

# LIST OF REGIONAL BOUNDARIES AND MARGINAL LOSS FACTORS FOR THE 2011-12 FINANCIAL YEAR

#### PREPARED BY: Electricity System Operations Planning & Performance

VERSION: 3.1

DATE: 07/07/2011

FINAL

Australian Energy Market Operator Ltd ABN 94 072 010 327

www.aemo.com.au info@aemo.com.au



# Contents

| 1                                                        | Introduction 6                                                                                                         |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 2                                                        | Rules requirements                                                                                                     |
| 2.1                                                      | Inter-regional loss factor equations                                                                                   |
| 2.2                                                      | Intra-regional loss factors                                                                                            |
| 2.3                                                      | Forward-looking Loss Factors7                                                                                          |
| 3                                                        | Application of the forward-looking loss factor methodology for 2011/12 financial year                                  |
| 3.1                                                      | Overview of the Forward-looking Loss Factor Methodology7                                                               |
| 3.2                                                      | Data requirements7                                                                                                     |
| 3.3                                                      | Connection point definitions                                                                                           |
| 3.4                                                      | Connection point load data8                                                                                            |
| 3.5                                                      | Network representation                                                                                                 |
| 3.6                                                      | Treatment of Yallourn Unit 18                                                                                          |
| 3.7                                                      | Treatment of Bayswater Power Station9                                                                                  |
| 3.8                                                      | Network augmentations for 2011/12 financial year9                                                                      |
| 3.9                                                      | Treatment of Basslink                                                                                                  |
| 3.10                                                     | Treatment of the Regulated Terranora Interconnector (previously Directlink)                                            |
| 3.11                                                     | Treatment of the Regulated Murraylink Interconnector                                                                   |
| 3.12                                                     | New and Recently Commissioned Generating Units                                                                         |
| 3.12.1<br>3.12.2<br>3.12.3<br>3.12.4<br>3.12.5<br>3.12.6 | Queensland12New South Wales12Victoria12South Australia13Tasmania13New Wind Farms and Other Energy Limited Generation13 |
| 3.13                                                     | Generator Unit Capability                                                                                              |
| 3.14                                                     | Embedded Generation                                                                                                    |
| 3.15                                                     | Interconnector Capability14                                                                                            |
| 3.16                                                     | Data accuracy and due diligence of the forecast data                                                                   |
| 3.17                                                     | Calculation of intra-regional loss factors                                                                             |
| 3.18                                                     | Inter-regional loss factor equations16                                                                                 |
| 3.19                                                     | Loss models for Controllable Links                                                                                     |
| 3.20                                                     | Proportioning Inter-regional Losses to Regions                                                                         |
| 4                                                        | Differences in loss factors compared to the 2010/11 financial year17                                                   |
| 4.1                                                      | MLFs                                                                                                                   |
| 4.1.1<br>4.1.2                                           | MLFs greater than 1                                                                                                    |
| 4.2                                                      | Comparison of 2011/12 MLFs with 2010/11 MLFs 18                                                                        |



| 4.2.1<br>4.2.2<br>4.2.3<br>4.2.4<br>4.2.5 | South Australia18Victoria18New South Wales18Queensland19Tasmania19                                              |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 5                                         | Virtual transmission nodes19                                                                                    |
| 5.1                                       | New South Wales                                                                                                 |
| 5.2                                       | South Australia                                                                                                 |
| 5.3                                       | Tasmania                                                                                                        |
| 6                                         | Region boundaries and regional reference nodes for 2011/1220                                                    |
| 7                                         | Appendix A: Intra-regional loss factors for 2011/1221                                                           |
| 8                                         | Appendix B: Inter-regional loss factors equations for 2011/1248                                                 |
| 9                                         | Appendix C: Inter-regional loss equations for 2011/1252                                                         |
| 10                                        | Appendix D: Basslink, Terranora Interconnector and Murraylink loss factor models and loss equations for 2011/12 |
| 11                                        | Appendix E: The Proportioning Inter-regional Losses to Regions for 2011/1260                                    |
| 12                                        | Appendix F: Regions and Regional Reference Nodes60                                                              |
| 13                                        | Appendix G: List of New and Modified Connection Points for 2011/1261                                            |



# Version Release History

| VERSION    | DATE              | CHANGES                                                                                                                                                                                |
|------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.1        | 23/03/2011        | Draft regional boundaries and marginal loss factors for the 2011/12 financial year                                                                                                     |
| 1.0        | 01/04/2011        | Updates to generation profiles of a number of new generators                                                                                                                           |
| 2.0        | 18/05/2011        | Updates to Proportioning Factors in Appendix E (p. 60)                                                                                                                                 |
| 3.0        | 29/06/2011        | <ul> <li>Updates to the MLFs of Shoalhaven and Lower Tumut pump-storage schemes (pp. 6, 7, 19, 30)</li> <li>Updates to the MLFs of QYAR, QYAE and QYAG (pp. 12, 19, 23, 25)</li> </ul> |
| <u>3.1</u> | <u>07/07/2011</u> | Inclusion of newly registered Hepburn Community Wind Farm (Market,<br>Non-scheduled) under "Victoria Embedded Generators" in Appendix A (p<br>38)                                      |



# Disclaimer

- (a) **Purpose** This document has been prepared by the Australian Energy Market Operator Limited (**AEMO**) for the purpose of complying with clauses 3.5 and 3.6 of the National Electricity Rules (**Rules**).
- (b) Supplementary Information This document might also contain information the publication of which is not required by the Rules. Such information is included for information purposes only, does not constitute legal or business advice, and should not be relied on as a substitute for obtaining detailed advice about the National Electricity Law, the Rules, or any other relevant laws, codes, rules, procedures or policies or any aspect of the national electricity market, or the electricity industry. While AEMO has used due care and skill in the production of this document, neither AEMO, nor any of its employees, agents and consultants make any representation or warranty as to the accuracy, reliability, completeness, currency or suitability for particular purposes of the information in this document.
- (c) Limitation of Liability To the extent permitted by law, AEMO and its advisers, consultants and other contributors to this document (or their respective associated companies, businesses, partners, directors, officers or employees) shall not be liable for any errors, omissions, defects or misrepresentations in the information contained in this document or for any loss or damage suffered by persons who use or rely on this information (including by reason of negligence, negligent misstatement or otherwise). If any law prohibits the exclusion of such liability, AEMO's liability is limited, at AEMO's option, to the re-supply of the information, provided that this limitation is permitted by law and is fair and reasonable.

© 2011 - All rights reserved.



# 1 Introduction

In electricity pricing, it is widely accepted that marginal costs are the appropriate basis for pricing generation. Transmission pricing involves expanding this view to usage in different locations. It follows that electricity presents complex computational problems, but they are mostly similar to transport problems of other product markets.

For any market, the value of losses is always included in the cost of transport and recovered through increase prices at the receiving end. For electricity transmission, the percentage losses also increase with the load transmitted. Therefore, the more the transmission line is loaded, the higher the percentage losses. Thus the price differences between the sending and receiving ends will be determined not by the average losses, but by the marginal losses of the last MW of load delivered.

This document details the marginal loss factors representing losses across the 5 National Electricity Market (NEM) regions - Queensland, New South Wales, Victoria, South Australia, and Tasmania - calculated in accordance with Clause 3.6 of the National Electricity Rules (NER). The NER requires that the losses between regions be calculated dynamically by inter-regional loss factor equations. Within each region, the losses from sending electricity from the Regional Reference Nodes (RRN) to generators and customers are represented by static intra-regional loss factors.

In the dispatch process, generator bid prices within each region are adjusted by the intra-regional loss factors in dispatching generators to meet demand. In addition, depending on the flows between regions, the inter-regional loss factors obtained from the dynamic equations are also used to adjust the generator prices in determining which generators are dispatched to meet demand.

After the RRN prices are calculated for each region, prices for customers' connection points on the network are calculated using the intra-regional loss factors between these points and the RRN.

# 2 Rules requirements

Clause 3.5 of the National Electricity Rules (referred to as the Rules) requires AEMO to establish, maintain, review and by April 1<sup>st</sup> each year, publish a list of regions, regional reference nodes and the region to which each market connection point is assigned. In addition, clause 3.6 of the Rules requires AEMO to calculate Intra-Regional transmission loss factors and Inter-Regional loss factor equations by April 1<sup>st</sup> each year to apply for the next financial year.

Clauses 3.6.1, 3.6.2 and 3.6.2(A) specify the requirements for calculating the inter-regional and intra-regional loss factors, and the data to be used in the calculation.

## 2.1 Inter-regional loss factor equations

The Rules require that AEMO apply a regression analysis to determine the significant variables and variable coefficients for an equation that describes the loss factor between regional reference nodes. AEMO must publish the equations resulting from the regression analysis, the correlation factors and the associated variances.

## 2.2 Intra-regional loss factors

The Rules require AEMO to calculate and publish single volume weighted average (intra-regional) loss factor for each transmission network connection point. The Rules also require AEMO to calculate and publish dual MLFs for transmission network connection points where one MLF does not satisfactorily represent transmission network losses for active energy generation and consumption.

Under the National Electricity Rules, the use of virtual transmission nodes (VTNs) was gazetted on 1 November 2001. In accordance with these Rule changes, AEMO have developed a methodology



to average transmission loss factors for each VTN authorised by the relevant Jurisdictional Regulator. Six VTNs have been approved in the NEM and these are described in section 5.

#### 2.3 Forward-looking Loss Factors

New Rules clauses came into effect on 1 January 2004 requiring AEMO to use a 'forward looking' methodology for calculating loss factors.

Following a consultation process NEMMCO published the final version of the forward-looking loss factor methodology on 12 August 2003<sup>1</sup>. This document has since been revised, most recently in June 2011.

# 3 Application of the forward-looking loss factor methodology for 2011/12 financial year

This section describes the process followed in applying the forward-looking loss factor methodology to the calculation of the marginal loss factors for 2011/12 financial year. Further details regarding the forward-looking loss factor methodology can be found in the methodology document on AEMO's website<sup>1</sup>.

## 3.1 Overview of the Forward-looking Loss Factor Methodology

The forward-looking loss factor methodology developed by AEMO is based on the principle of "minimal extrapolation". An overview of the methodology is to:

- develop a load flow model of the transmission network that includes committed augmentations for the year that the loss factors apply;
- obtain from the TNSPs, connection point demand forecasts for the year that the loss factors apply;
- estimate the dispatch of committed new generating units;
- adjust the dispatch of new and existing generating units to restore the supply/demand balance using the rules defined in the published methodology and
- calculate the loss factors using the resulting power flows in the transmission network.

The steps taken when calculating the forward-looking loss factors are explained below in detail.

#### 3.2 Data requirements

The following steps were taken in preparing the basic data for calculating loss factors using the forward-looking methodology:

- 1. A set of historical load and generator real power (MW) and reactive power (MVAr) data for each trading interval (half hour) covering every transmission connection point in the Queensland, New South Wales, Victoria, South Australia and Tasmanian regions for the period of 1 July 2009 to 30 June 2010 has been obtained from the AEMO settlements database.
- 2. The historical load data was sent to the relevant TNSPs where required. The TNSPs developed forecast connection point load traces for the 2011/12 financial year by scaling the historical data. The forecast connection point load traces for 2011/12 were then sent to AEMO to be used in the actual loss factor calculations. In the case of Queensland, Powerlink provided energy and demand forecasts, and the load traces

<sup>&</sup>lt;sup>1</sup> "Methodology for Calculating Forward-Looking Transmission Loss Factors: Final Methodology", 12 August 2003 (revised 01 April 2010), available on the AEMO Website at http://www.aemo.com.au/electricityops/172-0032.html



were developed by AEMO. For New South Wales, load traces provided by TransGrid, Ausgrid and Essential Energy were scaled to be consistent with the 2010 Electricity Statement of Opportunities (ESOO)<sup>2</sup>.

- 3. The TNSPs also provided information and data for any network augmentations, i.e., new connection points, load, generation, and transmission line augmentations, etc.
- 4. The interconnector limits were confirmed with the relevant TNSPs.
- 5. Generation capacity data was derived from the 2010 ESOO and the update to the 2010 ESOO.
- 6. The historical generation availability and on/off status data was extracted from AEMO's Market Management Systems (MMS) for the Queensland, New South Wales, Victoria, Tasmania and South Australia regions.
- 7. The historical generation data, forecast load, generation capacity, availability (on/off status data), interconnector limits and network augmentation data as described in steps 1 to 6 was then used in the calculation of forward-looking loss factors.
- 8. The details of the loss factor calculation algorithm are provided in Section 3.17.

#### 3.3 Connection point definitions

A list of new connection points that have been established for the 2011/12 financial year is given in Appendix G. These connection points have been registered in AEMO's MMS and a loss factor has been calculated for each of them for 2011/12 as shown in Appendix A.

#### 3.4 Connection point load data

As described in section 3.2, Powerlink, TransGrid, Ausgrid, Essential Energy and Transend provided AEMO with the forecast connection point load data that was used for Queensland, New South Wales and Tasmania respectively, in accordance with section 5.2.2 of the Forward-looking loss factor Methodology. Forecast connection point load data for the South Australia and Victoria regions was calculated by AEMO. The Electricity Statement of Opportunities (ESOO) 2010 load growth rates were used to perform the due diligence on the forecast connection point loads.

#### 3.5 Network representation

The NEM interconnected power system load flow model used to calculate loss factors for the Queensland, New South Wales, Victoria, South Australia and Tasmania regions is based on an actual network configuration recorded by the AEMO Energy Management System (EMS). This recording is referred to as a snapshot.

The snapshot was checked and modified where necessary to accurately represent all normally connected equipment. The switching arrangement for the Victorian 220 kV and 500 kV networks was also checked to ensure that it reflected normal operating conditions. The load flow was also modified to include the relevant augmentations identified from consultation with the TNSPs, as described in section 3.8. The snapshot is thus representative of the 2011/12 system normal network.

#### 3.6 Treatment of Yallourn Unit 1

The Yallourn unit 1 can be connected to either the 220 kV or 500 kV network in Victoria.

AEMO, in consultation with Yallourn, prepared a forecast of switching for Yallourn unit 1 reflecting its anticipated operation for the loss factors calculation. Both the 220 kV connection points for Yallourn units 2-4 and the 500 kV connection points for the other Latrobe Valley power stations will have loss factors that reflect the predicted time the Yallourn unit 1 would be in each configuration.

