PS A Unit 4     | 275             | TORRA4   | STSA4                  | STPS | 1.0019      | 1.0004      |
| Torrens Island PS B Unit 1     | 275             | TORRB1   | STSB1                  | STPS | 1.0019      | 1.0004      |
| Torrens Island PS B Unit 2     | 275             | TORRB2   | STSB2                  | STPS | 1.0019      | 1.0004      |
| Torrens Island PS B Unit 3     | 275             | TORRB3   | STSB3                  | STPS | 1.0019      | 1.0004      |
| Torrens Island PS B Unit 4     | 275             | TORRB4   | STSB4                  | STPS | 1.0019      | 1.0004      |
| Torrens Island PS Load         | 66              | TORNL1   | STSYL                  | STSY | 1.0000      | 1.0000      |
| Waterloo Wind Farm             | 132             | WATERLWF | SWLE1R                 | SWLE | 0.9764      | 0.9819      |
| Wattle Point Wind Farm         | 132             | WPWF     | SSYP1                  | SSYP | 0.8195      | 0.8218      |

Table 14 South Australia Embedded Generation

| Location                | Voltage<br>(kV) | DUID     | Connection Point ID | TNI  | 2015-16 MLF | 2014-15 MLF |
|-------------------------|-----------------|----------|---------------------|------|-------------|-------------|
| Amcor Glass UN 1        | 11              | AMCORGR  | SRSW1E              | SRSW | 1.0111      | 1.0092      |
| Angaston PS             | 33              | ANGAS1   | SDRN1               | SANG | 1.0061      | 0.9498      |
| Angaston PS             | 33              | ANGAS2   | SDRN2               | SANG | 1.0061      | 0.9498      |
| Blue Lake Milling       | 33              | BLULAKE1 | SKET2B              | SKET | 1.0062      | 1.0258      |
| Bolivar WWT Plant (NEW) | 66              | BOLIVAR1 | SPGW1B              | SPGW | 1.0045      | 1.0024      |
| Canunda Wind Farm       | <u>33</u>       | CNUNDAWF | SSNN1               | SCND | 0.9432      |             |
| Cummins Lonsdale PS     | 66              | LONSDALE | SMVE1               | SMVE | 1.0075      | 1.0080      |





| Location                     | Voltage<br>(kV)         | DUID     | Connection<br>Point ID | TNI  | 2015-16 MLF | 2014-15 MLF |
|------------------------------|-------------------------|----------|------------------------|------|-------------|-------------|
| Highbury LFG PS              | <del>11</del> <u>66</u> | HIGHBRY1 | SNFD2H                 | SNFD | 1.0042      | 1.0029      |
| Pedler Creek Landfill Gas PS | <del>11</del> <u>66</u> | PEDLER1  | SMVE5C                 | SMVE | 1.0075      | 1.0080      |
| Pt Stanvac Unit 1            | 66                      | STANV1   | SMVE3P                 | SMVE | 1.0075      | 1.0080      |
| Pt Stanvac Unit 2            | 66                      | STANV2   | SMVE4P                 | SMVE | 1.0075      | 1.0080      |
| Starfish Hill Wind Farm      | 66                      | STARHLWF | SMVE2                  | SMVE | 1.0075      | 1.0080      |
| Tatiara Meat Co              | 33                      | TATIARA1 | SKET1E                 | SKET | 1.0062      | 1.0258      |
| Tea Tree Gully LFG PS        | <del>11</del> <u>66</u> | TEATREE1 | SNFD2T                 | SNFD | 1.0042      | 1.0029      |
| Terminal Storage Mini-Hydro  | 66                      | TERMSTOR | SNFD1                  | SNFD | 1.0042      | 1.0029      |
| Wingfield 1 LFG PS           | <del>11</del> <u>66</u> | WINGF1_1 | SKLB1W                 | SKLB | 1.0029      | 1.0030      |
| Wingfield 2 LFG PS           | <del>11</del> <u>66</u> | WINGF2_1 | SNBN2W                 | SNBN | 0.9998      | 0.9992      |

# 1.5 Tasmania Marginal Loss Factors

Table 15 Tasmania Loads

| Location                | Voltage (kV) | TNI  | 2015-16 MLF | 2014-15 MLF |
|-------------------------|--------------|------|-------------|-------------|
| Arthurs Lake            | 6.6          | TAL2 | 0.9911      | 0.9849      |
| Avoca                   | 22           | TAV2 | 1.0167      | 0.9940      |
| Boyer SWA               | 6.6          | TBYA | 1.0141      | 0.9891      |
| Boyer SWB               | 6.6          | TBYB | 1.0223      | 0.9982      |
| Bridgewater             | 11           | TBW2 | 1.0143      | 0.9911      |
| Burnie                  | 22           | TBU3 | 0.9835      | 0.9821      |
| Chapel St.              | 11           | TCS3 | 1.0132      | 0.9898      |
| Comalco                 | 220          | TCO1 | 1.0006      | 1.0006      |
| Creek Road              | 33           | TCR2 | 1.0127      | 0.9891      |
| Derby                   | 22           | TDE2 | 0.9566      | 0.9366      |
| Derwent Bridge          | 22           | TDB2 | 0.9438      | 0.9154      |
| Devonport               | 22           | TDP2 | 0.9874      | 0.9859      |
| Electrona               | 11           | TEL2 | 1.0235      | 1.0020      |
| Emu Bay                 | 11           | TEB2 | 0.9811      | 0.9789      |
| Fisher (Rowallan)       | 220          | TFI1 | 0.9701      | 0.9645      |
| George Town             | 22           | TGT3 | 1.0025      | 1.0024      |
| George Town (Basslink)  | 220          | TGT1 | 1.0000      | 1.0000      |
| Gordon                  | 22           | TGO2 | 0.9903      | 0.9530      |
| Greater Hobart Area VTN |              | TVN1 | 1.0137      | 0.9902      |
| Hadspen                 | 22           | THA3 | 0.9904      | 0.9789      |
| Hampshire               | 110          | THM2 | 0.9796      | 0.9782      |
| Huon River              | 11           | THR2 | 1.0179      | 1.0003      |
| Kermandie               | 11           | TKE2 | 1.0256      | 1.0028      |
| Kingston                | 33           | TK13 | 1.0179      | 0.9938      |
| Kingston                | 11           | TKI2 | 1.0200      | 0.9942      |
| Knights Road            | 11           | TKR2 | 1.0284      | 1.0040      |
| Lindisfarne             | 33           | TLF2 | 1.0164      | 0.9938      |
| Meadowbank              | 22           | TMB2 | 0.9828      | 0.9624      |
| Mornington              | 33           | TMT2 | 1.0145      | 0.9879      |
| Mowbray                 | 22           | TMY2 | 0.9881      | 0.9766      |
| New Norfolk             | 22           | TNN2 | 1.0068      | 0.9828      |