<sup>&</sup>lt;sup>2</sup> Available on the AEMO Website at http://www.aemo.com.au/planning/esoo2010.html



A weighted average of the loss factors calculated for the Yallourn unit 1 on both buses will then apply to this unit.

#### 3.7 Treatment of Bayswater Power Station

The Bayswater Power Station units 3 and 4 have been switched onto the 500kV network. Bayswater units 1 and 2 will remain connected to the 330kV network for the 2011/12 financial year.

#### 3.8 Network augmentations for 2011/12 financial year

The following network augmentations have been advised by the relevant TNSPs in each region of the NEM for 2011/12.

#### <u>Queensland</u>

Powerlink advised the following major augmentations to be completed in 2011/12 in Queensland:

- Establishment of new 110kV substation at Blackstone
- Replacement of both 275kV/132kV Transformers at Gin Gin
- Revised configuration of North Queensland (NQ) transmission network reinforcement from Strathmore to Ross
- Installation of a 30MVAr capacitor bank at Kemmis
- Establishment of 132kV Goonyella Riverside Expansion
- Replacement of Ingham to Yabulu South 132kV lines
- Installation of 50MVAr capacitor bank at Ashgrove West
- Installation of 200MVAr capacitor bank at Millmerran
- Installation of two 330kV 120MVAr capacitor bank at Middle Ridge
- Establishment of a new 110kV transmission line from Middle Ridge to Postmans Ridge 110kV
- Installation of a fourth 110kV 50MVAr Capacitor Bank at Loganlea
- Installation of a third 275kV 120MVAr Capacitor Bank at Belmont
- Installation of a third 110kV/33kV transformer at Molendinar
- Establishment of new connection point at Raglan
- Modification of Belmont substation 275/110kV transformers

#### New South Wales

TransGrid and Ausgrid advised the following major augmentations to be completed in 2011/12 in New South Wales. Essential Energy advised that there were no augmentations in 2011/12:

- Establishment of new Orange North 132kV connection point
- Decommission Orange 132kV connection point
- Disconnect Wallerawang to Orange 132kV line from Orange and reconnect to Orange North
- Disconnect Burrendong tee to Orange 132kV line from Orange and reconnect to Orange North
- Disconnect Mount Piper to Orange 132kV line from Orange and reconnect to Orange North
- Disconnect Molong to Orange 132kV line from Orange and reconnect to Orange North
- Disconnect Panorama to Orange 132kV line from Orange and reconnect to Orange North
- Defer Leafs Gully 330kV connection point and disconnect it from the Macarthur to Avon 330kV line
- Modification to new Sydney North 330/138.6/11kV transformer
- Modification to two new Williamsdale to Cooma 132kV lines
- Modification to new Canberra to Williamsdale 330kV line
- Modification to two new Williamsdale 330/138.6/11kV transformers
- Modification to Glen Innes to Inverell 132V line
- Modification to two Wallerawang 330/138.6/11kV transformers
- Modification to Malindra to Parkes 132V line
- Modification to Parkes to Forbes 132V line
- Establishment of new Beaconsfield West 330/138.6/11kV transformer
- Establishment of new Coffs Harbour 330/138.6/11kV transformer
- Establishment of new Yass 132/66/11kV transformer



- Establishment of new Crookwell 330kV connection point and connect it to the Bannaby to Yass 330kV line
- Decommission two Canterbury to Bunnerong 132kV lines
- Establishment of two new Kurnell to Bunnerong 132kV lines and reactors
- Establishment of two Tomago (TG) 330/138.6/11kV transformers
- Disconnect the Taree to Tomago (EA) 132kV line and reconnect as Taree to Tomago (TG) 132kV line
- Establish new Hawk's Nest 132kV connection point and connect it to the Taree to Tomago (TG) 132kV line
- Disconnect the Beresfield to Tomago (EA) 132kV line and reconnect as Beresfield to Tomago (TG) 132kV line
- Disconnect the Stroud to Beresfield 132kV line and reconnect as Stroud to Tomago (TG) 132kV line
- Establishment of new Beresfield to Tomago (TG) 132kV line
- Establishment of two new Tomago (EA) to Tomago (TG) 132kV lines
- Decommission Tomago (EA) to Waratah West 132kV line
- Establishment of new Ourimbah 132/33kV transformer

#### <u>Victoria</u>

AEMO Transmission Services advised the following major augmentations to be completed in 2011/12 in Victoria.

- Establish new Tarrone 500kV connection point and connect it to the Moorabool to Heywood No. 1 500kV line
- Establish new Mortlake 500kV connection point and connect it to the Moorabool to Heywood No. 2 500kV line
- Establish new Wemen 220kV connection point and connect it to the Kerang to Red Cliffs 220kV line
- Establishment of new East Rowville 220/66kV transformer

#### South Australia

ElectraNet advised the following major augmentations to be completed in 2011/12 in South Australia:

- Establishment of new 33kV Back Callington load connection point
- Establishment of new 66kV City West substation load connection point
- Establishment of new 275kV The Bluff wind farm connection point
- Establishment of new Torrens islands Power station City West 275kV line
- Establishment of new City West Keswick 66kV line
- Establishment of new City West Whitmore Square Switching Station 66kV line
- Establishment of new Whitmore Square Switching Station Whitmore Square 66kV line
- Modification of Whitmore Square Coromandel Place 66kV line
- Decommission Whitmore Square Kent Town Tee 66kV line
- Establishment of new Tungkillo Mount Barker South and Mount Barker South Cherry Gardens 275kV lines
- Modification of Tungkillo Cherry Gardens 275kV line
- Establishment of new Mount Barker South to Meadows, Strathalbyn and Mount Barker 66kV lines
- Modification of Mount Barker Meadows and Mount Barker Strathalbyn 66kV lines
- Establishment of new Para Templers West and Templers West Brinkworth 275kV lines
- Establishment of new Templers Roseworthy and Templers West Dorrien 132kV lines
- Modification of Para Brinkworth 275kV line
- Modification of Templers Roseworthy/Dorrien and Templers Dorrien 132kV lines
- Establishment of new MHP3 Kanmantoo Tee, Kanmantoo Tee Kanmantoo and Kanmantoo Tee -Back Callington 132kV lines
- Modification of MHP3 Kanmantoo 132kV line
- Modification of Brinkworth Clare North, Clare North Mintaro, MWP4 Waterloo East, Waterloo - Waterloo East 132kV lines



- Establishment of new Mount Barker South 275/66/11 kV No.3 transformer
- Establishment of new Templers 275/132/11 kV No.3 transformer
- Establishment of new City West substation 275/66/11 kV No.1 and 2 transformers
- Establishment of new Back Callington 132/33 kV No.1 and 2 transformers
- Establishment of new Port Lincoln Generator 33/11 kV No.3 transformer
- Establishment of new Wudinna 132/66/11 kV No.2 transformer
- Modification of Kadina East 132/33/11 kV No.1 transformer and installation of new Kadina East 132/33/11 kV No.2 transformer
- Decommission Davenport Bungama link exit 275 kV reactor
- Establishment of new Davenport Substation 275 kV 50MVAr reactor
- Establishment of new City West Substation 275 kV 2x40MVAr reactor
- Establishment of new Tungkillo 275 kV 100MVAr capacitor bank
- Establishment of new Port Lincoln Power Station generating unit
- Establishment of new Port Stanvac generating units
- Replacement of Hallett power station gas turbine generating unit

#### <u>Tasmania</u>

Transend advised the following major augmentations to be completed in 2011/12 in Tasmania:

- Establish a new 33 kV connection point at Mornington
- Establish a new 22 kV connection point at St. Leonards
- Establish a new 33 kV connection point at Kingston
- Installation of two new Waddamana-Lindisfarne 220kV lines
- Modification of two Palmerston-Waddamana 220kV lines
- Modification of two Waddamana-Liapootah 220kV lines
- Modification of Electrona-Knights Road 110kV line
- Installation of two new Mornington-Mornington Tee 110kV lines
- Modification of two Lindisfarne-Mornington Tee 110kV lines
- Modification of two Mornington Tee-Rokeby 110kV lines
- Installation of new Norwood-St. Leonards 110kV line
- Installation of new St. Leonards-Mowbray 110kV line
- Installation of a new 220/110kV transformer at Burnie
- Decommissioning of two 220/110kV transformers at Burnie
- Installation of two new 220/110kV transformers at Lindisfarne
- Installation of two new 110/33kV transformers at Mornington
- Modification of two 110/22kV transformers at Sorel
- Installation of two new 110/33kV transformers at Kingston
- Installation of two new 110/22kV transformers at St. Leonards

#### 3.9 Treatment of Basslink

Basslink is a Market Network Service that consists of a controllable network element that transfers power between the Tasmania and Victoria regions.

In accordance with section 5.3.2 of the forward-looking loss factor methodology, historical data are used for the calculation. The loss model for Basslink is provided in Appendix D.

# 3.10 Treatment of the Regulated Terranora Interconnector (previously Directlink)

From 21 March 2006 Terranora Interconnector (previously Directlink) has been operating as a regulated interconnector. The boundary between Queensland and New South Wales located between Terranora and Mudgeeraba is North of Directlink. As such Directlink is now part of the New South Wales network. The Terranora interconnector is in series with Directlink and in the MLF calculation the Terranora interconnector limit is managed by varying the Directlink limit when necessary.



The inter-regional loss factor equation for Terranora Interconnector is provided in Appendix D.

#### 3.11 Treatment of the Regulated Murraylink Interconnector

In October 2003 Murraylink became a regulated interconnector. In accordance with section 5.3 of the forward-looking loss factor methodology, AEMO has treated the Murraylink interconnector as a controllable regulated network element in parallel with the regulated Heywood interconnector.

The inter-regional loss factor equation for Murraylink is provided in Appendix D.

#### 3.12 New and Recently Commissioned Generating Units

For new generating units, AEMO calculates the initial estimate of the output by identifying similar technology and fuel type in accordance with 5.4.2 of the forward-looking loss factor methodology.

For generating units with an incomplete year of historical data from the previous financial year, AEMO use a combination of existing and estimated data.

#### 3.12.1 Queensland

In accordance with section 5.4.2 of the forward-looking loss factor methodology, AEMO estimated the dispatch of Condamine gas turbine units from the historical dispatch of Swanbank E up to March 2010 for which historical profile for Condamine was not reflective of normal operation characteristics. The Swanbank E Power Station was chosen because it uses similar technology and fuel and is less than 10 years older than the new Condamine unit.

A full year's profile for Darling Downs was not available for the 2011/12 MLF calculation. In accordance with section 5.4.2 of the forward-looking loss factor methodology, AEMO estimated the dispatch of this unit from the historical dispatch of the Swanbank E generating unit. This unit was chosen because it uses similar technology and fuel and is less than 10 years older than the new Darling Downs generating unit.

Yarwun Cogeneration was commissioned in August 2010. In accordance with section 5.4.2 of the forward-looking loss factor methodology, AEMO estimated the dispatch of these generating units from the historical dispatch of the Braemar stage 1. These units were chosen because they use similar technology and fuel and are less than 10 years older than the new Yarwun generating unit. Since the publication of this report on 1 April 2011, it was discovered that the application of a generation profile based on Braemar 1 was inconsistent with the operating characteristics of Yarwun. This is because the Yarwun unit, which is non-scheduled, operates as a base load unit due to its primary function of producing steam in the production process at Rio Tinto Alcan. In the absence of any suitable alternative, Rio Tinto Alcan provided AEMO with a more representative generation profile for Yarwun cogeneration based on the nature of its operation.

Mount Stuart unit 3 was commissioned in October 2009. In accordance with section 5.4.2 of the forward-looking loss factor methodology, AEMO estimated the dispatch of this unit from the historical dispatch of the Laverton North generating units up to October 2009. These units were chosen because they use similar technology and fuel.

#### 3.12.2 New South Wales

There are no committed new generation projects in New South Wales region during the financial year 2011/12.

#### 3.12.3 Victoria

Mortlake is due to be commissioned in 2011. In accordance with section 5.4.2 of the forwardlooking loss factor methodology, AEMO estimated the dispatch of this generator from the historical dispatch of the Laverton North generating units. These units were chosen because they use similar technology and fuel and are less than 10 years older than the new Mortlake unit.



Bogong Power Station was commissioned in summer 2009/10. In accordance with section 5.4.2 of the forward-looking loss factor methodology and in consultation with the relevant participant, AEMO estimated the dispatch of this generator from the historical dispatch of McKay Creek Hydro generating units 1 and 2.

#### 3.12.4 South Australia

Port Lincoln unit 3 was commissioned in 2010. In accordance with section 5.4.2 of the forwardlooking loss factor methodology, AEMO estimated the dispatch of this generating unit from the historical dispatch of Port Lincoln generating units 1 and 2.

#### 3.12.5 Tasmania

There are no committed new generation projects in the Tasmania during the financial year 2011/12.

#### 3.12.6 New Wind Farms and Other Energy Limited Generation

The new wind generation commissioned after July 2010 include Gunning, Woodlawn, Oakland Hills, Hallett 4 – North Brown Hill, Hallett 5 – Bluff Wind Farm, Lake Bonny 3 and Waterloo. AEMO obtained forecast dispatch of new wind generation from the proponents of new wind farms. Where the proponent was unable to provide a generation profile, AEMO estimated suitable profiles in accordance with the forward-looking loss factor methodology.

## 3.13 Generator Unit Capability

In accordance with section 5.5.3 of the forward-looking loss factor methodology, AEMO estimates the auxiliary requirements of the scheduled generating units by measuring the generator terminal and metered sent-out capacities at periods of high output. From this estimate of the unit auxiliaries, and the summer and winter generator terminal capacities in the 2010 ESOO, AEMO estimated the sent-out summer and winter generator terminal capacities.

#### 3.14 Embedded Generation

An embedded generator is one connected to a distribution network, which is in turn connected to the transmission network. An embedded generator can be market or non-market and scheduled or non-scheduled.

MLFs are not required for non-market generators. For a market generator, the MLF is calculated for the connection point where the distribution network it is embedded in takes power from the transmission network. Between this transmission connection point and the embedded generator, there are also losses that have to be accounted for. These additional losses are calculated on an average basis through the Distribution Loss Factor (DLF). They are calculated each year by the DNSPs and then approved by the AER before submitting to AEMO for publication.

For dispatch purposes, the MLF of an embedded generator has to be adjusted by the DLF to reflect its offer price at the reference node. Similarly, adjustment of the MLF by the DLF is necessary for settlement purposes.