| Newton         11         TNT3         0.9642         0.9616           North Hobart         11         TNH2         1.0119         0.9872           Norwood         22         TNW2         0.9884         0.9776           Palmerston         22         TPM3         0.9844         0.9626           Port Latta         22         TPL2         0.9589         0.9563           Que         22         TQU2         0.9731         0.9678           Queenstown         11         TQT3         0.9668         0.9748           Queenstown         22         TQT2         0.9633         0.9658           Railton         22         TRA2         0.9878         0.9853           Risdon         33         TRI4         1.0131         0.9890           Risdon         11         TRI3         1.0152         0.9889           Rokeby         11         TRK2         1.0175         0.9975           Rosebery         44         TRB2         0.9707         0.9710           Savage River         22         TSR2         1.0003         0.9982           Scottsdale         22         TSD2         0.9661         0.9554                                                                                    | Location         | Voltage (kV) | TNI  | 2015-16 MLF | 2014-15 MLF |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|------|-------------|-------------|
| North Hobart         11         TNH2         1.0119         0.9872           Norwood         22         TNW2         0.9884         0.9776           Palmerston         22         TPM3         0.9844         0.9626           Port Latta         22         TPL2         0.9589         0.9563           Que         22         TQU2         0.9731         0.9678           Queenstown         11         TQT3         0.9668         0.9748           Queenstown         22         TQT2         0.9633         0.9658           Railton         22         TRA2         0.9878         0.9853           Risdon         33         TRI4         1.0131         0.9890           Risdon         11         TRI3         1.0152         0.9889           Rokeby         11         TRK2         1.0175         0.9975           Rosebery         44         TRB2         0.9707         0.9710           Savage River         22         TSR2         1.0003         0.9982           Scottsdale         22         TSD2         0.9661         0.9554           Smithton         22         TSC2         0.9414         0.9434                                                                                  | Newton           | 22           | TNT2 | 0.9603      | 0.9795      |
| Norwood         22         TNW2         0.9884         0.9766           Palmerston         22         TPM3         0.9844         0.9626           Port Latta         22         TPL2         0.9589         0.9563           Que         22         TQU2         0.9731         0.9678           Queenstown         11         TQT3         0.9668         0.9748           Queenstown         22         TQT2         0.9633         0.9658           Railton         22         TRA2         0.9878         0.9853           Risdon         33         TRI4         1.0131         0.9890           Risdon         11         TRI3         1.0152         0.9889           Rokeby         11         TRK2         1.0175         0.9975           Rosebery         44         TRB2         0.9707         0.9710           Savage River         22         TSR2         1.0003         0.9982           Scottsdale         22         TSD2         0.9661         0.9554           Smithton         22         TSC2         0.9414         0.9434           Sorell         22         TSD2         0.9661         0.9554 <td< td=""><td>Newton</td><td>11</td><td>TNT3</td><td>0.9642</td><td>0.9616</td></td<> | Newton           | 11           | TNT3 | 0.9642      | 0.9616      |
| Palmerston         22         TPM3         0.9844         0.9626           Port Latta         22         TPL2         0.9589         0.9563           Que         22         TQU2         0.9731         0.9678           Queenstown         11         TQT3         0.9668         0.9748           Queenstown         22         TQT2         0.9633         0.9658           Railton         22         TRA2         0.9878         0.9853           Risdon         33         TRI4         1.0131         0.9890           Risdon         11         TRI3         1.0152         0.9889           Rokeby         11         TRK2         1.0175         0.9975           Rosebery         44         TRB2         0.9707         0.9710           Savage River         22         TSR2         1.0003         0.9982           Scottsdale         22         TSD2         0.9661         0.9554           Smithton         22         TSD2         0.9661         0.9554           St Leonard         22         TSD2         0.9880         0.9780           St Marys         22         TSM2         1.0324         1.0098                                                                                   | North Hobart     | 11           | TNH2 | 1.0119      | 0.9872      |
| Port Latta         22         TPL2         0.9589         0.9563           Que         22         TQU2         0.9731         0.9678           Queenstown         11         TQT3         0.9668         0.9748           Queenstown         22         TQT2         0.9633         0.9658           Railton         22         TRA2         0.9878         0.9853           Risdon         33         TRI4         1.0131         0.9889           Risdon         11         TRI3         1.0152         0.9889           Rokeby         11         TRK2         1.0175         0.9975           Rosebery         44         TRB2         0.9707         0.9710           Savage River         22         TSR2         1.0003         0.9982           Scottsdale         22         TSD2         0.9661         0.9554           Smithton         22         TSD2         0.9661         0.9554           St Leonard         22         TSD2         0.9880         0.9780           St. Marys         22         TSM2         1.0324         1.0098           Stawood         110         TSW1         1.0010         1.0010                                                                                    | Norwood          | 22           | TNW2 | 0.9884      | 0.9776      |
| Que       22       TQU2       0.9731       0.9678         Queenstown       11       TQT3       0.9668       0.9748         Queenstown       22       TQT2       0.9633       0.9658         Railton       22       TRA2       0.9878       0.9853         Risdon       33       TRI4       1.0131       0.9890         Rokeby       11       TRK2       1.0175       0.9975         Rosebery       44       TRB2       0.9707       0.9710         Savage River       22       TSR2       1.0003       0.9982         Scottsdale       22       TSD2       0.9661       0.9554         Smithton       22       TST2       0.9414       0.9434         Sorell       22       TSD2       1.0207       0.9985         St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn                                                                                                                                                           | Palmerston       | 22           | TPM3 | 0.9844      | 0.9626      |
| Queenstown       11       TQT3       0.9668       0.9748         Queenstown       22       TQT2       0.9633       0.9658         Railton       22       TRA2       0.9878       0.9853         Risdon       33       TRI4       1.0131       0.9890         Risdon       11       TRI3       1.0152       0.9889         Rokeby       11       TRK2       1.0175       0.9975         Rosebery       44       TRB2       0.9707       0.9710         Savage River       22       TSR2       1.0003       0.9982         Scottsdale       22       TSD2       0.9661       0.9554         Smithton       22       TST2       0.9414       0.9434         Sorell       22       TSO2       1.0207       0.9985         St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Termo       110       TTE1       1.0041       1.0037         Triabunna       <                                                                                                                                                | Port Latta       | 22           | TPL2 | 0.9589      | 0.9563      |
| Queenstown       22       TQT2       0.9633       0.9658         Railton       22       TRA2       0.9878       0.9853         Risdon       33       TRI4       1.0131       0.9890         Risdon       11       TRI3       1.0152       0.9889         Rokeby       11       TRK2       1.0175       0.9975         Rosebery       44       TRB2       0.9707       0.9710         Savage River       22       TSR2       1.0003       0.9882         Scottsdale       22       TSD2       0.9661       0.9554         Smithton       22       TST2       0.9414       0.9434         Sorell       22       TSO2       1.0207       0.9885         St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn       22       TTR2       0.9886       0.9779         Triabunna <t< td=""><td>Que</td><td>22</td><td>TQU2</td><td>0.9731</td><td>0.9678</td></t<>                                                                       | Que              | 22           | TQU2 | 0.9731      | 0.9678      |
| Railton       22       TRA2       0.9878       0.9853         Risdon       33       TRI4       1.0131       0.9890         Risdon       11       TRI3       1.0152       0.9889         Rokeby       11       TRK2       1.0175       0.9975         Rosebery       44       TRB2       0.9707       0.9710         Savage River       22       TSR2       1.0003       0.9982         Scottsdale       22       TSD2       0.9661       0.9554         Smithton       22       TST2       0.9414       0.9434         Sorell       22       TSO2       1.0207       0.9985         St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn       22       TTR2       0.9886       0.9779         Triabunna       22       TTB2       1.0332       1.0018                                                                                                                                                                            | Queenstown       | 11           | TQT3 | 0.9668      | 0.9748      |
| Risdon       33       TRI4       1.0131       0.9890         Risdon       11       TRI3       1.0152       0.9889         Rokeby       11       TRK2       1.0175       0.9975         Rosebery       44       TRB2       0.9707       0.9710         Savage River       22       TSR2       1.0003       0.9982         Scottsdale       22       TSD2       0.9661       0.9554         Smithton       22       TST2       0.9414       0.9434         Sorell       22       TSO2       1.0207       0.9985         St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn       22       TTR2       0.9886       0.9779         Triabunna       22       TTB2       1.0332       1.0018                                                                                                                                                                                                                                          | Queenstown       | 22           | TQT2 | 0.9633      | 0.9658      |
| Risdon       11       TRI3       1.0152       0.9889         Rokeby       11       TRK2       1.0175       0.9975         Rosebery       44       TRB2       0.9707       0.9710         Savage River       22       TSR2       1.0003       0.9982         Scottsdale       22       TSD2       0.9661       0.9554         Smithton       22       TST2       0.9414       0.9434         Sorell       22       TSO2       1.0207       0.9985         St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn       22       TTR2       0.9886       0.9779         Triabunna       22       TTB2       1.0332       1.0018                                                                                                                                                                                                                                                                                                       | Railton          | 22           | TRA2 | 0.9878      | 0.9853      |
| Rokeby       11       TRK2       1.0175       0.9975         Rosebery       44       TRB2       0.9707       0.9710         Savage River       22       TSR2       1.0003       0.9982         Scottsdale       22       TSD2       0.9661       0.9554         Smithton       22       TST2       0.9414       0.9434         Sorell       22       TSO2       1.0207       0.9985         St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn       22       TTR2       0.9886       0.9779         Triabunna       22       TTB2       1.0332       1.0018                                                                                                                                                                                                                                                                                                                                                                    | Risdon           | 33           | TRI4 | 1.0131      | 0.9890      |
| Rosebery       44       TRB2       0.9707       0.9710         Savage River       22       TSR2       1.0003       0.9982         Scottsdale       22       TSD2       0.9661       0.9554         Smithton       22       TST2       0.9414       0.9434         Sorell       22       TSO2       1.0207       0.9985         St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn       22       TTR2       0.9886       0.9779         Triabunna       22       TTB2       1.0332       1.0018                                                                                                                                                                                                                                                                                                                                                                                                                                 | Risdon           | 11           | TRI3 | 1.0152      | 0.9889      |
| Savage River       22       TSR2       1.0003       0.9982         Scottsdale       22       TSD2       0.9661       0.9554         Smithton       22       TST2       0.9414       0.9434         Sorell       22       TSO2       1.0207       0.9985         St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn       22       TTR2       0.9886       0.9779         Triabunna       22       TTB2       1.0332       1.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rokeby           | 11           | TRK2 | 1.0175      | 0.9975      |
| Scottsdale       22       TSD2       0.9661       0.9554         Smithton       22       TST2       0.9414       0.9434         Sorell       22       TSO2       1.0207       0.9985         St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn       22       TTR2       0.9886       0.9779         Triabunna       22       TTB2       1.0332       1.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rosebery         | 44           | TRB2 | 0.9707      | 0.9710      |
| Smithton       22       TST2       0.9414       0.9434         Sorell       22       TSO2       1.0207       0.9985         St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn       22       TTR2       0.9886       0.9779         Triabunna       22       TTB2       1.0332       1.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Savage River     | 22           | TSR2 | 1.0003      | 0.9982      |
| Sorell       22       TSO2       1.0207       0.9985         St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn       22       TTR2       0.9886       0.9779         Triabunna       22       TTB2       1.0332       1.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Scottsdale       | 22           | TSD2 | 0.9661      | 0.9554      |
| St Leonard       22       TSL2       0.9880       0.9780         St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn       22       TTR2       0.9886       0.9779         Triabunna       22       TTB2       1.0332       1.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Smithton         | 22           | TST2 | 0.9414      | 0.9434      |
| St. Marys       22       TSM2       1.0324       1.0098         Starwood       110       TSW1       1.0010       1.0010         Tamar Region VTN       TVN2       0.9904       0.9811         Temco       110       TTE1       1.0041       1.0037         Trevallyn       22       TTR2       0.9886       0.9779         Triabunna       22       TTB2       1.0332       1.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sorell           | 22           | TSO2 | 1.0207      | 0.9985      |
| Starwood         110         TSW1         1.0010         1.0010           Tamar Region VTN         TVN2         0.9904         0.9811           Temco         110         TTE1         1.0041         1.0037           Trevallyn         22         TTR2         0.9886         0.9779           Triabunna         22         TTB2         1.0332         1.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | St Leonard       | 22           | TSL2 | 0.9880      | 0.9780      |
| Tamar Region VTN         TVN2         0.9904         0.9811           Temco         110         TTE1         1.0041         1.0037           Trevallyn         22         TTR2         0.9886         0.9779           Triabunna         22         TTB2         1.0332         1.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | St. Marys        | 22           | TSM2 | 1.0324      | 1.0098      |
| Temco         110         TTE1         1.0041         1.0037           Trevallyn         22         TTR2         0.9886         0.9779           Triabunna         22         TTB2         1.0332         1.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Starwood         | 110          | TSW1 | 1.0010      | 1.0010      |
| Trevallyn         22         TTR2         0.9886         0.9779           Triabunna         22         TTB2         1.0332         1.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tamar Region VTN |              | TVN2 | 0.9904      | 0.9811      |
| Triabunna 22 TTB2 1.0332 1.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Temco            | 110          | TTE1 | 1.0041      | 1.0037      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trevallyn        | 22           | TTR2 | 0.9886      | 0.9779      |
| Tungatinah 22 TTU2 0.9483 0.9210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Triabunna        | 22           | TTB2 | 1.0332      | 1.0018      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tungatinah       | 22           | TTU2 | 0.9483      | 0.9210      |
| Ulverstone 22 TUL2 0.9854 0.9830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ulverstone       | 22           | TUL2 | 0.9854      | 0.9830      |
| Waddamana         22         TWA2         0.9644         0.9389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Waddamana        | 22           | TWA2 | 0.9644      | 0.9389      |
| Wayatinah 11 TWY2 0.9927 0.9693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wayatinah        | 11           | TWY2 | 0.9927      | 0.9693      |
| Wesley Vale 22 TWV2 0.9845 0.9765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wesley Vale      | 22           | TWV2 | 0.9845      | 0.9765      |

Table 16 Tasmania Generation

| Location                                      | Voltage (kV) | DUID     | Connection<br>Point ID | TNI  | 2015-16 MLF | 2014-15 MLF |
|-----------------------------------------------|--------------|----------|------------------------|------|-------------|-------------|
| Basslink<br>(George Town)                     | 220          | BLNKTAS  | TGT11                  | TGT1 | 1.0000      | 1.0000      |
| Bastyan                                       | 220          | BASTYAN  | TFA11                  | TFA1 | 0.9466      | 0.9396      |
| Bell Bay No.3                                 | 110          | BBTHREE1 | TBB11                  | TBB1 | 0.9995      | 0.9999      |
| Bell Bay No.3                                 | 110          | BBTHREE2 | TBB12                  | TBB1 | 0.9995      | 0.9999      |
| Bell Bay No.3                                 | 110          | BBTHREE3 | TBB13                  | TBB1 | 0.9995      | 0.9999      |
| Bluff Point and<br>Studland Bay<br>Wind Farms | 110          | WOOLNTH1 | TST11                  | TST1 | 0.8944      | 0.8913      |
| Butlers Gorge                                 | 110          | BUTLERSG | TBG11                  | TBG1 | 0.9418      | 0.9142      |
| Catagunya                                     | 220          | LI_WY_CA | TLI11                  | TLI1 | 0.9915      | 0.9702      |
| Cethana                                       | 220          | CETHANA  | TCE11                  | TCE1 | 0.9671      | 0.9593      |
| Cluny                                         | 220          | CLUNY    | TCL11                  | TCL1 | 0.9933      | 0.9737      |
| Devils gate                                   | 110          | DEVILS_G | TDG11                  | TDG1 | 0.9719      | 0.9639      |





| Location             | Voltage (kV) | DUID     | Connection<br>Point ID | TNI  | 2015-16 MLF | 2014-15 MLF |
|----------------------|--------------|----------|------------------------|------|-------------|-------------|
| Fisher               | 220          | FISHER   | TFI11                  | TFI1 | 0.9701      | 0.9645      |
| Gordon               | 220          | GORDON   | TGO11                  | TGO1 | 0.9400      | 0.9046      |
| John Butters         | 220          | JBUTTERS | TJB11                  | TJB1 | 0.9384      | 0.9405      |
| Lake Echo            | 110          | LK_ECHO  | TLE11                  | TLE1 | 0.9338      | 0.9028      |
| Lemonthyme           | 220          | LEM_WIL  | TSH11                  | TSH1 | 0.9746      | 0.9683      |
| Liapootah            | 220          | LI_WY_CA | TLI11                  | TLI1 | 0.9915      | 0.9702      |
| Mackintosh           | 110          | MACKNTSH | TMA11                  | TMA1 | 0.9381      | 0.9296      |
| Meadowbank           | 110          | MEADOWBK | TMB11                  | TMB1 | 0.9737      | 0.9644      |
| Musselroe            | 110          | MUSSELR1 | TDE11M                 | TDE1 | 0.9039      | 0.8957      |
| Paloona              | 110          | PALOONA  | TPA11                  | TPA1 | 0.9830      | 0.9657      |
| Poatina              | 220          | POAT220  | TPM11                  | TPM1 | 0.9725      | 0.9681      |
| Poatina              | 110          | POAT110  | TPM21                  | TPM2 | 0.9630      | 0.9571      |
| Reece No.1           | 220          | REECE1   | TRCA1                  | TRCA | 0.9425      | 0.9315      |
| Reece No.2           | 220          | REECE2   | TRCB1                  | TRCB | 0.9426      | 0.9319      |
| Repulse              | 220          | REPULSE  | TCL12                  | TCL1 | 0.9933      | 0.9737      |
| Rowallan             | 220          | ROWALLAN | TFI12                  | TFI1 | 0.9701      | 0.9645      |
| Tamar Valley<br>CCGT | 220          | TVCC201  | TTV11A                 | TTV1 | 0.9996      | 0.9990      |
| Tamar Valley<br>OCGT | 110          | TVPP104  | TBB14A                 | TBB1 | 0.9995      | 0.9999      |
| Tarraleah            | 110          | TARRALEA | TTA11                  | TTA1 | 0.9432      | 0.9195      |
| Trevallyn            | 110          | TREVALLN | TTR11                  | TTR1 | 0.9857      | 0.9745      |
| Tribute              | 220          | TRIBUTE  | TTI11                  | TTI1 | 0.9421      | 0.9339      |
| Tungatinah           | 110          | TUNGATIN | TTU11                  | TTU1 | 0.9404      | 0.9122      |
| Wayatinah            | 220          | LI_WY_CA | TLI11                  | TLI1 | 0.9915      | 0.9702      |
| Wilmot               | 220          | LEM_WIL  | TSH11                  | TSH1 | 0.9746      | 0.9683      |

Table 17 Tasmania Embedded Generation

| Location    | Voltage [kV] | DUID     | Connection<br>Point ID | TNI  | 2015-16 MLF | 2014-15 MLF |
|-------------|--------------|----------|------------------------|------|-------------|-------------|
| Midlands PS | 22           | MIDLDPS1 | TAV21M                 | TAV2 | 1.0167      | 0.9940      |
| Remount     | 22           | REMOUNT  | TMY21                  | TVN2 | 0.9904      | 0.9811      |





## CHANGES IN MARGINAL LOSS FACTORS

This section summarises changes in MLFs in 2015–16 from 2014–15 and the trends driving them.

The following major trends in the NEM dictated changes in MLFs in 2015–16 from 2014–15:

- Reduced regional demand forecast in all regions.
- · Reduced generation forecast in Tasmania.
- Reduced Basslink power transfers from Tasmania to Victoria.
- Increased demand forecast in Southern Queensland, in particular driven by new LNG load connections around Columboola.

Reduced thermal generation in South Australia. These major trends dictated the following changes in modelled net power transfer on interconnectors:

- Increased power flow from Victoria to Tasmania compared to the 2014–15 MLF study.
- Reduced power flow from South Australia to Victoria compared to the 2014–15 MLF study.
- Reduced power from Victoria to NSW compared to the 2014–15 MLF study.
- Increased power flow from Queensland to NSW compared to the 2014–15 MLF study.

These changes have a consequent effect on MLFs, in particular at locations geographically close to interconnectors.

The following events also occurred in the NEM. However, they had minimal impact on changes to 2015–16 MLFs since most were already known and modelled in the 2014–15 MLF study.

- Closure of the Point Henry Aluminium Smelter in Geelong, Victoria.
- De-commissioning of Wallerawang, and removal from service of Redbank and Munmorah PSs in NSW, Morwell PS in Victoria, and Swanbank E PS in Queensland.