Up until the end of the 2007/08 financial year, the MLF associated with the scheduled embedded generators had been adjusted by their DLF in the dispatch process as well as in the settlement process (the DLF is applied to the spot price). Following the implementation of the Mid Year 2008 release into the Market Management System (MMS), the DLF is now separately defined in MMS for dispatch purposes only, and the DLF for settlement purposes is applied in the Market Settlement and Transfer Solution (MSATS) as per all other market connection points (i.e. the generated energy is adjusted by the DLF). The MLF in MMS will no longer be adjusted by the DLF.



The site specific DLFs for embedded generators (scheduled and non-scheduled) are published separately in the "Distribution Loss Factors for the 2011/12 Financial Year" document which is available on AEMO's website<sup>3</sup>.

### 3.15 Interconnector Capability

In accordance with section 5.5.4 of the forward-looking loss factor methodology, AEMO has estimated nominal interconnector limits for summer peak, summer off-peak, winter peak and winter off-peak periods. These values are listed in table below. AEMO sought feedback from the associated TNSPs to ensure that these limits are suitable.

| From region                     | To region          | Summer<br>peak                                     | Summer<br>off-peak                                 | Winter peak                                        | Winter off-<br>peak                                |
|---------------------------------|--------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Queensland                      | New South<br>Wales | 1078                                               | 1078                                               | 1078                                               | 1078                                               |
| New South Wales                 | Queensland         | 400                                                | 550                                                | 400                                                | 550                                                |
| New South Wales                 | Victoria           | 1900 minus<br>Murray<br>Generation                 | 1900 minus<br>Murray<br>Generation                 | 1900 minus<br>Murray<br>Generation                 | 1900 minus<br>Murray<br>Generation                 |
| Victoria                        | New South<br>Wales | 3200 minus<br>Upper &<br>Lower Tumut<br>Generation | 3000 minus<br>Upper &<br>Lower Tumut<br>Generation | 3200 minus<br>Upper &<br>Lower Tumut<br>Generation | 3000 minus<br>Upper &<br>Lower Tumut<br>Generation |
| Victoria                        | South<br>Australia | 460                                                | 460                                                | 460                                                | 460                                                |
| South Australia                 | Victoria           | 460                                                | 460                                                | 460                                                | 460                                                |
| Murraylink Vic                  | South<br>Australia | 220                                                | 220                                                | 220                                                | 220                                                |
| Murraylink SA                   | Victoria           | 188 – North<br>West Bend &<br>Berri loads          | 198 – North<br>West Bend &<br>Berri loads          | 215 – North<br>West Bend &<br>Berri loads          | 215 – North<br>West Bend &<br>Berri loads          |
| Terranora<br>Interconnector QId | NSW                | 220                                                | 220                                                | 220                                                | 220                                                |
| Terranora<br>Interconnector NSW | Qld                | 122                                                | 122                                                | 122                                                | 122                                                |
| * Basslink VIC                  | Tasmania           | 478                                                | 478                                                | 478                                                | 478                                                |
| * Basslink TAS                  | Victoria           | 594                                                | 594                                                | 594                                                | 594                                                |

The peak interconnector capability does not necessarily correspond to the network capability at the time of the maximum regional demand, rather it refers to average capability during the peak periods which corresponds to 7 AM to 10 PM on week days.

\* Note that Basslink is a Market Network Service Provider that consists of a controllable network element that transfers power between the Tasmania and Victoria regions.

<sup>&</sup>lt;sup>3</sup> http://www.aemo.com.au/electricityops/0171-0008.html



## 3.16 Data accuracy and due diligence of the forecast data

The marginal loss factors have been calculated by AEMO using the relevant load forecast data from TNSPs and historical generation data from the AEMO settlements database.

The historical connection point data has already been checked and finalised as part of the settlements process. For each region and half hour trading interval, the losses were calculated by adding the summated generation values to the interconnector flow and subtracting the summated load values. These transmission losses are used to indicate large errors in the data. Once convinced that the data is reasonable and consistent using this checking method, the historical load data is sent to the relevant TNSPs upon request, to generate forecast loads for 2011/12.

The due diligence of the forecast data was performed as follows:

- Check that forecast data for each connection point is provided;
- Confirm that load growth is consistent with ESOO 2010 for 2011/12 financial year;
- Check that load shapes are consistent with load profile of the historical year 2009/10;
- Check that the forecast for connection points include the relevant embedded generation, if any;
- Check that industrial and auxiliary type loads are not scaled;
- Check that Ausgrid's forecast is consistent with the TransGrid forecast for bulk supply connection points for all connection points on the TransGrid/Ausgrid transmission boundary.

#### 3.17 Calculation of intra-regional loss factors

AEMO uses the TPRICE<sup>4</sup> software package to calculate the loss factors because of its ability to handle large data sets. TransGrid, ElectraNet SA and Powerlink also use versions of this package.

The loss factors for each connection point have been calculated as follows:

- The half hourly forecast load and historical generator data, unit capacity and availability data together with interconnector data, are converted into a format suitable for input to the TPRICE program.
- The load flow case is adjusted to ensure a reasonable voltage profile is maintained in each region at times of high demand.
- The load flow case is converted into a format suitable for use in TPRICE.
- The half hourly generator and load data for each connection point, unit capacity and availability data, together with interconnector data are fed into the TPRICE program one trading interval at a time. The TPRICE program allocates the load and generator values to the appropriate connection points in the load flow case.
- TPRICE iteratively dispatches generators to meet forecast demand and solves each half hourly load flow case and calculates the loss factors appropriate to the load flow conditions.
- The Regional Reference Node (RRN) and connection points are defined for each region. The loss factors in each region are therefore referred to the appropriate RRN.
- Once all the trading intervals have been processed, TPRICE averages the loss factors for the full year for each connection point using connection point load weighting.
- Typically, generation loss factors are weighted against generator output and load loss factors against load consumption. However, where load and generation are connected to the same connection point and individual metering is not available for the separate components, the same loss factor is calculated for both the generator and load.

<sup>&</sup>lt;sup>4</sup> TPRICE is a commercially available transmission pricing software package. It is capable of running a large number of consecutive load flow cases quickly. The program outputs loss factors for each trading interval as well as averaged over a financial year using volume weighting.



The static intra-regional loss factors that apply for the 2011/12 financial year are tabulated in Appendix A.

## 3.18 Inter-regional loss factor equations

Inter-regional loss factor equations describe the variation in loss factor at one RRN with respect to an adjacent RRN. These equations are referred to as dynamic inter-regional loss factor equations, and are necessary to cater for the large variations in loss factors that may occur between reference nodes resulting from different (and particularly tidal) energy flow patterns. This is important in minimising the distortion of economic dispatch of generating units.

The inter-regional loss factor equations to apply for the 2011/12 financial year are provided in Appendix B. These equations have been obtained by applying linear regression to the full set of loss factor data for the RRNs. Relevant power system variables were used in the regression analysis. To meet the requirements of the AEMO dispatch algorithm the choice of variables and equation formulation has been restricted as follows:

- Only linear terms are permitted in the equation;
- Only the notional link flow between the reference nodes for which the loss factor difference is being determined can be used;
- Region demands are allowed as equation variables; and
- Other variables such as generator outputs cannot be used.
- Graphs of variation in inter-regional loss factor with notional link flow for typical system conditions are also included in Appendix B.
- The inter-regional loss equations, obtained by integrating the (inter-regional loss factor – 1) equations, are provided in Appendix C.
- The inter-regional loss equations for Basslink, Terranora Interconnector and Murraylink are provided in Appendix D.

#### 3.19 Loss models for Controllable Links

Appendix D contains loss factor and loss models for controllable links, including the Terranora Interconnector loss factor model, Murraylink loss factor model and the Basslink loss equation.

## 3.20 Proportioning Inter-regional Losses to Regions

Appendix E contains the factors used to apportion the inter-regional losses to the associated regions for the 2011/12 financial year.



# 4 Differences in loss factors compared to the 2010/11 financial year

### 4.1 MLFs

Under marginal pricing, the spot price for electricity is defined as the incremental cost of additional generation (or demand reduction) for each spot market interval.

Consistent with this is that the marginal loss is the addition to the total loss for each additional unit of electricity (MW) delivered, given by the MLF calculated.

The tables in Appendix A show the intra-regional loss factors for each region in the NEM. As discussed in the introduction, the price of electricity at a connection point within a region is the price at the RRN multiplied by the Intra-regional loss factor between it and the RRN. Depending on network and loading configurations, loss factor values can vary quite significantly, ranging from below 1.0 to above 1.0.

#### 4.1.1 MLFs greater than 1

At any instant at a connection point, the marginal value of electricity will equal the cost of generating additional supplies at the RRN and transmitting it to that point. Any increase or decrease in total losses is then the marginal loss associated with transmission from the RRN to this connection point. If the marginal loss is positive, this means that less can be taken from this point than is supplied at the RRN, the difference having been lost in the network. In this case, the MLF is above 1.0. This would normally be expected to apply to loads. However, this would also apply to generators situated in areas where the local load is greater than the local level of generation.

For example, a generator supplying an additional 1 MW at the RRN may find that its customer at the connection point can only receive an additional 0.95 MW. Marginal losses are 0.05 MW, or 5% of generation, resulting in MLF = 1.05.

#### 4.1.2 MLFs less than 1

In general, losses increase with distance, so that the further the distance between the RRN and a connection point is, the higher the MLF value. However, additional line flow only raises total losses if it moves in the same direction as the existing net flow. At any instant, when the additional flow is against the net flow, total losses on the network will be reduced. In this case, the MLF is below 1.0. This would normally be expected to apply to generators. However, this would also apply to loads situated in areas where the local level of generation is greater than the local load.

Using the example above, if the net flow is flowing from the connection point to the RRN, then the generator at the RRN will only be required to supply an additional 0.95 MW to meet an additional load of 1 MW at the connection point. Marginal losses are then -0.05 MW, or 5% reduction in generation, resulting in MLF = 0.95.



# 4.2 Comparison of 2011/12 MLFs with 2010/11 MLFs

The 2011/12 energy forecasts in all regions have increased except in South Australia<sup>5</sup>. The reduction in demand in South Australia together with new additional generation at Port Lincoln and new wind farms has resulted in a substantial increase in interconnector transfers from South Australia to Victoria.

In Victoria, in addition to the increased transfer from South Australia, there is a substantial reduction in the Basslink transfer to Tasmania. This has contributed to a significant increase in transfer to New South Wales.

In Queensland, the demand growth in South East Queensland together with the retirement of Swanbank B Power Station has increased the power flows from Central Queensland to South East Queensland. The slight increase in interconnector transfers from Queensland to New South Wales further increases the Central Queensland to South East Queensland flows.

Following the publication of this year's draft MLF document, Origin Energy advised AEMO that Mortlake is an open cycle GT plant, whereas last year it was modelled as a closed cycle GT. This has resulted in a reduction of approximately 2,000 GWh of energy generated in Victoria this year compared to 2010/11, which has consequently led to variations of MLF values in certain places.

#### 4.2.1 South Australia

Due to the reduction in energy forecast and increase in generation capacity, the MLFs in most parts of this region are similar to last year's values or are slightly lower. Exceptions to this are a number of locations such as Snuggery, Mt Gambier, and Berri where increases in MLF value have occurred.

As discussed in section 4.2 above, the interconnector transfers from South Australia to Victoria have increased significantly. The consequence of this is that the MLF values for locations along the interconnector path have increased as can be seen in the MLF values for Snuggery and Berri. For Snuggery and Mt Gambier along the Heywood link, there is an additional effect from the reduction of Lake Bonney wind farm output.

#### 4.2.2 Victoria

There is an increase in transfer from South Australia and a decrease in transfer to Tasmania. This has contributed to a significant increase in transfer to New South Wales. The resulting effect is that there is excess generation and hence most MLF values have decreased. Although the Mortlake PS output has reduced this year, its MLF value has changed only marginally, due to the increased transfer from SA to Victoria.

The MLF values at locations along the interconnector paths from Murraylink at Redcliffs have higher than normal reductions due to higher inflows from South Australia. Higher generation at Murray power station has also resulted in lower MLFs at Wodonga and Murray.

#### 4.2.3 New South Wales

There is a significant increase in transfer from Victoria and a slight increase from Queensland. Consequently most MLF values show a slight decrease. Load growth in Northern New South Wales is moderate, and with the small increase in transfers from Queensland, MLF values in this area have decreased slightly.

The increased transfers from Murraylink via Buronga together with the increase in generation from Uranquinty have the effect of lowering the MLF values at locations such as Broken Hill, Darlington Point, and Wagga quite significantly. Though the Wagga area loads have increased, the MLFs have decreased due to the increased generation from Uranquinty nearby. Due to the increased Wagga area load, the Uranquinty MLF has increased.

<sup>&</sup>lt;sup>5</sup> The scheduled and semi-scheduled energy projections for South Australia show a decrease in forecast energy in the 2010 ESOO as compared to the 2009 ESOO.



Since the publication of this report on 1 April 2011, the AEMC has made a Rule which allows two MLFs to be applied at connection points where energy is both generated and consumed – one MLF for generation and one for consumption. Under clause 11.41.4(b), AEMO is required to publish revised intra-regional loss factors for transmission network connection points that have been affected by this Rule change<sup>6</sup>. On 11 April 2011, AEMO commenced a consultation on the FLLF methodology to determine the criteria for calculating dual loss factors to take into account transmission network connection points where energy is both generated and consumed<sup>7</sup>. In accordance with the final determination of this consultation, AEMO has recalculated the MLFs of Shoalhaven and Lower Tumut, and they are listed in Appendix A.

#### 4.2.4 Queensland

As discussed in section 4.2 above, increased flow from Central to South Queensland has resulted in the MLF values from Central to Northern Queensland being lower than the 2010/11 MLF values. This is in part due to the increased flow from Queensland to New South Wales and, the retirement of Swanbank B in Southern Queensland. As the 2011/12 forecast shows very little demand growth in Central Queensland, the effect is to further reduce MLF values in Central Queensland.

The forecast also shows only moderate demand growth in North Queensland, with most of this growth being in the Townsville area. Even though there is a reduction in generation from the hydro generators at Barron Gorge and Kareeya, the increased outputs from Yabulu and Mt. Stuart have resulted in lower MLF values in the area. The MLF for Yabulu is affected less than Mt. Stuart due to differences in generation profiles. The reduction in losses due to network augmentation in the Ingham area has resulted in a reduction in local MLF values.