## 2.1 Changes to Marginal Loss Factors in Queensland

Despite the increase in the southern Queensland demand due to LNG load connections, overall demand forecast for Queensland in 2015–16 has reduced. This has led to increased transfers from Queensland to NSW compared to the 2014–15 MLF study. There is a general reduction in MLFs at connection points in Northern Queensland, and an increase in MLFs at connection points in Central and Southern Queensland.

## 2.2 Changes to Marginal Loss Factors in NSW

The NSW energy demand forecast for 2015–16 has reduced compared to the 2014–15 MLF study. Generation in the Hunter region has reduced. There is also an increasing trend towards non-conventional generation. Wallerawang PS has been decommissioned, and Redbank and Munmorah PSs have been removed from service.

Overall, NSW is importing more from Queensland and importing less from Victoria compared to the 2014–15 MLF study.

As a result, the significant MLF changes in NSW are:

- MLFs at connection points in Southern NSW have increased due to reduced power imports from Victoria.
- MLFs at connection points in Northern NSW have reduced due to increased power imports from Queensland.





## 2.3 Changes to Marginal Loss Factors in Victoria

Forecast generation in Tasmania has reduced significantly compared to the 2014–15 MLF study (refer to section B.3.2). This has resulted in increased Basslink transfers from Victoria to Tasmania.

The Point Henry Aluminium Smelter has closed. Victoria's energy demand forecast for 2015–16 has reduced compared to the 2014–15 MLF study.

In general, Victoria is exporting more energy to Tasmania, importing less energy from South Australia and exporting less energy to NSW compared to the 2014–15 MLF study.

The significant MLF changes in Victoria are:

 MLFs at connection points near the Victoria-NSW interconnector have reduced along with reduced power transfers from Victoria to NSW.

## 2.4 Changes to Marginal Loss Factors in South Australia

The South Australian energy demand forecast for 2015–16 has reduced compared to the 2014–15 MLF study, along with a reduction in generation at Pelican Point and Torrens Island PSs, which has led to reduced exports to Victoria.

South Australian MLFs are mostly similar to those of the previous year. The significant MLF changes in South Australia are:

- Reduced power exports to Victoria have led to reduced MLFs at connection points in the Riverland region.
- Reduced power transfers to Victoria have led to reduced MLFs at connection points in the South Australia's south east.

## 2.5 Changes to Marginal Loss Factors in Tasmania

The Tasmanian energy demand forecast for 2015–16 has reduced compared to the 2014–15 MLF study. Forecast generation in Tasmania has reduced (refer to section B.3.2), resulting in reduced exports to Victoria via Basslink.

The significant MLF changes in Tasmania are:

· General increase in MLFs in Tasmania.



## 3. INTER-REGIONAL LOSS FACTOR EQUATIONS

This section describes inter-regional loss factor equations.

Inter-regional loss factor equations describe the variation in loss factor at one regional reference node (RRN) with respect to an adjacent RRN. These equations are necessary to cater for the large variations in loss factors that may occur between RRNs as a result of different power flow patterns. This is important in minimising the distortion of economic dispatch of generating units.

## Loss factor equation (South Pine 275 referred to Sydney West 330)

= 1.0026 + 2.2177E-04\*NQt + 2.0008E-06\*Nd + 5.4593E-06\*Qd

#### Loss factor equation (Sydney West 330 referred to Thomastown 66)

= 1.0828 + 1.6677E-04\*VNt - 2.0810E-05\*Vd + 1.3312E-06\*Nd - 4.7327E-06\*Sd

#### Loss factor equation (Torrens Island 66 referred to Thomastown 66)

= 1.0232 + 3.4717E-04\*VSAt +2.6978E-06\*Vd - 2.5754E-05\*Sd

#### Where:

Qd = Queensland demand

Vd = Victorian demand

Nd = NSW demand

Sd = South Australian demand

NQt = transfer from NSW to Queensland

VNt = transfer from Victoria to NSW

VSAt = transfer from Victoria to South Australia



Figure 1 MLF (South Pine 275 referred to Sydney West 330)

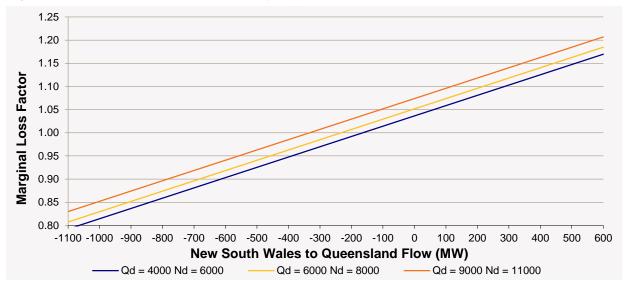



Table 18 South Pine 275 referred to Sydney West 330 MLF versus NSW to Queensland flow Coefficient statistics

| Coefficient                                | $Q_d$      | $N_{d}$    | $NQ_t$     | CONSTANT   |
|--------------------------------------------|------------|------------|------------|------------|
| Coefficient value                          | 5.4593E-06 | 2.0008E-06 | 2.2177E-04 | 1.0026     |
| Standard error values for the coefficients | 1.7187E-07 | 1.1111E-07 | 3.4872E-07 | 6.7933E-04 |
| Coefficient of determination (R²)          | 0.9720     |            |            |            |
| Standard error of the y estimate           | 0.0091     |            |            |            |

Figure 2 MLF (Sydney West 330 referred toThomastown 66)

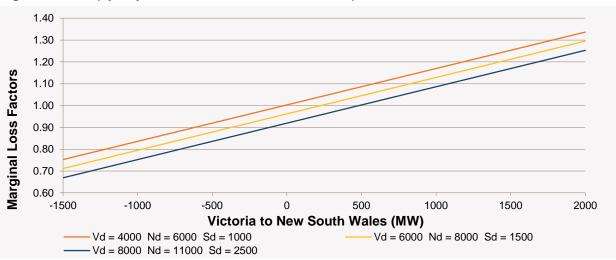
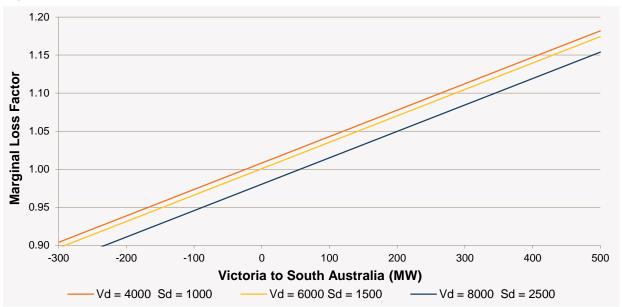




Table 19 Sydney West 330 referred to Thomastown 66 MLF versus Victoria to NSW flow Coefficient statistics

| Coefficient                                | Sd          | $N_d$      | $V_d$       | $VN_t$     | CONSTANT   |
|--------------------------------------------|-------------|------------|-------------|------------|------------|
| Coefficient value                          | -4.7327E-06 | 1.3312E-06 | -2.0810E-05 | 1.6677E-04 | 1.0828     |
| Standard error values for the coefficients | 7.7454E-07  | 3.8894E-07 | 5.7027E-07  | 7.6641E-07 | 1.9597E-03 |
| Coefficient of determination (R²)          | 0.8799      |            |             |            |            |
| Standard error of the y estimate           | 0.0294      |            |             |            |            |



Figure 3 MLF (Torrens Island 66 referred to Thomastown 66)



Torrens Island 66 referred to Thomastown 66 MLF versus Victoria to South Australia flow Coefficient statistics

| Coefficient                                | Sd          | Vd         | VSAt       | CONSTANT   |
|--------------------------------------------|-------------|------------|------------|------------|
| Coefficient value                          | -2.5754E-05 | 2.6978E-06 | 3.4717E-04 | 1.0232     |
| Standard error values for the coefficients | 7.1981E-07  | 2.4669E-07 | 1.3341E-06 | 8.0252E-04 |
| Coefficient of determination (R2)          | 0.8934      |            |            |            |
| Standard error of the y estimate           | 0.0178      |            |            |            |



## 4. INTER-REGIONAL LOSS EQUATIONS

This section describes how the Inter-regional loss equations are derived.