Since the publication of this report on 1 April 2011, AEMO has recalculated the MLFs of QYAG, QYAE and QYAR using a more representative generation profile for Yarwun cogeneration plant as detailed in section 3.12.1. This change has minimal impact on MLFs at other locations.

#### 4.2.5 Tasmania

The forecast load growth in Tasmania for 2011-2012 is around 4.5% and the Basslink import from Victoria shows a 58% decrease compared to last year's data. Consequently, there is an increase in generation across the Tasmania region resulting in a reduction in power flow from the George Town RRN towards Southern Tasmania compared to last year. This has resulted in slight reductions in the MLF values for most generators. The Lake Echo generating unit has a larger increase this year resulting in a larger reduction in its MLF. Load connection point MLF values show only moderate variations from last year's values.

# 5 Virtual transmission nodes

Six virtual transmission nodes (VTNs) have been approved by the AER for use in the NEM. The loss factors for the VTNs are included in Appendix A.

## 5.1 New South Wales

In accordance with clause 3.6.2(b)(3) of the Rules, the AER has approved Ausgrid's application to define the three VTNs listed in the following table<sup>8</sup>.

<sup>&</sup>lt;sup>6</sup> http://www.aemc.gov.au/Electricity/Rule-changes/Completed/Application-of-Dual-Marginal-Loss-Factors.html

<sup>&</sup>lt;sup>7</sup> http://www.aemo.com.au/electricityops/0178-0020.html

<sup>&</sup>lt;sup>8</sup> These VTNs are based on old definitions determined by IPART. They will be revised in due course to include newly classified transmission assets as well as changes in the definitions of some Ausgrid TNIs.



| VTN TNI<br>code | Description            | Associated transmission connection points (TCPs)                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NEV1            | Far North              | Muswellbrook 132 and Liddell 33                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NEV2            | North of Broken<br>Bay | Kurri 11, Kurri 33, Kurri 66, Kurri 132, Newcastle<br>132, Munmorah 330, Munmorah 33, Vales Pt. 132,<br>Beresfield 33, Charmhaven 11, Gosford 33,<br>Gosford 66, West Gosford 11, Ourimbah 33,<br>Somersby 11, Tomago 33, BHP Waratah 132 and<br>Wyong 11                                                                                                                                                                                               |
| NEV3            | South of<br>Broken Bay | Sydney North 132 (Ausgrid), Lane Cove 132,<br>Meadowbank 11, Mason Park 132, Homebush Bay<br>11, Chullora 132 kV, Chullora 11, Peakhurst 132,<br>Peakhurst 33, Drummoyne 11, Rozelle 33, Pyrmont<br>132, Pyrmont 33, Marrickville 11, St Peters 11,<br>Beaconsfield West 132, Canterbury 33, Bunnerong<br>33, Bunnerong 132, Sydney East 132, Sydney<br>West 132 (Ausgrid) and Sydney South 132,<br>Macquarie Park 11, Rozelle 132 and Haymarket<br>132 |

## 5.2 South Australia

The AER has approved ETSA Utilities' application to define the SJP1 VTN for South Australia. The South Australian VTN includes all load transmission connection points excluding:

Snuggery Industrial as nearly its entire capacity services an industrial facility at Millicent; and

Whyalla MLF as its entire capacity services an industrial plant in Whyalla.

## 5.3 Tasmania

The AER has approved Aurora application to define the two VTNs listed in the following table:

| VTN TNI<br>code | Description            | Associated transmission connection points (TCPs)                                              |
|-----------------|------------------------|-----------------------------------------------------------------------------------------------|
| TVN1            | Greater Hobart<br>Area | Chapel Street 11, Creek Road 33, Lindisfarne 33, North<br>Hobart 11, Risdon 33 and Rokeby 11. |
| TVN2            | Tamar Region           | Hadspen 22, Mowbray 22, Norwood 22, Trevallyn 22,<br>George Town 22                           |

# 6 Region boundaries and regional reference nodes for 2011/12

Appendix F contains the list of regional reference nodes and region boundaries that apply for the 2011/12 financial year.



# 7 Appendix A: Intra-regional loss factors for 2011/12

## **Queensland (regional reference node is South Pine 275)**

# **Queensland Loads**

| Location                    | Voltage | TNI code | 2010/11 Loss Factor | 2011/12 Loss Factor |
|-----------------------------|---------|----------|---------------------|---------------------|
| Abermain                    | 33      | QABM     | 1.0043              | 1.0037              |
| Abermain (Lockrose)         | 110     | QABR     | 1.0022              | 1.0014              |
| Alan Sherriff               | 132     | QASF     | 1.0764              | 1.0609              |
| Algester                    | 33      | QALG     | 1.0150              | 1.0177              |
| Alligator Creek             | 33      | QALC     | 1.0689              | 1.0583              |
| Alligator Creek             | 132     | QALH     | 1.0691              | 1.0566              |
| Ashgrove West               | 33      | QAGW     | 1.0163              | 1.0175              |
| Ashgrove West               | 110     | QCBW     | 1.0158              | 1.0166              |
| Belmont                     | 110     | QBMH     | 1.0101              | 1.0118              |
| Belmont Wecker Road         | 11      | QMOB     | 1.0103              | 1.0122              |
| Belmont Wecker Road         | 33      | QBBS     | 1.0120              | 1.0142              |
| Biloela                     | 66/11   | QBIL     | 0.9580              | 0.9358              |
| Blackstone                  | 110     | QBKS     |                     | 1.0007              |
| Blackwater                  | 132     | QBWH     | 1.0673              | 1.0450              |
| Blackwater                  | 66&11   | QBWL     | 1.0682              | 1.0476              |
| Bolingbroke                 | 132     | QBNB     | 1.0413              | 1.0147              |
| Bowen North                 | 66      | QBNN     |                     | 1.0474              |
| Boyne Island                | 132     | QBOL     | 0.9978              | 0.9797              |
| Boyne Island                | 275     | QBOH     | 0.9993              | 0.9811              |
| Bulli Creek (CE)            | 132     | QBK2     | 0.9613              | 0.9600              |
| Bulli Creek (Waggamba)      | 132     | QBLK     | 0.9613              | 0.9600              |
| Bundamba                    | 110     | QBDA     | 1.0033              | 1.0025              |
| Burton Downs                | 132     | QBUR     | 1.0766              | 1.0600              |
| Cairns                      | 22      | QCRN     | 1.1217              | 1.1090              |
| Cairns City                 | 132     | QCNS     | 1.1173              | 1.1037              |
| Callemondah (Rail)          | 132     | QCMD     | 0.9877              | 0.9681              |
| Cardwell                    | 22      | QCDW     | 1.1296              | 1.1111              |
| Clare                       | 66      | QCLR     | 1.0961              | 1.0868              |
| Collinsville Load           | 33      | QCOL     | 1.0510              | 1.0415              |
| Coppabella (Rail)           | 132     | QCOP     | 1.0830              | 1.0849              |
| Dan Gleeson                 | 66      | QDGL     | 1.0841              | 1.0788              |
| Dingo (Rail)                | 132     | QDNG     | 1.0807              | 1.0317              |
| Dysart                      | 66/22   | QDYS     | 1.0822              | 1.0727              |
| Edmonton                    | 22      | QEMT     | 1.1239              | 1.1179              |
| Egans Hill                  | 66      | QEGN     | 0.9976              | 0.9720              |
| El Arish                    | 22      | QELA     | 1.1309              | 1.1255              |
| Garbutt                     | 66      |          | 1.0787              | 1.0656              |
| Gin Gin                     | 132     | QGNG     | 1.0026              | 0.9866              |
| Gladstone                   | 132     | QGLA     | 0.9854              | 0.9689              |
| Gladstone South             | 66/11   | QGLA     | 0.9898              | 0.9682              |
| Gladstone South             | 33      | QGDA     | 1.0077              | 1.0072              |
| Goodna<br>Grantleigh (Rail) | 132     | QGDA     | 0.9932              | 0.9909              |



| Location                      | Voltage | TNI code     | 2010/11 Loss Factor | 2011/12 Loss Factor |
|-------------------------------|---------|--------------|---------------------|---------------------|
| Gregory (Rail)                | 132     | QGRE         | 1.0252              | 1.0147              |
| Ingham                        | 66      | QING         | 1.1403              | 1.0646              |
| Innisfail                     | 22      | QINF         | 1.1343              | 1.1295              |
| Invicta Load                  | 132     | QINV         | 1.0863              | 1.0653              |
| Kamerunga                     | 22      | QKAM         | 1.1222              | 1.1152              |
| Kemmis                        | 132     | QEMS         | 1.0637              | 1.0479              |
| King Creek                    | 132     | QKCK         | 1.0835              | 1.0708              |
| Lilyvale                      | 66      | QLIL         | 1.0288              | 1.0139              |
| Lilyvale (Barcaldine)         | 132     | QLCM         | 1.0256              | 1.0108              |
| Loganlea                      | 33      | QLGL         | 1.0148              | 1.0175              |
| Loganlea                      | 110     | QLGH         | 1.0111              | 1.0132              |
| Mackay                        | 33      | QMKA         | 1.0758              | 1.0553              |
| Middle Ridge (Energex)        | 110     | QMRX         | 0.9742              | 0.9725              |
| Middle Ridge (Ergon)          | 110     | QMRG         | 0.9742              | 0.9725              |
| Mindi (Rail)                  | 132     | QMND         | 1.0385              | 1.0234              |
| Molendinar                    | 33      | QMAL         | 1.0076              | 1.0115              |
| Molendinar                    | 110     | QMAR         | 1.0052              | 1.0110              |
| Moranbah (Mine)               | 66      | QMRN         | 1.0965              | 1.0794              |
| Moranbah (Town)               | 11      | QMRL         | 1.0915              | 1.0716              |
| Moranbah South (Rail)         | 132     | QMBS         | 1.0942              | 1.0745              |
| Moura                         | 66/11   | QMRA         | 0.9930              | 0.9802              |
| Mt McLaren (Rail)             | 132     | QMTM         | 1.1141              | 1.0970              |
| Mudgeeraba                    | 33      | QMGL         | 1.0111              | 1.0153              |
| Mudgeeraba                    | 110     | QMGE         | 1.0100              | 1.0153              |
| Murarrie (Belmont)            | 110     | QMRE         | 1.0152              | 1.0158              |
| Nebo                          | 11      |              | 1.0455              |                     |
| Newlands                      | 66      |              |                     | 1.0202              |
|                               | 132     | QNLD<br>QNGY | 1.0940<br>1.0954    | 1.0826              |
| North Goonyella               | 132     | QNOR         | 1.0551              | 1.0780              |
| Norwich Park (Rail)           |         | QNOR         | 0.9740              | 1.0455<br>0.9725    |
| Oakey                         | 110     |              |                     |                     |
| Oonooie (Rail)                | 132     | QOON         | 1.0714              | 1.0620              |
| Palmwoods                     | 132/110 | QPWD         | 1.0283              | 1.0275              |
| Pandolin<br>Back Damas (Dail) | 132     | QPAN         | 4 0070              | 0.9746              |
| Peak Downs (Rail)             | 132     |              | 1.0878              | 1.0772              |
| Pioneer Valley                | 66      | QPIV         | 1.0789              | 1.0626              |
| Proserpine                    | 66      | QPRO         | 1.0908              | 1.0641              |
| QAL (Gladstone South)         | 132     | QQAH         | 0.9905              | 0.9713              |
| QLD Nickel (Yabulu)           | 132     |              | 1.0683              | 1.0542              |
| Redbank Plains                | 11      | QRPN         | 1.0087              | 1.0062              |
| Richlands                     | 33      | QRLD         | 1.0174              | 1.0180              |
| Rockhampton                   | 66      | QROC         | 1.0044              | 0.9790              |
| Rocklands (Rail)              | 132     | QRCK         | 0.9910              | 0.9670              |
| Rocklea (Archerfield)         | 110     | QRLE         | 1.0059              | 1.0059              |
| Ross                          | 132     | QROS         | 1.0724              | 1.0609              |
| Runcorn                       | 33      | QRBS         | 1.0124              | 1.0180              |
| South Pine                    | 110     | QSPN         | 1.0024              | 1.0024              |
| Stony Creek                   | 132     | QSYC         | 1.0897              | 1.0837              |
| Sumner                        | 110     | QSUM         | 1.0073              | 1.0080              |
| Swanbank (Raceview)           | 110     | QSBK         | 1.0023              | 1.0010              |
| Tangkam (Dalby)               | 110     | QTKM         | 0.9725              | 0.9756              |
| Tarong                        | 66      | QTRL         | 0.9695              | 0.9671              |



| Location                                 | Voltage | TNI code | 2010/11 Loss Factor | 2011/12 Loss Factor |
|------------------------------------------|---------|----------|---------------------|---------------------|
| Tarong                                   | 132     | QTRH     | 0.9654              | 0.9633              |
| Teebar Creek                             | 132     | QTBC     | 1.0120              | 1.0051              |
| Tennyson                                 | 33      | QTNS     | 1.0106              | 1.0111              |
| Tennyson (Rail)                          | 110     | QTNN     | 1.0079              | 1.0084              |
| Townsville East                          | 66      | QTVE     | 1.1026              | 1.0785              |
| Townsville South                         | 66      | QTVS     | 1.1033              | 1.0801              |
| Townsville South (KZ)                    | 132     | QTZS     | 1.1014              | 1.0761              |
| Tully                                    | 22      | QTLL     | 1.1431              | 1.1288              |
| Turkinje                                 | 66      | QTUL     | 1.1310              | 1.1260              |
| Turkinje (Craiglee)                      | 132     | QTUH     | 1.1317              | 1.1242              |
| Wandoo (Rail)                            | 132     | QWAN     | 1.0395              | 1.0258              |
| Wivenhoe Pump                            | 275     | QWIP     | 0.9961              | 0.9952              |
| Woolooga (Energex)                       | 132     | QWLG     | 1.0097              | 1.0006              |
| Woolooga (Ergon)                         | 132     | QWLN     | 1.0097              | 1.0006              |
| Woree                                    | 132     | QWRE     | 1.1166              | 1.1118              |
| Yarwun – Boat Creek (Ergon) <sup>9</sup> | 132     | QYAE     | 0.9866              | 0.9622              |
| Yarwun – Rio Tinto <sup>9</sup>          | 132     | QYAR     | 0.9866              | 0.9602              |