The inter-regional loss equations are derived by integrating the equation (Loss factor – 1) with respect to the interconnector flow, i.e.:

Losses =  $\int (Loss factor - 1) dFlow$ 

#### South Pine 275 referred to Sydney West 330 notional link average losses

 $= (0.0026 + 2.0008E-06*Nd + 5.4593E-06*Qd)*NQt + 1.1089E-04*NQt^{2}$ 

#### Sydney West 330 referred to Thomastown 66 notional link average losses

=  $(0.0828 - 2.0810E - 05*Vd + 1.3312E - 06*Nd - 4.7327E - 06*Sd)*VNt + 8.34E - 05*VNt^2$ 

#### Torrens Island 66 referred to Thomastown 66 notional link average losses

 $= (0.0232 + 2.6978E-06*Vd - 2.5754E-05*Sd)*VSAt + 1.736E-04*VSAt^2$ 

#### Where:

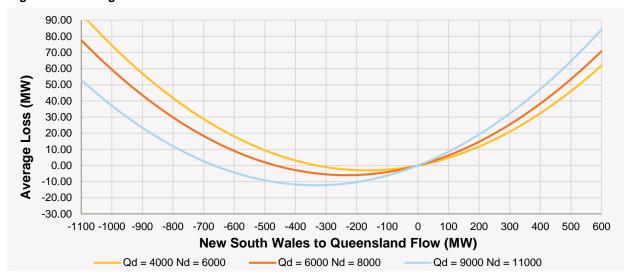
Qd = Queensland demand

Vd = Victorian demand

Nd = NSW demand

Sd = South Australia demand

NQt = transfer from NSW to Queensland


VNt = transfer from Victoria to NSW

VSAt = transfer from Victoria to South Australia



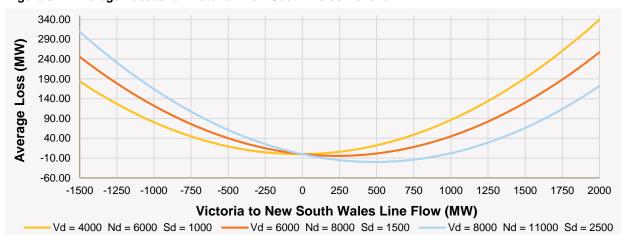



Figure 4 Average Losses for New South Wales - Queensland Notional Link



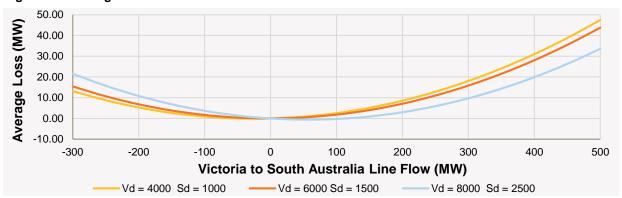

NSW to Queensland notional link losses versus NSW to Queensland notional link flow

Figure 5 Average Losses for Victoria - New South Wales Notional Link



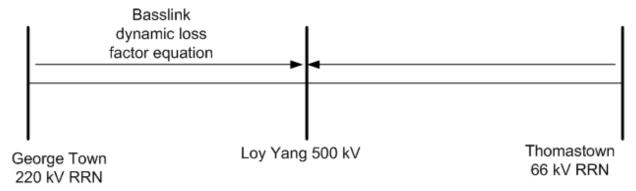
#### Victoria to NSW notional link losses versus Victoria to NSW notional link flow

Figure 6 Average Losses for Victoria – SA National Link



Victoria to South Australia notional link losses versus Victoria to South Australia notional link flow




# 5. BASSLINK, TERRANORA, MURRAYLINK LOSS EQUATIONS

This section describes the loss equations for the DC interconnectors.

### 5.1 Basslink

The loss factor model for Basslink is made up of the following portions:

- George Town 220 kV MLF referred to Tasmania RRN = 1.0000
- Basslink (Loy Yang PS Switchyard) 500 kV MLF referred to Victorian RRN = 0.9828.
- Receiving end dynamic loss factor referred to the sending end = 0.99608 + 2.0786\* 10<sup>-4</sup> \* P<sub>(receive)</sub>, where P<sub>(receive)</sub> is the Basslink flow measured at the receiving end.



The equation describing the losses between the George Town 220 kV and Loy Yang 500 kV connection points can be determined by integrating the (loss factor equation – 1), giving:

$$P_{\text{(send)}} = P_{\text{(receive)}} + [(-3.92 \times 10^{-3}) * P_{\text{(receive)}} + (1.0393 \times 10^{-4}) * P_{\text{(receive)}}^2 + 4]$$

Where:

P(send): Power in MW measured at the sending end,

P(receive): Power in MW measured at the receiving end.

The model is limited from 40MW to 630MW. When the model falls below 40MW, this is within the  $\pm$ 50 MW 'no-go zone' requirement for Basslink operation.



# 5.2 Murraylink

Murraylink is a regulated interconnector. In accordance with clause 3.6.1(a) of the Rules, the Murraylink loss model consists of a single dynamic MLF from the Victorian RRN to the South Australian RRN.

The measurement point is the 132 kV connection to the Monash converter, which effectively forms part of the boundary between the Victorian and South Australia regions.

The losses between the Red Cliffs 220 kV and Monash 132 kV connection points is given by the following equation:

Losses = 
$$(0.0039 * Flow_t + 2.8177 * 10^{-4} * Flow_t^2)$$

AEMO determined the following Murraylink MLF model using regression analysis:

Murraylink MLF (Torrens Island 66 referred to Thomastown 66) = 1.0813 + 2.3565E-03\*Flow<sub>t</sub>

This model, consisting of a constant and a Murraylink flow coefficient, is suitable because most of the loss is due to variations in the Murraylink flow, and other potential variables do not improve the model.

The regression statistics for this Murraylink loss factor model are presented in the following table:

| Coefficient                               | Flow <sub>t</sub> | CONSTANT   |
|-------------------------------------------|-------------------|------------|
| Coefficient Value                         | 2.3565E-03        | 1.0813     |
| Standard error values for the coefficient | 3.4051E-06        | 1.9565E-04 |
| Coefficient of determination (R2)         | 0.9647            |            |
| Standard error of the y estimate          | 0.0259            |            |

The loss model for a regulated Murraylink interconnector can be determined by integrating (MLF-1), giving:

Murraylink loss = 0.0813\*Flow<sub>t</sub> + 1.1783E-03\*Flow<sub>t</sub><sup>2</sup>

Figure 7 Murraylink MLF (Torrens Island 66 referred to Thomastown 66)

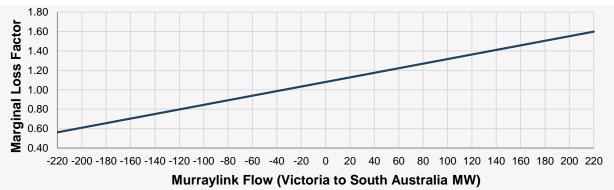
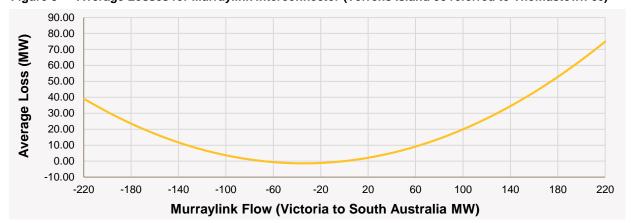








Figure 8 Average Losses for Murraylink Interconnector (Torrens Island 66 referred to Thomastown 66)



Murraylink notional link losses versus Murraylink flow (Victoria to South Australia)



## 5.3 Terranora

Terranora is a regulated interconnector. In accordance with clause 3.6.1(a) of the Rules, the Terranora loss model consists of a single dynamic MLF from the NSW RRN to the Queensland RRN.

The measurement point is 10.8 km north from Terranora on the two 110 kV lines between Terranora and Mudgeeraba, which effectively forms part of the boundary between the NSW and Queensland regions.

The losses between the Mullumbimby 132 kV and Terranora 110 kV connection points is given by the following equation:

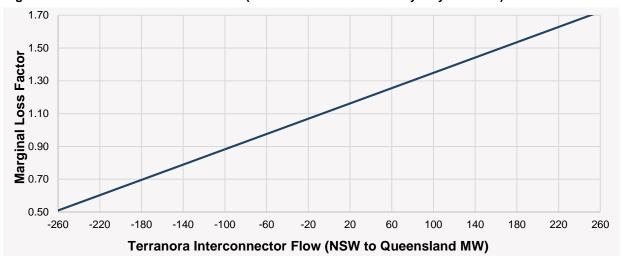
Losses = 
$$(-0.0013 * Flow_t -+ 2.7372 * 10^{-4} * Flow_t^2)$$

AEMO determined the following Terranora MLF model using regression analysis:

Terranora interconnector MLF (South Pine 275 referred to Sydney West 330) = 1.1147 + 2.2959E-03\*Flowt

This model consisting of a constant and a Murraylink flow coefficient is suitable because most of the loss is due to variations in the Terranora flow and other potential variables do not improve the model.

The regression statistics for this Terranora loss factor model are presented in the following table:


| Coefficient                               | $Flow_{t}$ | CONSTANT   |
|-------------------------------------------|------------|------------|
| Coefficient Value                         | 2.2959E-03 | 1.1147     |
| Standard error values for the coefficient | 4.5558E-06 | 3.1609E-04 |
| Coefficient of determination (R2)         | 0.9355     |            |
| Standard error of the y estimate          | 0.0338     |            |

The loss model for a regulated Murraylink interconnector can be determined by integrating (MLF-1), giving:

Terranora loss =  $0.1147*Flow_t + 1.1480E-03*Flow_t^2$ 

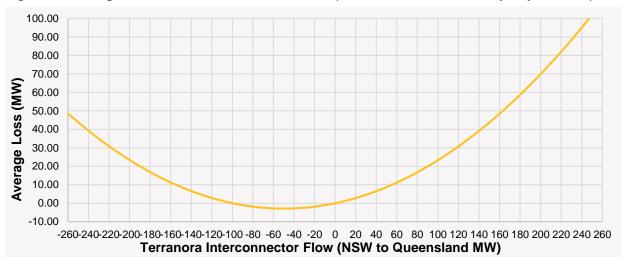



Figure 9 Terranora Interconnector MLF (South Pine 275 referred to Sydney West 330)



South Pine 275 referred to Sydney West 330 MLF versus Terranora interconnector flow (NSW to Queensland)

Figure 10 Average Losses for Terranora Interconnector (South Pine 275 referred to Sydney West 330)



Terranora interconnector notional link losses versus flow (NSW to Queensland)





# PROPORTIONING OF INTER-REGIONAL LOSSES TO REGIONS

This section details how the inter-regional losses are proportioned by NEMDE.