<sup>&</sup>lt;sup>9</sup> Refer to section 4.2.4 for further information



# **Queensland Generators**

| Location                                                 | Voltage | Dispatchable<br>Unit ID<br>(DUID) | Connection Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|----------------------------------------------------------|---------|-----------------------------------|---------------------|-------------|---------------------------|---------------------------|
| Barron Gorge PS Unit 1                                   | 132     | BARRON-1                          | QBGH1               | QBGH        | 1.0922                    | 1.0935                    |
| Barron Gorge PS Unit 2                                   | 132     | BARRON-2                          | QBGH2               | QBGH        | 1.0922                    | 1.0935                    |
| Braemar PS                                               | 275     | BRAEMAR1                          | QBRA1               | QBRA        | 0.9429                    | 0.9415                    |
| Braemar PS                                               | 275     | BRAEMAR2                          | QBRA2               | QBRA        | 0.9429                    | 0.9415                    |
| Braemar PS                                               | 275     | BRAEMAR3                          | QBRA3               | QBRA        | 0.9429                    | 0.9415                    |
| Braemar Stage 2 PS                                       |         |                                   |                     |             | 0.0420                    | 0.0445                    |
| Unit 5                                                   | 275     | BRAEMAR5                          | QBRA5B              | QBRA        | 0.9429                    | 0.9415                    |
| Braemar Stage 2 PS<br>Unit 6                             | 275     | BRAEMAR6                          | QBRA6B              | QBRA        | 0.9429                    | 0.9415                    |
| Braemar Stage 2 PS<br>Unit 7                             | 275     | BRAEMAR7                          | QBRA7B              | QBRA        | 0.9429                    | 0.9415                    |
| Callide A PS Load                                        | 132     | CALLNL1                           | QCAX                | QCAX        | 0.9682                    | 0.9302                    |
| Callide A PS Unit 2                                      | 132     | CALL_A_2                          | QCAA2               | QCAA        | 0.9682                    | 0.9302                    |
| Callide A PS Unit 4                                      | 132     | CALL_A_4                          | QCAA4               | QCAA        | 0.9682                    | 0.9302                    |
| Callide B PS Unit 1                                      | 275     | CALL_B_1                          | QCAB1               | QCAB        | 0.9434                    | 0.9285                    |
| Callide B PS Unit 2                                      | 275     | CALL_B_2                          | QCAB2               | QCAB        | 0.9434                    | 0.9285                    |
| Callide C PS Unit 3                                      | 275     | CPP_3                             | QCAC3               | QCAC        | 0.9452                    | 0.9269                    |
| Callide C PS Unit 4                                      | 275     | CPP_4                             | QCAC4               | QCAC        | 0.9452                    | 0.9269                    |
| Collinsville PS Load                                     | 132     | COLNSNL1                          | QCLX                | QCLX        | 1.0360                    | 1.0232                    |
| Collinsville PS Unit 1                                   | 132     | COLNSV_1                          | QCVL1               | QCVP        | 1.0360                    | 1.0232                    |
| Collinsville PS Unit 2                                   | 132     | COLNSV_2                          | QCVL2               | QCVP        | 1.0360                    | 1.0232                    |
| Collinsville PS Unit 3                                   | 132     | COLNSV_3                          | QCVL3               | QCVP        | 1.0360                    | 1.0232                    |
| Collinsville PS Unit 4                                   | 132     | COLNSV_4                          | QCVL4               | QCVP        | 1.0360                    | 1.0232                    |
| Collinsville PS Unit 5                                   | 132     | COLNSV_5                          | QCVL5               | QCVP        | 1.0360                    | 1.0232                    |
| Darling Downs                                            | 275     | DDPS1                             | QBRA8D              | QBRA        | 0.9429                    | 0.9415                    |
| Gladstone PS (132 kV)<br>Unit 3                          | 132     | GSTONE3                           | QGLD3               | QGLL        | 0.9786                    | 0.9612                    |
| Gladstone PS (132 kV)<br>Unit 4                          | 132     | GSTONE4                           | QGLD4               | QGLL        | 0.9786                    | 0.9612                    |
| Gladstone PS (132kV)<br>Load                             | 132     | GLADNL1                           | QGLL                | QGLL        | 0.9786                    | 0.9612                    |
| Gladstone PS (275 kV)<br>Unit 1                          | 275     | GSTONE1                           | QGLD1               | QGLH        | 0.9818                    | 0.9631                    |
| Gladstone PS (275 kV)<br>Unit 2                          | 275     | GSTONE2                           | QGLD2               | QGLH        | 0.9818                    | 0.9631                    |
| Gladstone PS (275 kV)<br>Unit 5<br>Gladstone PS (275 kV) | 275     | GSTONE5                           | QGLD5               | QGLH        | 0.9818                    | 0.9631                    |
| Unit 6                                                   | 275     | GSTONE6                           | QGLD6               | QGLH        | 0.9818                    | 0.9631                    |
| Kareeya PS Unit 1                                        | 11      | KAREEYA1                          | QKAH1               | QKAH        | 1.0802                    | 1.0600                    |
| Kareeya PS Unit 2                                        | 11      | KAREEYA2                          | QKAH2               | QKAH        | 1.0802                    | 1.0600                    |
| Kareeya PS Unit 3                                        | 11      | KAREEYA3                          | QKAH3               | QKAH        | 1.0802                    | 1.0600                    |
| Kareeya PS Unit 4                                        | 11      | KAREEYA4                          | QKAH4               | QKAH        | 1.0802                    | 1.0600                    |
| Kogan Creek PS                                           | 275     | KPP_1                             | QBRA4K              | QBRA        | 0.9429                    | 0.9415                    |
| Koombooloomba                                            | 132     | KAREEYA5                          | QKYH5               | QKYH        | 1.0844                    | 1.0703                    |
| Mackay GT                                                | 33      | MACKAYGT                          | QMKG                | QMKG        | 1.0327                    | 1.0353                    |
| Millmerran PS Unit 1<br>(Millmerran)                     | 330     | MPP_1                             | QBCK1               | QMLN        | 0.9620                    | 0.9600                    |
| Millmerran PS Unit 2<br>(Millmerran)                     | 330     | MPP_2                             | QBCK2               | QMLN        | 0.9620                    | 0.9600                    |



| Location                      | Voltage | Dispatchable<br>Unit ID<br>(DUID) | Connection Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|-------------------------------|---------|-----------------------------------|---------------------|-------------|---------------------------|---------------------------|
| Mt Stuart PS Unit 1           | 132     | MSTUART1                          | QMSP1               | QMSP        | 1.0229                    | 0.9772                    |
| Mt Stuart PS Unit 2           | 132     | MSTUART2                          | QMSP2               | QMSP        | 1.0229                    | 0.9772                    |
| Mt Stuart PS Unit 3           | 132     | MSTUART3                          | QMSP3M              | QMSP        | 1.0229                    | 0.9772                    |
| Oakey PS Unit 1               | 110     | OAKEY1                            | QOKY1               | QOKY        | 0.9433                    | 0.9384                    |
| Oakey PS Unit 2               | 110     | OAKEY2                            | QOKY2               | QOKY        | 0.9433                    | 0.9384                    |
| Stanwell PS Load              | 132     | STANNL1                           | QSTX                | QSTX        | 0.9815                    | 0.9584                    |
| Stanwell PS Unit 1            | 275     | STAN-1                            | QSTN1               | QSTN        | 0.9815                    | 0.9584                    |
| Stanwell PS Unit 2            | 275     | STAN-2                            | QSTN2               | QSTN        | 0.9815                    | 0.9584                    |
| Stanwell PS Unit 3            | 275     | STAN-3                            | QSTN3               | QSTN        | 0.9815                    | 0.9584                    |
| Stanwell PS Unit 4            | 275     | STAN-4                            | QSTN4               | QSTN        | 0.9815                    | 0.9584                    |
| Swanbank B PS Unit 1          | 275     | SWAN_B_1                          | QSWB1               | QSWB        | 0.9930                    | 0.9975                    |
| Swanbank B PS Unit 2          | 275     | SWAN_B_2                          | QSWB2               | QSWB        | 0.9930                    | 0.9975                    |
| Swanbank B PS Unit 3          | 275     | SWAN_B_3                          | QSWB3               | QSWB        | 0.9930                    | 0.9975                    |
| Swanbank B PS Unit 4          | 275     | SWAN_B_4                          | QSWB4               | QSWB        | 0.9930                    | 0.9975                    |
| Swanbank E GT                 | 275     | SWAN_E                            | QSWE                | QSWE        | 0.9990                    | 0.9991                    |
| Swanbank PS Load              | 110     | SWANNL2                           | QSW1                | QSWB        | 0.9930                    | 0.9975                    |
| Tarong North PS               | 275     | TNPS1                             | QTNT                | QTNT        | 0.9680                    | 0.9652                    |
| Tarong PS Unit 1              | 275     | TARONG#1                          | QTRN1               | QTRN        | 0.9679                    | 0.9655                    |
| Tarong PS Unit 2              | 275     | TARONG#2                          | QTRN2               | QTRN        | 0.9679                    | 0.9655                    |
| Tarong PS Unit 3              | 275     | TARONG#3                          | QTRN3               | QTRN        | 0.9679                    | 0.9655                    |
| Tarong PS Unit 4              | 275     | TARONG#4                          | QTRN4               | QTRN        | 0.9679                    | 0.9655                    |
| Wivenhoe Generation<br>Unit 1 | 275     | W/HOE#1                           | QWIV1               | QWIV        | 0.9883                    | 0.9909                    |
| Wivenhoe Generation<br>Unit 2 | 275     | W/HOE#2                           | QWIV2               | QWIV        | 0.9883                    | 0.9909                    |
| Wivenhoe Pump 1               | 275     | PUMP1                             | QWIP1               | QWIP        | 0.9961                    | 0.9952                    |
| Wivenhoe Pump 2               | 275     | PUMP2                             | QWIP2               | QWIP        | 0.9961                    | 0.9952                    |
| Wivenhoe Small Hydro          | 110     | WIVENSH                           | QABR1               | QABR        | 1.0022                    | 1.0014                    |
| Yabulu PS                     | 132     | YABULU                            | QTYP                | QTYP        | 1.0406                    | 1.0200                    |
| Yarwun PS <sup>10</sup>       | 132     | YARWUN_1                          | QYAG1R              | QYAG        | 0.9883                    | 0.9593                    |

<sup>&</sup>lt;sup>10</sup> Refer to section 4.2.4 for further information



# Queensland Embedded Generators

| Location                                        | Voltage | Dispatchable<br>Unit ID (DUID) | Connection<br>Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|-------------------------------------------------|---------|--------------------------------|------------------------|-------------|---------------------------|---------------------------|
| Barcaldine PS @ Lilyvale                        | 132     | BARCALDN                       | QBCG                   | QBCG        | 0.9963                    | 0.9872                    |
| Condamine PS                                    | 132     | CPSA                           | QCND1C                 | QCND        | 0.9651                    | 0.9625                    |
| Daandine PS                                     | 110     | DAANDINE                       | QTKM1                  | QTKM        | 0.9725                    | 0.9756                    |
| German Creek Generator                          | 66      | GERMCRK                        | QLIL2                  | QLIL        | 1.0288                    | 1.0139                    |
| Isis CSM                                        | 132     | ICSM                           | QGNG1I                 | QTBC        | 1.0120                    | 1.0051                    |
| KRC Co-Gen                                      | 110     | KRCCOGEN                       | QMRG1K                 | QMRG        | 0.9742                    | 0.9725                    |
| Moranbah Gen                                    | 11      | MORANBAH                       | QMRL1M                 | QMRL        | 1.0915                    | 1.0716                    |
| Moranbah North PS                               | 66      | MBAHNTH                        | QMRN1P                 | QMRN        | 1.0965                    | 1.0794                    |
| Oakey Creek Generator                           | 66      | OAKYCREK                       | QLIL1                  | QLIL        | 1.0288                    | 1.0139                    |
| Rochedale Renewable Energy<br>Plant             | 110     | ROCHEDAL                       | QBMH2                  | QBMH        | 1.0101                    | 1.0118                    |
| Rocky Point Gen (Loganlea<br>110kV)             | 110     | RPCG                           | QLGH2                  | QLGH        | 1.0111                    | 1.0132                    |
| Roghan Road Generator                           | 110     | EDLRGNRD                       | QSPN2                  | QSPN        | 1.0024                    | 1.0024                    |
| Roma PS @ Tarong Unit 7                         | 132     | ROMA_7                         | QRMA7                  | QRMA        | 0.9654                    | 0.9633                    |
| Roma PS @ Tarong Unit 8                         | 132     | ROMA_8                         | QRMA8                  | QRMA        | 0.9654                    | 0.9633                    |
| Southbank Institute Of Technology               | 110     | STHBKTEC                       | QCBD1S                 | QCBW        | 1.0158                    | 1.0166                    |
| Suncoast Gold Macadamias Co-<br>Gen (Palmwoods) | 110     | SUNCOAST                       | QPWD1                  | QPWD        | 1.0283                    | 1.0275                    |
| Ti Tree BioReactor                              | 33      | TITREE                         | QABM1T                 | QABM        | 1.0043                    | 1.0037                    |
| Whitwood Rd Renewable Energy Plant              | 110     | WHIT1                          | QSBK1                  | QSBK        | 1.0023                    | 1.0010                    |
| Windy Hill Windfarm (Turkinje<br>66kV)          | 66      | WHILL1                         | QTUL                   | QTUL        | 1.1310                    | 1.1260                    |
| Yabulu Steam Turbine (Garbutt 66kV)             | 66      | YABULU2                        | QGAR1                  | QYST        | 1.0504                    | 1.0310                    |