NEMDE implements inter-regional loss factors by allocating the inter-regional losses to the two regions associated with a notional interconnector.

The proportioning factors are used to portion the inter-regional losses to two regions by an increment of load at one RRN from the second RRN. The incremental changes to the inter-regional losses in each region are found from changes to interconnector flow and additional generation at the second RRN.

The average proportion of inter-regional losses in each region constitutes a single static loss factor.

The following table provides the factors used to portion inter-regional losses to the associated regions for the 2015–16 financial year:

| Notional interconnector                     | Proportioning factor | Applied to |
|---------------------------------------------|----------------------|------------|
| Queensland – NSW (QNI)                      | 0.55                 | NSW        |
| Queensland – NSW (Terranora Interconnector) | 0.60                 | NSW        |
| Victoria – NSW                              | 0.39                 | Victoria   |
| Victoria – South Australia (Heywood)        | 0.77                 | Victoria   |
| Victoria – South Australia (Murraylink)     | 0.82                 | Victoria   |



# 7. REGIONS AND REGIONAL REFERENCE NODES

This section describes the regions in the NEM, the RRN for each region and the regional boundaries.

# 7.1 Regions and Regional Reference Nodes

| Region          | Regional Reference Node     |
|-----------------|-----------------------------|
| Queensland      | South Pine 275kV node       |
| NSW             | Sydney West 330kV node      |
| Victoria        | Thomastown 66kV node        |
| South Australia | Torrens Island PS 66kV node |
| Tasmania        | George Town 220 kV node     |

# 7.2 Region boundaries

Physical metering points defining the region boundaries are at the following locations.

#### Between the Queensland and NSW regions

- At Dumaresq Substation on the 8L and 8M Dumaresq to Bulli Creek 330kV lines;<sup>4</sup>
- 10.8km north of Terranora on the two 110kV lines between Terranora and Mudgeeraba (lines 757 & 758). Metering at Mudgeeraba adjusted for that point.

## 7.2.1 Between the NSW and Victoria regions

- At Wodonga Terminal Station (WOTS) on the 060 Wodonga to Jindera 330kV line;
- At Red Cliffs Terminal Station (RCTS) on the Red Cliffs to Buronga 220kV line;
- At Murray Switching Station on the MSS to UTSS 330kV lines;
- At Murray Switching Station on the MSS to LTSS 330kV line;
- At Guthega Switching Station on the Guthega to Jindabyne PS 132kV line;
- At Guthega Switching Station on the Guthega to Geehi Dam Tee 132kV line.

#### 7.2.2 Between the Victoria and South Australia regions

- At South East Switching Station (SESS) on the SESS to Heywood 275kV lines.
- At Monash Switching Station (MSS) on the Berri (Murraylink) converter 132kV line.

### 7.2.3 Between the Victoria and Tasmania regions

Basslink is not a regulated interconnector with the following metering points:

- At Loy Yang 500 kV PS.
- At George Town 220 kV Switching Station.

<sup>4</sup> The metering at Dumaresq is internally scaled to produce an equivalent flow at the NSW/Queensland State borders.





## 8. VIRTUAL TRANSMISSION NODES

This section shows the configuration of the different virtual transmission nodes

VTNs are aggregations of transmission nodes for which a single MLF is applied. AEMO has considered the following virtual transmission nodes (VTNs).

## 8.1 NSW Virtual Transmission Nodes

| VTN TNI code | Description            | Associated transmission connection points (TCPs)                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NEV1         | Far North              | Muswellbrook 132 and Liddell 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NEV2         | North of Broken<br>Bay | Brandy Hill 11, Kurri 11, Kurri 33, Kurri 132, Newcastle 132, Munmorah 330, Munmorah 33, Vales Pt. 132, Beresfield 33, Charmhaven 11, Gosford 33, Gosford 66, West Gosford 11, Ourimbah 33, Ourimbah 66, Ourimbah 132, Tomago 132, Tuggerah 132, Somersby 11, BHP Waratah 132 and Wyong 11                                                                                                                                                                                                                |
| NEV3         | South of Broken<br>Bay | Sydney North 132 (Ausgrid), Lane Cove 132, Meadowbank 11, Mason Park 132, Homebush Bay 11, Chullora 132 kV, Chullora 11, Peakhurst 132, Peakhurst 33, Drummoyne 11, Rozelle 33, Pyrmont 132, Pyrmont 33, Marrickville 11, St Peters 11, Beaconsfield West 132, Canterbury 33, Bunnerong 33, Bunnerong 132, Sydney East 132, Sydney West 132 (Ausgrid) and Sydney South 132, Macquarie Park 11, Rozelle 132, Top Ryde 11, RookWood Road, Kurnell 132, Belmore Park 132, Green Square 11, and Haymarket 132 |

## 8.2 South Australia Virtual Transmission Nodes

The SJP1 VTN for South Australia includes all South Australian load transmission connection points, excluding:

- Snuggery Industrial, as nearly its entire capacity services an industrial facility at Millicent.
- Whyalla MLF, as its entire capacity services an industrial plant in Whyalla.

## 8.3 Tasmania Virtual Transmission Nodes

| VTN TNI code | Description            | Associated transmission connection points (TCPs)                                                          |
|--------------|------------------------|-----------------------------------------------------------------------------------------------------------|
| TVN1         | Greater Hobart<br>Area | Chapel Street 11, Creek Road 33, Lindisfarne 33, Mornington 33, North Hobart 11, Risdon 33 and Rokeby 11. |
| TVN2         | Tamar Region           | Hadspen 22, Mowbray 22, Norwood 22, St Leonards 22, Trevallyn 22, George Town 22                          |





# APPENDIX A. BACKGROUND TO MARGINAL LOSS FACTORS

This section summarises the method and interpretation AEMO uses to account for electrical losses in the NEM. It also specifies AEMO's Rules responsibilities related to regions, calculation of MLFs, and calculation of inter-regional loss factor equations.

The NEM uses marginal costs as the basis for setting electricity prices that also require pricing of transmission electrical losses.

For electricity transmission, electrical losses are a transport cost that needs to be recovered. A feature of electrical losses is that they also increase with an increase in the electrical power transmitted. That is, the more a transmission line is loaded, the higher the percentage losses. Thus, the price differences between the sending and receiving ends is not determined by the average losses, but by the marginal losses of the last increment of electrical power delivered.

Electrical power in the NEM is traded through the spot market managed by AEMO. The central dispatch process schedules generation to meet demand in order to maximise the value of trade.

Static MLFs represent intra-regional electrical losses of transporting electricity between a connection point and the RRN. In the dispatch process, generation prices within each region are adjusted by the MLFs to determine dispatch of generation.

Dynamic inter-regional loss factor equations calculate the losses between regions. Depending on the flows between regions, the inter-regional losses also adjust the prices in determining generation dispatch to meet demand.

AEMO calculates the RRP for each region, which is then adjusted by reference to the MLFs between customer connection points and the RRN.

# A.1 Rules requirements for the Marginal Loss Factor calculation

Clause 2A.1.3 of the Rules requires AEMO to establish, maintain, review and publish by 1 April each year a list of regions, RRNs, and the market connection points (represented by TNIs) in each region.

Clause 3.6 of the Rules requires AEMO to calculate the MLFs and inter-regional loss factor equations by 1 April each year that will apply for the next financial year.

Clauses 3.6.1, 3.6.2 and 3.6.2(A) specify the requirements for calculating the MLFs and inter-regional loss factor equations, and the data used in the calculation.

The Rules require AEMO to calculate and publish a single, volume-weighted average, intra-regional MLF for each connection point. The Rules also require AEMO to calculate and publish dual MLFs for connection points where one MLF does not satisfactorily represent transmission network losses for active energy generation and consumption.

# **A.2** Interpretation of Marginal Loss Factors

Under marginal pricing, the spot price for electricity is the incremental cost of additional generation (or demand reduction) for each spot market trading interval.

Consistent with this, the marginal losses are the incremental increase in total losses for each incremental additional unit of electricity. The MLF of a connection point represents the marginal losses to deliver electricity to that connection point from the RRN.





The tables in section 1 show the MLFs for each region. The price of electricity at a TNI is the price at the RRN multiplied by the MLF between it and the RRN. Depending on network and loading configurations MLFs vary, ranging from below 1.0 to above 1.0.

#### A.2.1 Marginal Loss Factors greater than 1.0

At any instant at a TNI, the marginal value of electricity will equal the cost of generating additional supplies at the RRN and transmitting them to that point. Any increase or decrease in total losses is then the marginal loss associated with transmitting electricity from the RRN to this TNI. If the marginal loss is positive, this means that less power can be taken from this point than at the RRN, the difference having been lost in the network. In this case, the MLF is above 1.0. This typically applies to loads but this would also apply to generation in areas where the local load is greater than the local level of generation.

For example, a generating unit supplying an additional 1 MW at the RRN may find that a customer at a connection point can only receive an additional 0.95 MW. Marginal losses are 0.05 MW, or 5% of generation, resulting in an MLF of 1.05.