# New South Wales (regional reference node is Sydney West 330)

# New South Wales Loads

| Location                 | Voltage | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|--------------------------|---------|-------------|---------------------------|---------------------------|
| Albury                   | 132     | NALB        | 1.0588                    | 1.0172                    |
| Alcan                    | 132     | NALC        | 1.0054                    | 1.0072                    |
| ANM                      | 132     | NANM        | 1.0600                    | 1.0157                    |
| Armidale                 | 66      | NAR1        | 0.9218                    | 0.9245                    |
| Balranald                | 22      | NBAL        | 1.0958                    | 1.0597                    |
| Beaconsfield West        | 132     | NBFW        | 1.0090                    | 1.0087                    |
| Beresfield               | 33      | NBRF        | 1.0001                    | 1.0032                    |
| Beryl                    | 66      | NBER        | 0.9988                    | 0.9968                    |
| BHP (Waratah)            | 132     | NWR1        | 0.9900                    | 0.9912                    |
| Broken Hill              | 22      | NBKG        | 1.1426                    | 1.1027                    |
| Broken Hill              | 220     | NBKH        | 1.1350                    | 1.0949                    |
| Bunnerong                | 132     | NBG1        | 1.0044                    | 1.0090                    |
| Bunnerong                | 33      | NBG3        | 1.0137                    | 1.0144                    |
| Burrinjuck               | 132     | NBU2        | 1.0138                    | 1.0109                    |
| Canterbury               | 33      | NCTB        | 1.0166                    | 1.0193                    |
| Carlingford              | 132     | NCAR        | 1.0021                    | 1.0040                    |
| Casino                   | 132     | NCSN        | 0.9463                    | 0.9452                    |
| Charmhaven               | 11      | NCHM        | 0.9933                    | 0.9973                    |
| Chullora                 | 132     | NCHU        | 1.0116                    | 1.0122                    |
| Coffs Harbour            | 66      | NCH1        | 0.9464                    | 0.9426                    |
| Coleambally              | 132     | NCLY        | 1.0641                    | 1.0278                    |
| Cooma                    | 132     | NCMA        | 1.0280                    | 1.0146                    |
| Cowra                    | 66      | NCW8        | 1.0336                    | 1.0241                    |
| Dapto (Endeavour Energy) | 132     | NDT1        | 1.0008                    | 0.9972                    |
| Dapto (Essential Energy) | 132     | NDT2        | 1.0008                    | 0.9972                    |
| Darlington Point         | 132     | NDNT        | 1.0583                    | 1.0241                    |
| Deniliquin               | 66      | NDN7        | 1.1077                    | 1.0628                    |
| Dorrigo                  | 132     | NDOR        | 0.9387                    | 0.9369                    |
| Drummoyne                | 11      | NDRM        | 1.0163                    | 1.0202                    |
| Dunoon                   | 132     | NDUN        | 0.9275                    | 0.9285                    |
| Far North VTN            |         | NEV1        | 0.9597                    | 0.9558                    |
| Finley                   | 66      | NFNY        | 1.1003                    | 1.0557                    |
| Forbes                   | 66      | NFB2        | 1.0486                    | 1.0398                    |
| Gadara                   | 132     | NGAD        | 1.0340                    | 1.0397                    |
| Glen Innes               | 66      | NGLN        | 0.9553                    | 0.9545                    |
| Gosford                  | 33      | NGSF        | 1.0033                    | 1.0070                    |
| Gosford                  | 66      | NGF3        | 1.0035                    | 1.0063                    |
| Green Square             | 11      | NGSQ        | 1.0091                    | 1.0095                    |
| Griffith                 | 33      | NGRF        | 1.0868                    | 1.0532                    |
| Gunnedah                 | 66      | NGN2        | 0.9906                    | 0.9830                    |
| Haymarket                | 132     | NHYM        | 1.0087                    | 1.0082                    |
| Homebush Bay             | 11      | NHBB        | 1.0141                    | 1.0184                    |
| llford                   | 132     | NLFD        | 0.9855                    | 0.9810                    |
| Ingleburn                | 66      | NING        | 1.0001                    | 0.9992                    |
| Inverell                 | 66      | NNVL        | 0.9729                    | 0.9688                    |



| Location                   | Voltage | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|----------------------------|---------|-------------|---------------------------|---------------------------|
| Kemps Creek                | 330     | NKCK        | 0.9979                    | 0.9971                    |
| Kempsey                    | 33      | NKS3        | 1.0062                    | 0.9976                    |
| Kempsey                    | 66      | NKS2        | 1.0072                    | 1.0087                    |
| Koolkhan                   | 66      | NKL6        | 0.9585                    | 0.9547                    |
| Kurnell                    | 132     | NKN1        | 1.0097                    | 1.0090                    |
| Kurri                      | 132     | NKUR        | 1.0020                    | 1.0038                    |
| Kurri                      | 33      | NKU3        | 1.0043                    | 1.0066                    |
| Kurri                      | 66      | NKU6        | 1.0051                    | 1.0085                    |
| Kurri                      | 11      | NKU1        | 1.0015                    | 1.0025                    |
| Lane Cove                  | 132     | NLCV        | 1.0121                    | 1.0152                    |
| Liddell                    | 33      | NLD3        | 0.9591                    | 0.9568                    |
| Lismore                    | 132     | NLS2        | 0.9397                    | 0.9430                    |
| Liverpool                  | 132     | NLP1        | 1.0020                    | 1.0014                    |
| Macarthur                  | 132     | NMC1        | 0.9983                    | 0.9969                    |
| Macarthur                  | 66      | NMC2        | 0.9998                    | 0.9980                    |
| Macksville                 | 132     | NMCV        | 0.9744                    | 0.9662                    |
| Macquarie Park             | 11      | NMQP        | 1.0143                    | 1.0194                    |
| Manildra                   | 132     | NMLD        | 1.0261                    | 1.0221                    |
| Marrickville               | 11      | NMKV        | 1.0160                    | 1.0177                    |
| Marulan (Endeavour Energy) | 132     | NMR1        | 0.9916                    | 0.9867                    |
| Marulan (Essential Energy) | 132     | NMR2        | 0.9916                    | 0.9867                    |
| Mason Park                 | 132     | NMPK        | 1.0114                    | 1.0137                    |
| Meadowbank                 | 11      | NMBK        | 1.0155                    | 1.0203                    |
| Molong                     | 132     | NMOL        | 1.0193                    | 1.0155                    |
| Moree                      | 66      | NMRE        | 1.0272                    | 1.0147                    |
| Mt Piper                   | 132     | NMPP        | 0.9699                    | 0.9644                    |
| Mt Piper                   | 66      | NMP6        | 0.9699                    | 0.9644                    |
| Mudgee                     | 132     | NMDG        | 0.9966                    | 0.9937                    |
| Mullumbimby                | 132     | NMLB        | 0.9086                    | 0.9130                    |
| Munmorah                   | 33      | NMNP        | 0.9886                    | 0.9917                    |
| Munyang                    | 11      | NMY1        | 1.0480                    | 1.0157                    |
| Munyang                    | 33      | NMYG        | 1.0480                    | 1.0157                    |
| Murrumbateman              | 132     | NMBM        | 1.0060                    | 0.9965                    |
| Murrumburrah               | 66      | NMRU        | 1.0349                    | 1.0166                    |
| Muswellbrook               | 132     | NMRK        | 0.9597                    | 0.9557                    |
| Nambucca Heads             | 132     | NNAM        | 0.9644                    | 0.9604                    |
| Narrabri                   | 66      | NNB2        | 1.0224                    | 1.0123                    |
| Newcastle                  | 132     | NNEW        | 0.9932                    | 0.9947                    |
| North of Broken Bay VTN    |         | NEV2        | 0.9935                    | 0.9982                    |
| Orange                     | 132     | NRG1        | 1.0212                    | 1.0189                    |
| Orange                     | 66      | NRGE        | 1.0220                    | 1.0202                    |
| Ourimbah                   | 33      | NORB        | 1.0072                    | 1.0036                    |
| Ourimbah                   | 132     | NOR1        | 0.9982                    | 1.0014                    |
| Ourimbah                   | 66      | NOR6        | 0.9980                    | 1.0014                    |
| Panorama                   | 66      | NPMA        | 1.0146                    | 1.0118                    |
| Parkes                     | 132     | NPKS        | 1.0422                    | 1.0366                    |
| Parkes                     | 66      | NPK6        | 1.0430                    | 1.0376                    |
| Peakhurst                  | 132     | NPH1        | 1.0070                    | 1.0066                    |
| Peakhurst                  | 33      | NPHT        | 1.0121                    | 1.0110                    |
| Pt Macquarie               | 33      | NPMQ        | 1.0230                    | 1.0148                    |



| Location                        | Voltage | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|---------------------------------|---------|-------------|---------------------------|---------------------------|
| Pyrmont                         | 132     | NPT1        | 1.0088                    | 1.0083                    |
| Pyrmont                         | 33      | NPT3        | 1.0095                    | 1.0090                    |
| Raleigh                         | 132     | NRAL        | 0.9566                    | 0.9494                    |
| Regentville                     | 132     | NRGV        | 0.9981                    | 0.9978                    |
| Rozelle                         | 132     | NRZH        | 1.0122                    | 1.0139                    |
| Rozelle                         | 33      | NRZL        | 1.0130                    | 1.0158                    |
| Snowy Adit                      | 132     | NSAD        | 1.0307                    | 1.0020                    |
| Somersby                        | 11      | NSMB        | 1.0044                    | 1.0081                    |
| South of Broken Bay VTN         |         | NEV3        | 1.0078                    | 1.0094                    |
| St Peters                       | 11      | NSPT        | 1.0130                    | 1.0135                    |
| Stroud                          | 132     | NSRD        | 1.0373                    | 1.0333                    |
| Sydney East                     | 132     | NSE2        | 1.0088                    | 1.0095                    |
| Sydney North (Ausgrid)          | 132     | NSN1        | 1.0029                    | 1.0043                    |
| Sydney North (Endeavour Energy) | 132     | NSN2        | 1.0029                    | 1.0043                    |
| Sydney South                    | 132     | NSYS        | 1.0052                    | 1.0043                    |
| Sydney West (Ausgrid)           | 132     | NSW1        | 1.0021                    | 1.0040                    |
| Sydney West (Endeavour Energy)  | 132     | NSW2        | 1.0021                    | 1.0040                    |
| Tamworth                        | 66      | NTA2        | 0.9454                    | 0.9452                    |
| Taree (Essential Energy)        | 132     | NTR2        | 1.0513                    | 1.0478                    |
| Tenterfield                     | 132     | NTTF        | 0.9535                    | 0.9528                    |
| Terranora                       | 110     | NTNR        | 0.9756                    | 0.9825                    |
| Tomago                          | 33      | NTMJ        | 0.9961                    | 0.9976                    |
| Tomago                          | 330     | NTMG        | 0.9914                    | 0.9926                    |
| Tomago (Ausgrid)                | 132     | NTME        | 0.9959                    | 0.9949                    |
| Tomago (Essential Energy)       | 132     | NTMC        | 0.9959                    | 0.9949                    |
| Tuggerah                        | 132     | NTG3        | 0.9947                    | 0.9972                    |
| Tumut                           | 66      | NTU2        | 1.0339                    | 1.0393                    |
| Vales Pt.                       | 132     | NVP1        | 0.9848                    | 0.9881                    |
| Vineyard                        | 132     | NVYD        | 0.9989                    | 0.9994                    |
| Wagga                           | 66      | NWG2        | 1.0459                    | 1.0140                    |
| Wagga North                     | 66      | NWG6        | 1.0485                    | 1.0136                    |
| Wagga North                     | 132     | NWGN        | 1.0472                    | 1.0136                    |
| Wallerawang (Endeavour Energy)  | 132     | NWW9        | 0.9696                    | 0.9638                    |
| Wallerawang (Essential Energy)  | 132     | NWW8        | 0.9696                    | 0.9638                    |
| Wellington                      | 132     | NWL8        | 0.9812                    | 0.9781                    |
| West Gosford                    | 11      | NGWF        | 1.0059                    | 1.0088                    |
| West Sawtell                    | 132     | NWST        | 0.9505                    | 0.9476                    |
| Wyong                           | 11      | NWYG        | 0.9974                    | 1.0017                    |
| Yanco                           | 33      | NYA3        | 1.0685                    | 1.0335                    |
| Yass                            | 66      | NYS6        | 1.0072                    | 0.9975                    |
| Yass                            | 132     | NYS1        | 0.9750                    | 0.9726                    |