## A.2.2 Marginal Loss Factors less than 1.0

Losses increase with distance, so the further the distance between the RRN and a connection point, the higher the MLF. However additional line flow only raises total losses if it moves in the same direction as the existing net flow. At any instant, when the additional flow is against the net flow, total losses on the network are reduced. In this case, the MLF is below 1.0. This typically applies to generation but would also apply to loads in areas where the local generation level is greater than the local load.

Using the example above, if the net flow is in the direction from the connection point to the RRN, a generating unit at the RRN is only required to supply an additional 0.95 MW to meet an additional load of 1 MW at the connection point. Marginal losses are then -0.05 MW, or 5% reduction in generation, resulting in an MLF of 0.95.

#### A.2.3 Marginal Loss Factors impact on National Electricity Market settlements

For settlement purposes, the value of electricity purchased or sold at a connection point is multiplied by the connection point MLF. For example:

A customer at a connection point with an MLF of 1.05 purchases \$1000 of electricity. The MLF of 1.05 multiplies the purchase value to  $1.05 \times 1000 = 1050$ . The higher purchase value covers the cost of the electrical losses in transporting electricity to the customer's connection point from the RRN.

**A Generator** at a connection point with an MLF of 0.95 sells \$1000 of electricity. The MLF of 0.95 multiplies the sales value to  $0.95 \times 1000 = $950$ . The lower sales value covers the cost of the electrical losses in transporting electricity from the Generator's connection point to the RRN.

Therefore, it follows that in the settlements process:

- Higher MLFs tend to advantage, and lower MLFs tend to disadvantage generation connection points.
- Higher MLFs tend to disadvantage, and lower MLFs tend to advantage load connection points.



# APPENDIX B. METHODOLOGY, INPUTS AND ASSUMPTIONS

This section outlines the principles underlying the MLF calculation, the load and generation data inputs AEMO obtains and uses for the calculation and how AEMO checks the quality of this data. It also explains how networks and interconnectors are modelled in the MLF calculation.

# **B.1** Marginal Loss Factors calculation Methodology

AEMO uses a forward-looking loss factor (FLLF) methodology (Methodology) for calculating MLFs.<sup>5</sup> The Methodology uses the principle of "minimal extrapolation". An overview of the steps in this Methodology is:

- Develop a load flow model of the transmission network that includes committed augmentations for the year that the MLFs will apply.
- Obtain connection point demand forecasts for the year that the MLFs will apply.
- Estimate the dispatch of committed new generating units.
- Adjust the dispatch of new and existing generating units to restore the supply-demand balance in accordance with the FLLF Methodology.
- Calculate the MLFs using the resulting power flows in the transmission network.

# B.2 Load data requirements for the Marginal Loss Factors calculation

The annual energy targets used in load forecasting for the 2015–16 MLF calculation are in the table below:

| Region          | 2015–16 forecast sent-out energy <sup>6</sup> (GWh) | 2014–15 forecast sent-out energy <sup>7</sup> (GWh) |
|-----------------|-----------------------------------------------------|-----------------------------------------------------|
| NSW             | 66,636                                              | 69,574                                              |
| Victoria        | 43,041                                              | 44,971 <sup>8</sup>                                 |
| Queensland      | 51,030                                              | 55,278                                              |
| South Australia | 12,481                                              | 12,598                                              |
| Tasmania        | 10,392                                              | 10,462                                              |

#### B.2.1 Historical data accuracy and due diligence of the forecast data

AEMO regularly verifies the accuracy of historical connection point data. AEMO calculates the losses using this historical data, by adding the summated generation values to the interconnector flow and subtracting the summated load values. These transmission losses are used to verify that no large errors occur in the data.

AEMO also performs due diligence checks of connection point load traces to ensure that:

- The demand forecast is consistent with NEFR 2014.
- Load profiles are reasonable, and that the drivers for load profiles that have changed from the historical data are identifiable.
- The forecast for connection points includes any relevant embedded generation.

<sup>&</sup>lt;sup>5</sup> The Methodology is available on the AEMO website.

In 2014 NEFR report, the sent out energy for all regions is defined as native energy that includes non-scheduled generation. For the MLF calculation process, the forecast sent-out energy was adjusted to ensure consistency between forecast load energy and generation being modelled.

Forecast energy used for the 2014–15 MLF calculation. It was sourced from the 2013 NEFR Report, and adjusted as required for the 2014–15 MLF study.

This figure accounts for the announced closure of the Point Henry Aluminium Smelter.



Industrial and auxiliary type loads are not scaled.

# B.3 Generation data requirements for the Marginal Loss Factors calculation

AEMO obtains historical generation real power (MW) and reactive power (MVAr) data for each trading interval (half-hour) covering every generation connection point in the NEM from 1 July 2013 to 30 June 2014 from its settlements database.

AEMO also obtains the following data:

- Generation capacity data from the 2014 ESOO.
- Historical generation availability, as well as and on-line and off-line status data from AEMO's Market Management System (MMS).

## B.3.1 New generating units

For new generating units, AEMO calculates the initial estimate of the output by identifying similar technology and fuel type in accordance with section 5.4.2 of the Methodology.

For generating units with an incomplete year of generation data from the previous financial year, AEMO uses a combination of existing and estimated data.

#### Queensland new generating units

Solar boost at Kogan Creek. The 44 MW solar boost is not changing the capacity of the PS.

#### NSW new generating units

Royalla Solar Farm, Taralga Wind Farm, Boco Rock Wind Farm, Nyngan Solar Farm, Broken Hill Solar Farm and Moree Solar Farm, are included.

#### Victoria new generating units

Portland Wind Farm stage 4 (Cape Sir William Grant and Cape Nelson North), and Bald Hills Wind Farm are included.

### South Australia new generating units

There are no new committed generation projects in South Australia during 2015–16.

## Tasmania new generating units

There are no committed generation projects in Tasmania during 2015–16.

## **B.3.2** Abnormal generation patterns

Due to changes in physical circumstances (reduction in rainfall and storage levels), generation in Tasmania is expected to decrease in 2015–16 compared to 2014–15 MLF study. Hydro Tasmania has provided expected generation profiles for the 2015–16 MLF calculation in accordance with section 5.5.6 of the Methodology.

AEMO has accepted the adjusted generation profiles, and has used them to replace the historical profiles as an input to the 2015–16 MLF calculation process. AEMO has made corresponding adjustments to historical Basslink flows in accordance with section 5.3.1 of the Methodology.

The table below shows the historical and adjusted generation values aggregated quarterly and on a sub-regional level.

| Historical Generation (GWh) |                   | Adjusted Generation (GWh) |                   |  |
|-----------------------------|-------------------|---------------------------|-------------------|--|
| Northern Tasmania           | Southern Tasmania | Northern Tasmania         | Southern Tasmania |  |





|           | Historical Generation (GWh) |      | Adjusted Generation ( | GWh) |
|-----------|-----------------------------|------|-----------------------|------|
| Jul - Sep | 2343                        | 1355 | 1965                  | 894  |
| Oct - Dec | 1926                        | 1460 | 1455                  | 865  |
| Jan - Mar | 1708                        | 1301 | 1124                  | 814  |
| Apr - Jun | 2187                        | 1459 | 1801                  | 767  |
| Total     | 8165                        | 5576 | 6345                  | 3340 |

# B.4 Network representation in the Marginal Loss Factors calculation

An actual network configuration recorded by AEMO's Energy Management System (EMS) is used to prepare the NEM interconnected power system load flow model for the MLF calculation. This recording is referred to as a 'snapshot'.

AEMO reviews the snapshot and modifies it where necessary to accurately represent all normally connected equipment. AEMO also checks the switching arrangements for the Victorian Latrobe Valley's 220 kV and 500 kV networks to ensure they reflect normal operating conditions.

AEMO adds relevant network augmentations that will occur in the 2015–16 financial year. The snapshot is thus representative of the 2015–16 normally-operating power system.

#### B.4.1 Network augmentations for 2015–16

Relevant TNSPs advised of the following network augmentations in 2015–16 are:

#### **Queensland network augmentations**

Powerlink provided the following list of network augmentations in 2015-16 in Queensland:

- Decommissioning of the two Mackay Proserpine 132 kV lines.
- Switching of the existing Nebo Mackay 132 kV line at Pioneer Valley, to create Nebo Pioneer Valley and Pioneer Valley Mackay 132 kV lines.
- Modification of Mackay 132 kV bus.
- Installation of a new capacitor bank at Moranbah 132 kV (50 MVAr).
- Replacement of one 132/66 kV transformer at Moranbah.
- Replacement of two transformer tertiary connected reactors with a single bus connected reactor at Ross 275 kV (84 MVAr).
- Installation of two 132 kV lines exiting from Wotonga Rail Station (to Moranbah and Nebo).
- Replacement of two 132/22 kV transformers at Cardwell.

#### **NSW** network augmentations

NSW NSPs provided the following list of network augmentations in 2015–16 in NSW:

- Replacement of shunt reactor at Buronga (24.2 MVAr).
- Decommissioning of three 132/66/11 kV transformers at Comma and installation of two new 132/66/11 kV transformers.
- Replacement of two 220 kV reactors at Broken Hill (25 MVAr each)





#### Victoria network augmentations

AEMO's Victorian Planning Group provided the following list of network augmentations in 2015–16 in Victoria.

- Installation of three capacitor banks at Cranbourne (50 MVAr each)
- Installation of one 220/66 kV transformer at Brunswick.
- Installation of a new capacitor bank at Rowville (200 MVAr)
- Installation of third 500/275 kV transformer at Heywood.