# New South Wales Generators

| Location                                                            | Voltage | Dispatchable<br>Unit ID<br>(DUID) | Connection<br>Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|---------------------------------------------------------------------|---------|-----------------------------------|------------------------|-------------|---------------------------|---------------------------|
| Bayswater PS Load                                                   | 330     |                                   | NBAYL                  | NBAY        | 0.9545                    | 0.9515                    |
| Bayswater PS Unit 1                                                 | 330     | BW01                              | NBAY1                  | NBAY        | 0.9545                    | 0.9515                    |
| Bayswater PS Unit 2                                                 | 330     | BW02                              | NBAY2                  | NBAY        | 0.9545                    | 0.9515                    |
| Bayswater PS Unit 3                                                 | 500     | BW03                              | NBAY3                  | NBYW        | 0.9558                    | 0.9530                    |
| Bayswater PS Unit 4                                                 | 500     | BW04                              | NBAY4                  | NBYW        | 0.9558                    | 0.9530                    |
| Blowering                                                           | 132     | BLOWERNG                          | NBLW8                  | NBLW        | 1.0130                    | 1.0112                    |
| Blowering                                                           | 132     | BLOWERNG                          | NBLW8                  | NBLW        | 1.0130                    | 1.0112                    |
| Blowering Ancillary Services                                        | 132     |                                   | NBLW1                  | NBLW        | 1.0130                    | 1.0112                    |
| Broken Hill GT 1                                                    | 22      | GB01                              | NBKG1                  | NBKG        | 1.1426                    | 1.1027                    |
| Burrinjuck                                                          | 132     | BURRIN                            | NBUK                   | NBUK        | 1.0107                    | 1.0116                    |
| Capital Wind Farm                                                   | 330     | CAPTL_WF                          | NCWf1R                 | NCWF        | 1.0012                    | 0.9920                    |
| Colongra PS Unit 1                                                  | 330     | CG1                               | NCLG1D                 | NCLG        | 0.9811                    | 0.9863                    |
| Colongra PS Unit 2                                                  | 330     | CG2                               | NCLG2D                 | NCLG        | 0.9811                    | 0.9863                    |
| Colongra PS Unit 3                                                  | 330     | CG3                               | NCLG3D                 | NCLG        | 0.9811                    | 0.9863                    |
| Colongra PS Unit 4                                                  | 330     | CG4                               | NCLG4D                 | NCLG        | 0.9811                    | 0.9863                    |
| Cullerin Range Wind Farm                                            | 132     | CULLRGWF                          | NYS11C                 | NYS1        | 0.9750                    | 0.9726                    |
| Eraring 330 PS Unit 1                                               | 330     | ER01                              | NEPS1                  | NEP3        | 0.9857                    | 0.9865                    |
| Eraring 330 PS Unit 2                                               | 330     | ER02                              | NEPS2                  | NEP3        | 0.9857                    | 0.9865                    |
| Eraring 500 PS Unit 3                                               | 500     | ER03                              | NEPS3                  | NEPS        | 0.9875                    | 0.9882                    |
| Eraring 500 PS Unit 4                                               | 500     | ER04                              | NEPS4                  | NEPS        | 0.9875                    | 0.9882                    |
| Eraring PS Load                                                     | 500     | ERNL1                             | NEPSL                  | NEPS        | 0.9875                    | 0.9882                    |
| Gunning Wind Farm                                                   | 132     | GUNNING1                          | NYS12A                 | NYS1        | 0.9750                    | 0.9726                    |
| Guthega                                                             | 132     | GUTH-1                            | NGUT                   | NGUT        | 0.9716                    | 0.9399                    |
| Guthega                                                             | 132     | GUTHEGA                           | NGUT8                  | NGUT        | 0.9716                    | 0.9399                    |
| Guthega Ancillary Services 2                                        | 132     | GUTH-2                            | NGUT2                  | NGUT        | 0.9716                    | 0.9399                    |
| Hume (NSW Share)                                                    | 132     | HUMENSW                           | NHUM                   | NHUM        | 1.0583                    | 0.9967                    |
| Kangaroo Valley – Bendeela<br>(Shoalhaven) Generation <sup>11</sup> | 330     | SHGEN                             | NSHL                   | NSHL        | 1.0134                    | 0.9671                    |
| Kangaroo Valley (Shoalhaven)<br>Pumps <sup>11</sup>                 | 330     | SHPUMP                            | NSHP1                  | NSHL        | 1.0134                    | 1.0041                    |
| Liddell 330 PS Load                                                 | 330     | LIDDNL1                           | NLDPL                  | NLDP        | 0.9541                    | 0.9518                    |
| Liddell 330 PS Unit 1                                               | 330     | LD01                              | NLDP1                  | NLDP        | 0.9541                    | 0.9518                    |
| Liddell 330 PS Unit 2                                               | 330     | LD02                              | NLDP2                  | NLDP        | 0.9541                    | 0.9518                    |
| Liddell 330 PS Unit 3                                               | 330     | LD03                              | NLDP3                  | NLDP        | 0.9541                    | 0.9518                    |
| Liddell 330 PS Unit 4                                               | 330     | LD04                              | NLDP4                  | NLDP        | 0.9541                    | 0.9518                    |
| Lower Tumut Generation <sup>11</sup>                                | 330     | TUMUT3                            | NLTS8                  | NLTS        | 1.0092                    | 0.9322                    |
| Lower Tumut Pumps <sup>11</sup>                                     | 330     | SNOWYP                            | NLTS3                  | NLTS        | 1.0092                    | 1.0043                    |
| Lower Tumut Pipeline Auxiliary                                      | 66      | TUMT3NL3                          | NTU2L3                 | NTU2        | 1.0339                    | 1.0393                    |
| Lower Tumut T2 Auxiliary                                            | 66      | TUMT3NL1                          | NTU2L1                 | NTU2        | 1.0339                    | 1.0393                    |
| Lower Tumut T4 Auxiliary                                            | 66      | TUMT3NL2                          | NTU2L2                 | NTU2        | 1.0339                    | 1.0393                    |
| Mt Piper PS Load                                                    | 330     | MPNL1                             | NMPPL                  | NMTP        | 0.9703                    | 0.9650                    |
| Mt Piper PS Unit 1                                                  | 330     | MP1                               | NMTP1                  | NMTP        | 0.9703                    | 0.9650                    |
| Mt Piper PS Unit 2                                                  | 330     | MP2                               | NMTP2                  | NMTP        | 0.9703                    | 0.9650                    |
| Munmorah 330 Load                                                   | 330     | MMNL1                             | NMNPL                  | NMN1        | 0.9864                    | 0.9892                    |

<sup>&</sup>lt;sup>11</sup> Refer to section 4.2.3 for further information. Note that for the purposes of settlement, energy with respect to the pumps is recorded against the generation connection point, with the pump MLF applying where the net of generation and pump energy in the trading interval is negative.



| Location                  | Voltage | Dispatchable<br>Unit ID<br>(DUID) | Connection<br>Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|---------------------------|---------|-----------------------------------|------------------------|-------------|---------------------------|---------------------------|
| Munmorah Unit 3           | 330     | MM3                               | NMNP3                  | NMN1        | 0.9864                    | 0.9892                    |
| Munmorah Unit 4           | 330     | MM4                               | NMNP4                  | NMN1        | 0.9864                    | 0.9892                    |
| Tomago 1                  | 330     |                                   | NTMG1                  | NTMG        | 0.9914                    | 0.9926                    |
| Tomago 2                  | 330     |                                   | NTMG2                  | NTMG        | 0.9914                    | 0.9926                    |
| Tomago 3                  | 330     |                                   | NTMG3                  | NTMG        | 0.9914                    | 0.9926                    |
| Upper Tumut               | 330     |                                   | NUTS                   | NUTS        | 0.9768                    | 0.9709                    |
| Upper Tumut               | 330     | UPPTUMUT                          | NUTS8                  | NUTS        | 0.9768                    | 0.9709                    |
| Uranquinty PS Unit 11     | 132     | URANQ11                           | NURQ1U                 | NURQ        | 0.9406                    | 0.9652                    |
| Uranquinty PS Unit 12     | 132     | URANQ12                           | NURQ2U                 | NURQ        | 0.9406                    | 0.9652                    |
| Uranquinty PS Unit 13     | 132     | URANQ13                           | NURQ3U                 | NURQ        | 0.9406                    | 0.9652                    |
| Uranquinty PS Unit 14     | 132     | URANQ14                           | NURQ4U                 | NURQ        | 0.9406                    | 0.9652                    |
| Vales Point 330 PS Load   | 330     | VPNL1                             | NVPPL                  | NVPP        | 0.9854                    | 0.9876                    |
| Vales Point 330 PS Unit 5 | 330     | VP5                               | NVPP5                  | NVPP        | 0.9854                    | 0.9876                    |
| Vales Point 330 PS Unit 6 | 330     | VP6                               | NVPP6                  | NVPP        | 0.9854                    | 0.9876                    |
| Wallerawang 330 PS Load   | 330     | WWNL1                             | NWWPL                  | NWWP        | 0.9718                    | 0.9663                    |
| Wallerawang 330 Unit 7    | 330     | WW7                               | NWW27                  | NWWP        | 0.9718                    | 0.9663                    |
| Wallerawang 330 Unit 8    | 330     | WW8                               | NWW28                  | NWWP        | 0.9718                    | 0.9663                    |
| Woodlawn Wind Farm        | 330     | WOODLWN1                          | NCWF2W                 | NCWF        | 1.0012                    | 0.9920                    |



# New South Wales Embedded Generators

| Location                       | Voltage | Dispatchable<br>Unit ID (DUID) | Connection<br>Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|--------------------------------|---------|--------------------------------|------------------------|-------------|---------------------------|---------------------------|
| Awaba Renewable Energy         |         |                                |                        |             |                           |                           |
| Facility                       | 132     | AWABAREF                       | NNEW2                  | NNEW        | 0.9932                    | 0.9947                    |
| Bankstown Sport Club           | 132     | BANKSPT1                       | NSYS3R                 | NSYS        | 1.0052                    | 1.0043                    |
| Broadwater PS                  | 66      | BWTR1                          | NLS21B                 | NLS2        | 0.9397                    | 0.9430                    |
| Brown Mountain                 | 66      | BROWNMT                        | NCMA1                  | NCMA        | 1.0280                    | 1.0146                    |
| Campbelltown WSLC              | 66      | WESTCBT1                       | NING1C                 | NING        | 1.0001                    | 0.9992                    |
| Condong PS                     | 66      | CONDONG1                       | NTNR1C                 | NTNR        | 0.9756                    | 0.9825                    |
| EarthPower Biomass Plant       | 132     | PMATTAEP                       | NSW22                  | NSW1        | 1.0021                    | 1.0040                    |
| Eastern Creek                  | 132     | EASTCRK                        | NSW21                  | NSW2        | 1.0021                    | 1.0040                    |
| Eraring 330 BS UN (GT)         | 330     | ERGT01                         | NEP35B                 | NEP3        | 0.9857                    | 0.9865                    |
| Glenn Innes (Pindari PS)       | 66      | PINDARI                        | NGLN1                  | NGLN        | 0.9553                    | 0.9545                    |
| Glennies Creek PS              | 132     | GLENNCRK                       | NMRK3T                 | NMRK        | 0.9597                    | 0.9557                    |
| Grange Avenue                  | 11      | GRANGEAV                       | NVYD1                  | NVYD        | 0.9989                    | 0.9994                    |
| HEZ Power Station              | 33      | HEZ                            | NKU31H                 | NKU3        | 1.0043                    | 1.0066                    |
| Jindabyne Generator            | 132     | JNDABNE1                       | NCMA2                  | NCMA        | 1.0280                    | 1.0146                    |
| Jounama PS                     | 66      | JOUNAMA1                       | NTU21J                 | NTU2        | 1.0339                    | 1.0393                    |
| Keepit                         | 66      | KEEPIT                         | NKPT                   | NKPT        | 0.9906                    | 0.9830                    |
| Liddell 33 – Hunter Valley GTs | 33      | HVGTS                          | NLD31                  | NLD3        | 0.9591                    | 0.9568                    |
| Liverpool 132 (Jacks Gully)    | 132     | JACKSGUL                       | NLP11                  | NLP1        | 1.0020                    | 1.0014                    |
| Lucas Heights Stage 2 Power    |         |                                |                        |             |                           |                           |
| Station                        | 132     | LUCAS2S2                       | NSYS1                  | NSYS        | 1.0052                    | 1.0043                    |
| Nine Willoughby                | 132     | NINEWIL1                       | NSE21R                 | NSE2        | 1.0088                    | 1.0095                    |
| Redbank PS Unit 1              | 132     | REDBANK1                       | NMRK1                  | NRED        | 0.9571                    | 0.9535                    |
| Sithe                          | 132     | SITHE01                        | NSYW1                  | NSW2        | 1.0021                    | 1.0040                    |
| St George Leagues Club         | 33      | STGEORG1                       | NPHT1E                 | NPHT        | 1.0121                    | 1.0110                    |
| Tallawarra PS                  | 132     | TALWA1                         | NDT13T                 | NTWA        | 0.9946                    | 0.9962                    |
| Teralba Power Station          | 132     | TERALBA                        | NNEW1                  | NNEW        | 0.9932                    | 0.9947                    |
| West Nowra                     | 132     | AGLNOW1                        | NDT12                  | NDT1        | 1.0008                    | 0.9972                    |
| Wests Illawara Leagues Club    | 132     | WESTILL1                       | NDT14E                 | NDT1        | 1.0008                    | 0.9972                    |
| Woodlawn Bioreactor            | 132     | WDLNGN01                       | NMR21W                 | NMR2        | 0.9916                    | 0.9867                    |
| Wyangala A PS                  | 66      | WYANGALA                       | NCW81A                 | NCW8        | 1.0336                    | 1.0241                    |
| Wyangala B PS                  | 66      | WYANGALB                       | NCW82B                 | NCW8        | 1.0336                    | 1.0241                    |



# Australian Capital Territory (regional reference node is Sydney West 330)

# Australian Capital Territory Loads

| Location                      | Voltage | TNI<br>code | 2010/11 Loss<br>Factor | 2011/12 Loss<br>Factor |
|-------------------------------|---------|-------------|------------------------|------------------------|
| Canberra                      | 132     | ACA1        | 1.0099                 | 1.0003                 |
| Queanbeyan (ACTEW)            | 66      | AQB1        | 1.0273                 | 1.0184                 |
| Queanbeyan (Essential Energy) | 66      | AQB2        | 1.0273                 | 1.0184                 |