#### South Australia network augmentations

ElectraNet provided the following list of network augmentations in 2015–16 in South Australia:

- Establishment of the new 275/66 kV Munno Substation.
- Replacement of Mt Gunson substation, and installation of a new 132/33 kV transformer.
- Replacement of Neuroodla substation, and installation of a new 132/33 kV transformer.

#### Tasmania network augmentations

TasNetworks (formerly Transend) provided the following list of network augmentations to in 2015–16 in Tasmania:

Realignment of 110 kV lines from Tungatinah to New Norfolk Substation following the installation
of double tee connection at Meadowbank.

#### **B.4.2** Treatment of the Basslink interconnector

Basslink consists of a controllable network element that transfers power between the Tasmania and Victoria regions.

In accordance with sections 5.3.1 and 5.3.2 of the Methodology, AEMO calculates the Basslink connection point MLFs using historical data, adjusted to reflect any change in forecast generation in Tasmania. Section 5 outlines the loss model for Basslink.

#### B.4.3 Treatment of the Terranora interconnector

The Terranora interconnector is a regulated interconnector.

The boundary between Queensland and NSW between Terranora and Mudgeeraba is north of Directlink. The Terranora interconnector is in series with Directlink and, in the MLF calculation, AEMO manages the Terranora interconnector limit by varying the Directlink limit when necessary.

Section 5 outlines the inter-regional loss factor equation for the Terranora interconnector.

### **B.4.4** Treatment of the Murraylink Interconnector

The Murraylink interconnector is a regulated interconnector.

In accordance with section 5.3 of the Methodology, AEMO treats the Murraylink interconnector as a controllable network element in parallel with the regulated Heywood interconnector.

Section 5 outlines the inter-regional loss factor equation for Murraylink.

### **B.4.5** Treatment of Yallourn Unit 1

The Yallourn Unit 1 can be connected to either the 220 kV or 500 kV network in Victoria.

EnergyAustralia informed AEMO that the switching pattern for 2015–16 will differ significantly from the historical switching pattern for Yallourn Unit 1. AEMO, in consultation with AusNet Services, accepted the proposed switching profile provided by EnergyAustralia, and has used it as an input to the 2015–16 MLF calculation.



AEMO modelled Yallourn Unit 1 at the two connection points (one at 220 kV and the other one at 500 kV) and calculated loss factors for each connection point. AEMO then calculated a single volume-weighted loss factor for Yallourn Unit 1 based on the individual loss factors at 220 kV and at 500 kV, and the output of the unit.

# **B.5** Interconnector capability

In accordance with section 5.5.4 of the Methodology, AEMO estimates nominal interconnector limits for summer peak, summer off-peak, winter peak and winter off-peak periods. These values are in the table below. AEMO also sought feedback from the relevant TNSPs on whether there were any additional factors that might influence these limits.

| From region                     | To region                           | Summer peak<br>(MW) | Summer off-<br>peak (MW) | Winter peak<br>(MW) | Winter off-peak<br>(MW) |
|---------------------------------|-------------------------------------|---------------------|--------------------------|---------------------|-------------------------|
| Queensland                      | NSW                                 | 1078                | 1078                     | 1078                | 1078                    |
| NSW                             | Queensland                          | 400                 | 550                      | 400                 | 550                     |
| NSW                             | Victoria                            | 1700 <sup>b</sup>   | 1700 <sup>b</sup>        | 1700 <sup>b</sup>   | 1700 <sup>b</sup>       |
| Victoria                        | NSW                                 | 3200°               | 3000°                    | 3200°               | 3000°                   |
| Victoria                        | South Australia                     | 650 <sup>a</sup>    | 650                      | 650                 | 650                     |
| South Australia                 | Victoria                            | 650                 | 650                      | 650                 | 650                     |
| Victoria (Murraylink)           | South Australia<br>(Murraylink)     | 220                 | 220                      | 220                 | 220                     |
| South Australia<br>(Murraylink) | -Victoria<br>(Murraylink)           | 188°                | 198°                     | 215°                | 215°                    |
| Queensland<br>(Terranora)       | NSW (Terranora)                     | 224                 | 224                      | 224                 | 224                     |
| NSW (Terranora)                 | Queensland<br>(Terranora)           | 107                 | 107                      | 107                 | 107                     |
| Tasmania (Basslink)             | Victoria<br>(Basslink) <sup>e</sup> | 594                 | 594                      | 594                 | 594                     |
| Victoria (Basslink)             | Tasmania<br>(Basslink) <sup>e</sup> | 478                 | 478                      | 478                 | 478                     |

a Victoria to South Australia and South Australia to Victoria limits have changed due to the inclusion of the third transformer at Heywood. 650 MW is the best estimated value at the time that the 2015–16 MLF calculations were done.

The peak interconnector capability does not necessarily correspond to the network capability at the time of the maximum regional demand; it refers to average capability during the peak periods, which corresponds to 7 AM to 10 PM on weekdays.

# **B.6** Calculation of Marginal Loss Factors

AEMO uses the TPRICE<sup>9</sup> software to calculate MLFs. The TPRICE MLF calculation method is as follows:

- It converts the half-hourly forecast load and historical generation data, generating unit capacity and availability data together with interconnector data into a format suitable for input to TPRICE.
- It adjusts the load flow case to ensure a reasonable voltage profile in each region at times of high demand.
- It converts the load flow case into a format suitable for use in TPRICE.

b minus Murray generation

c minus Upper & Lower Tumut generation

d minus Northwest Bend & Berri loads

e Limit referring to the receiving end.

TPRICE is a transmission pricing software package. It is capable of running a large number of consecutive load flow cases quickly. The program outputs loss factors for each trading interval as well as averaged over a financial year using volume weighting.



- The half-hourly generation and load data for each connection point, generating unit capacity and availability data, together with interconnector data feed into TPRICE one trading interval at a time.
   TPRICE allocates the load and generation values to the appropriate connection points in the load flow case.
- It iteratively dispatches generation to meet forecast demand and solves each half-hourly load flow case and calculates the loss factors appropriate to the load flow conditions.
- The loss factors at each connection point in each region are referred to the RRN.
- It averages the loss factors for each trading interval and for each connection point using volume weighting.

Typically, the MLF calculation weights generation loss factors against generation output and load loss factors against load consumption. However, where load and generation are connected at the same connection point and individual metering is not available for the separate components, the same loss factor is calculated for both generation and load.

In accordance with section 5.6.1 of the Methodology, AEMO calculates dual MLF values at connection points where one MLF does not satisfactorily represent active power generation and consumption.

AEMO will also make the MLFs available in Comma Separated Value file format.<sup>10</sup>

### **B.6.1** Inter-regional loss factor equations

The inter-regional loss factor equations applying for the 2015–16 financial year are provided in section 3. AEMO derives these equations by applying linear regression to the set of loss factor data for the RRNs. To meet the requirements of the AEMO dispatch algorithm, the choice of variables and equation formulation is restricted:

- Only linear terms are permitted in the equation.
- Only the notional link flow between the RRNs for which the loss factor difference is being determined is used.
- Region demands are allowed as equation variables.
- Other variables such as generation outputs are not used.

Graphs of variation in inter-regional loss factors with notional link flow are in section 3.

The inter-regional loss equations obtained by integrating the (inter-regional loss factor – 1) function are in section 4.

The inter-regional loss equations for Basslink, Terranora and Murraylink are in section 5.

The factors used to apportion the inter-regional losses to the associated regions for 2015–16 are in section 6.

## **B.6.2** Marginal Loss Factor calculation – quality control

As with previous years, AEMO engaged consultants to ensure the quality and accuracy of the MLF calculation. The consultants performed the following work:

- A benchmark study using independent data sources to calculate the MLFs. AEMO used the benchmark study to identify potential issues with AEMO data inputs to the MLF calculation.
- A subsequent verification study using AEMO's input data to independently reproduce AEMO's
  calculation results. AEMO used the verification study to ensure that AEMO MLF calculation
  methods and results are accurate.

Available on the AEMO website





# **GLOSSARY**

| Term        | Definition                                  |
|-------------|---------------------------------------------|
| ACT         | Australian Capital Territory                |
| AEMO        | Australian Energy Market Operator           |
| AER         | Australian Energy Regulator                 |
| ESOO        | Electricity Statement Of Opportunities      |
| FLLF        | Forward Looking Loss Factor                 |
| GWh         | Gigawatt-hour                               |
| km          | Kilometre                                   |
| kV          | Kilovolt                                    |
| LNG         | Liquefied natural gas                       |
| MLF         | Marginal Loss Factor                        |
| Methodology | Forward-looking Loss Factor Methodology     |
| MNSP        | Market Network Service Provider             |
| MVAr        | Megavolt-ampere-reactive                    |
| MW          | Megawatt                                    |
| NEFR        | National Energy Forecasting Report          |
| NEM         | National Electricity Market                 |
| NEMDE       | National Electricity Market Dispatch Engine |
| NSP         | Network Service Provider                    |
| NSW         | New South Wales                             |
| PS          | Power station                               |
| RRN         | Regional Reference Node                     |
| Rules       | National Electricity Rules                  |
| TNI         | Transmission Node Identifier                |
| TNSP        | Transmission Network Service Provider       |
| VTN         | Virtual Transmission Node                   |