# Victoria (regional reference node is Thomastown 66)

Victoria Loads

| Location                                     | Voltage | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|----------------------------------------------|---------|-------------|---------------------------|---------------------------|
| Altona                                       | 66      | VATS        | 1.0016                    | 1.0081                    |
| Ballarat                                     | 66      | VBAT        | 1.0339                    | 1.0306                    |
| Bendigo                                      | 22      | VBE2        | 1.0780                    | 1.0695                    |
| Bendigo                                      | 66      | VBE6        | 1.0793                    | 1.0706                    |
| BHP Western Port                             | 220     | VJLA        | 0.9889                    | 0.9895                    |
| Brooklyn (Jemena)                            | 22      | VBL2        | 1.0040                    | 1.0069                    |
| Brooklyn (Jemena)                            | 66      | VBL6        | 1.0052                    | 1.0074                    |
| Brooklyn (POWERCOR)                          | 22      | VBL3        | 1.0040                    | 1.0069                    |
| Brooklyn (POWERCOR)                          | 66      | VBL7        | 1.0052                    | 1.0074                    |
| Brunswick (CITIPOWER)                        | 22      | VBT2        | 0.9999                    | 0.9991                    |
| Brunswick (Jemena)                           | 22      | VBTS        | 0.9999                    | 0.9991                    |
| Cranbourne (SPI Electricity)                 | 66      | VCBT        | 0.9884                    | 0.9895                    |
| Cranbourne (UE)                              | 66      | VCB5        | 0.9884                    | 0.9895                    |
| East Rowville (SPI Electricity)              | 66      | VER2        | 0.9923                    | 0.9917                    |
| East Rowville (UE)                           | 66      | VERT        | 0.9923                    | 0.9917                    |
| Fishermens Bend (CITIPOWER)                  | 66      | VFBT        | 1.0023                    | 1.0036                    |
| Fishermens Bend (POWERCOR)                   | 66      | VFB2        | 1.0023                    | 1.0036                    |
| Fosterville                                  | 220     | VFVT        | 1.0725                    | 1.0655                    |
| Geelong                                      | 66      | VGT6        | 1.0071                    | 1.0087                    |
| Glenrowan                                    | 66      | VGNT        | 1.0462                    | 1.0456                    |
| Heatherton                                   | 66      | VHTS        | 0.9933                    | 0.9970                    |
| Heywood                                      | 22      | VHY2        | 0.9715                    | 1.0106                    |
| Horsham                                      | 66      | VHOT        | 1.0988                    | 1.0756                    |
| Keilor (Jemena)                              | 66      | VKT2        | 1.0010                    | 1.0026                    |
| Keilor (POWERCOR)                            | 66      | VKTS        | 1.0010                    | 1.0026                    |
| Kerang                                       | 22      | VKG2        | 1.1165                    | 1.0946                    |
| Kerang                                       | 66      | VKG6        | 1.1171                    | 1.0957                    |
| Khancoban                                    | 330     | NKHN        | 1.0359                    | 1.0240                    |
| Loy Yang Power Station Switchyard (Basslink) | 500     | VTBL        | 0.9729                    | 0.9753                    |
| Loy Yang Substation                          | 66      | VLY6        | 0.9715                    | 0.9696                    |
| Malvern                                      | 22      | VMT2        | 1.0002                    | 1.0041                    |
| Malvern                                      | 66      | VMT6        | 0.9985                    | 1.0022                    |
| Morwell TS                                   | 66      | VMWT        | 0.9719                    | 0.9703                    |
| Mt Beauty                                    | 66      | VMBT        | 1.0285                    | 1.0309                    |
| Portland                                     | 500     | VAPD        | 1.0064                    | 1.0121                    |
| Pt Henry                                     | 220     | VPTH        | 1.0114                    | 1.0121                    |
| Red Cliffs                                   | 22      | VRC2        | 1.1546                    | 1.1119                    |
| Red Cliffs                                   | 66      | VRC6        | 1.1494                    | 1.1069                    |
| Red Cliffs (CE)                              | 66      | VRCA        | 1.1494                    | 1.1069                    |
| Richmond                                     | 22      | VRT2        | 0.9977                    | 0.9971                    |
| Richmond (CITIPOWER)                         | 66      | VRT7        | 1.0017                    | 1.0012                    |
| Richmond (UE)                                | 66      | VRT6        | 1.0017                    | 1.0012                    |
| Ringwood (SPI Electricity)                   | 22      | VRW3        | 0.9938                    | 0.9980                    |
| Ringwood (SPI Electricity)                   | 66      | VRW7        | 0.9946                    | 0.9984                    |
| Ringwood (UE)                                | 22      | VRW2        | 0.9938                    | 0.9980                    |
| Ringwood (UE)                                | 66      | VRW6        | 0.9946                    | 0.9984                    |



| Location                      | Voltage | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|-------------------------------|---------|-------------|---------------------------|---------------------------|
| Shepparton                    | 66      | VSHT        | 1.0600                    | 1.0585                    |
| South Morang                  | 66      | VSM6        | 0.9919                    | 0.9978                    |
| South Morang                  | 66      | VSMT        | 0.9919                    | 0.9978                    |
| Springvale (CITIPOWER)        | 66      | VSVT        | 0.9919                    | 0.9957                    |
| Springvale (UE)               | 66      | VSV2        | 0.9919                    | 0.9957                    |
| Templestowe (CITIPOWER)       | 66      | VTS2        | 1.0045                    | 0.9985                    |
| Templestowe (Jemena)          | 66      | VTST        | 1.0045                    | 0.9985                    |
| Templestowe (SPI Electricity) | 66      | VTS3        | 1.0045                    | 0.9985                    |
| Templestowe (UE)              | 66      | VTS4        | 1.0045                    | 0.9985                    |
| Terang                        | 66      | VTGT        | 1.0421                    | 1.0356                    |
| Thomastown (Jemena)           | 66      | VTTS        | 1.0000                    | 1.0000                    |
| Thomastown (SPI Electricity)  | 66      | VTT2        | 1.0000                    | 1.0000                    |
| Tyabb                         | 66      | VTBT        | 0.9918                    | 0.9925                    |
| West Melbourne                | 22      | VWM2        | 1.0004                    | 1.0015                    |
| West Melbourne (CITIPOWER)    | 66      | VWM7        | 1.0031                    | 1.0042                    |
| West Melbourne (Jemena)       | 66      | VWM6        | 1.0031                    | 1.0042                    |
| Wodonga                       | 22      | VWO2        | 1.0360                    | 1.0334                    |
| Wodonga                       | 66      | VWO6        | 1.0354                    | 1.0328                    |
| Yallourn                      | 11      | VYP1        | 0.9487                    | 0.9531                    |



# Victoria Generators

| Location                                        | Voltage | Dispatchable<br>Unit ID<br>(DUID) | Connection<br>Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|-------------------------------------------------|---------|-----------------------------------|------------------------|-------------|---------------------------|---------------------------|
| Yallourn W PS 220 Load                          | 220     | YWNL1                             | VYP2L                  | VYP2        | 0.9471                    | 0.9512                    |
| Yallourn W PS 220 Unit 2                        | 220     | YWPS2                             | VYP22                  | VYP2        | 0.9471                    | 0.9512                    |
| Yallourn W PS 220 Unit 3                        | 220     | YWPS3                             | VYP23                  | VYP2        | 0.9471                    | 0.9512                    |
| Yallourn W PS 220 Unit 4                        | 220     | YWPS4                             | VYP24                  | VYP2        | 0.9471                    | 0.9512                    |
| Yallourn W PS 220 Unit 1                        | 220     | YWPS1                             | VYP21                  | VYP3        | 0.9582                    | 0.9561                    |
| Morwell PS G4                                   | 11      | MOR2                              | VMWP4                  | VMWP        | 0.9632                    | 0.9607                    |
| Morwell PS G5                                   | 11      | MOR3                              | VMWP5                  | VMWP        | 0.9632                    | 0.9607                    |
| Jeeralang A PS Unit 1                           | 220     | JLA01                             | VJLGA1                 | VJLG        | 0.9659                    | 0.9617                    |
| Jeeralang A PS Unit 2                           | 220     | JLA02                             | VJLGA2                 | VJLG        | 0.9659                    | 0.9617                    |
| Jeeralang A PS Unit 3                           | 220     | JLA03                             | VJLGA3                 | VJLG        | 0.9659                    | 0.9617                    |
| Jeeralang A PS Unit 4                           | 220     | JLA04                             | VJLGA4                 | VJLG        | 0.9659                    | 0.9617                    |
| Jeeralang B PS Unit 1                           | 220     | JLB01                             | VJLGB1                 | VJLG        | 0.9659                    | 0.9617                    |
| Jeeralang B PS Unit 2                           | 220     | JLB02                             | VJLGB2                 | VJLG        | 0.9659                    | 0.9617                    |
| Jeeralang B PS Unit 3                           | 220     | JLB03                             | VJLGB3                 | VJLG        | 0.9659                    | 0.9617                    |
| Murray                                          | 330     | MURRAY                            | NMUR8                  | NMUR        | 0.9800                    | 0.9628                    |
| Hazelwood PS Load                               | 220     | HWPNL1                            | VHWPL                  | VHWP        | 0.9691                    | 0.9670                    |
| Hazelwood PS Unit 1                             | 220     | HWPS1                             | VHWP1                  | VHWP        | 0.9691                    | 0.9670                    |
| Hazelwood PS Unit 2                             | 220     | HWPS2                             | VHWP2                  | VHWP        | 0.9691                    | 0.9670                    |
| Hazelwood PS Unit 3                             | 220     | HWPS3                             | VHWP3                  | VHWP        | 0.9691                    | 0.9670                    |
| Hazelwood PS Unit 4                             | 220     | HWPS4                             | VHWP4                  | VHWP        | 0.9691                    | 0.9670                    |
| Hazelwood PS Unit 5                             | 220     | HWPS5                             | VHWP5                  | VHWP        | 0.9691                    | 0.9670                    |
| Hazelwood PS Unit 6                             | 220     | HWPS6                             | VHWP6                  | VHWP        | 0.9691                    | 0.9670                    |
| Hazelwood PS Unit 7                             | 220     | HWPS7                             | VHWP7                  | VHWP        | 0.9691                    | 0.9670                    |
| Hazelwood PS Unit 8                             | 220     | HWPS8                             | VHWP8                  | VHWP        | 0.9691                    | 0.9670                    |
| Loy Yang A PS Load                              | 500     | LYNL1                             | VLYPL                  | VLYP        | 0.9715                    | 0.9696                    |
| Loy Yang A PS Unit 1                            | 500     | LYA1                              | VLYP1                  | VLYP        | 0.9715                    | 0.9696                    |
| Loy Yang A PS Unit 2                            | 500     | LYA2                              | VLYP2                  | VLYP        | 0.9715                    | 0.9696                    |
| Loy Yang A PS Unit 3                            | 500     | LYA3                              | VLYP3                  | VLYP        | 0.9715                    | 0.9696                    |
| Loy Yang A PS Unit 4                            | 500     | LYA4                              | VLYP4                  | VLYP        | 0.9715                    | 0.9696                    |
| Loy Yang B PS Unit 1                            | 500     | LOYYB1                            | VLYP5                  | VLYP        | 0.9715                    | 0.9696                    |
| Loy Yang B PS Unit 2                            | 500     | LOYYB2                            | VLYP6                  | VLYP        | 0.9715                    | 0.9696                    |
| Valley Power PS                                 | 500     | VPGS                              | VLYP7                  | VLYP        | 0.9715                    | 0.9696                    |
| Morwell PS Load                                 | 11      | MORNL1                            | VMWTL                  | VMWT        | 0.9719                    | 0.9703                    |
| Morwell PS G1, 2 and 3                          | 11      | MOR1                              | VMWT1                  | VMWG        | 0.9716                    | 0.9703                    |
| Basslink (Loy Yang Power<br>Station Switchyard) | 500     | BLNKVIC                           | VLYP13                 | VTBL        | 0.9729                    | 0.9753                    |
| McKay Creek / Bogong PS                         | 220     | MCKAY1                            | VMKP1                  | VT14        | 0.9912                    | 0.9866                    |
| Eildon PS Unit 1                                | 220     | EILDON1                           | VEPS1                  | VEPS        | 0.9964                    | 0.9950                    |
| Eildon PS Unit 2                                | 220     | EILDON2                           | VEPS2                  | VEPS        | 0.9964                    | 0.9950                    |
| Newport PS                                      | 220     | NPS                               | VNPS                   | VNPS        | 0.9939                    | 0.9950                    |
| Mortlake Unit 1                                 | 500     | MORTLK11                          | VM0P10                 | VM0P        | 0.9977                    | 0.9975                    |
| Mortlake Unit 2                                 | 500     | MORTLK12                          | VM0P2O                 | VM0P        | 0.9977                    | 0.9975                    |
| Laverton                                        | 220     | LAVNORTH                          | VAT21                  | VAT2        | 0.9961                    | 0.9979                    |
| West Kiewa PS Unit 1                            | 220     | WKIEWA1                           | VWKP1                  | VWKP        | 1.0073                    | 1.0103                    |
| West Kiewa PS Unit 2                            | 220     | WKIEWA2                           | VWKP2                  | VWKP        | 1.0073                    | 1.0103                    |
| Portland 500 DU 1                               | 500     | APD01                             | VAPD1                  | VAPD        | 1.0073                    | 1.0100                    |



| Location                  | Voltage | Dispatchable<br>Unit ID<br>(DUID) | Connection<br>Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|---------------------------|---------|-----------------------------------|------------------------|-------------|---------------------------|---------------------------|
| Portland 500 DU 2         | 500     | APD02                             | VAPD2                  | VAPD        | 1.0064                    | 1.0121                    |
| Pt Henry DU 1             | 220     | PTH01                             | VPTH1                  | VPTH        | 1.0114                    | 1.0121                    |
| Pt Henry DU 2             | 220     | PTH02                             | VPTH2                  | VPTH        | 1.0114                    | 1.0121                    |
| Pt Henry DU 3             | 220     | PTH03                             | VPTH3                  | VPTH        | 1.0114                    | 1.0121                    |
| VICSMLT                   | 220     | VICSMLT                           | VAPS1                  | VAPS        | 1.0114                    | 1.0121                    |
| Banimboola                | 220     | BAPS                              | VDPS2                  | VDPS        | 1.0271                    | 1.0151                    |
| Dartmouth PS              | 220     | DARTM1                            | VDPS                   | VDPS        | 1.0271                    | 1.0151                    |
| Waubra Wind Farm          | 220     | WAUBRAWF                          | VWBT1A                 | VWBT        | 1.0353                    | 1.0226                    |
| Jindabyne pump at Guthega | 132     | SNOWYGJP                          | NGJP                   | NGJP        | 1.1098                    | 1.1322                    |



## Victoria Embedded Generators

| Location                              | Voltage   | Dispatchable<br>Unit ID (DUID) | Connection<br>Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|---------------------------------------|-----------|--------------------------------|------------------------|-------------|---------------------------|---------------------------|
| Anglesea PS                           | 220       | APS                            | VAPS                   | VAPS        | 1.0114                    | 1.0121                    |
| Bairnsdale Unit 1                     | 66        | BDL01                          | VMWT2                  | VBDL        | 0.9683                    | 0.968                     |
| Bairnsdale Unit 2                     | 66        | BDL02                          | VMWT3                  | VBDL        | 0.9683                    | 0.968                     |
| Ballarat Health Services              | 66        | BBASEHOS                       | VBAT1H                 | VBAT        | 1.0339                    | 1.0306                    |
| Brooklyn Landfill                     | 22        | BROOKLYN                       | VBL61                  | VBL6        | 1.0052                    | 1.0074                    |
| Codrington Wind Farm                  | 66        | CODRNGTON                      | VTGT2C                 | VTGT        | 1.0421                    | 1.0356                    |
| Hallam Mini Hydro                     | 66        | HLMSEW01                       | VER21H                 | VER2        | 0.9923                    | 0.9917                    |
| Hepburn Community Wind<br>Farm        | <u>66</u> | HEPWIND1                       | <u>VBAT2L</u>          | <u>VBAT</u> |                           | <u>1.0306</u>             |
| Hume (Victorian Share)                | 66        | HUMEV                          | VHUM                   | VHUM        | 1.0127                    | 1.0082                    |
| Longford                              | 66        | LONGFORD                       | VMWT6                  | VMWT        | 0.9719                    | 0.9703                    |
| Mornington Landfill Site<br>Generator | 66        | MORNW                          | VTBT1                  | VTBT        | 0.9918                    | 0.9925                    |
| Shepparton Waste Gas                  | 66        | SHEP1                          | VSHT2S                 | VSHT        | 1.06                      | 1.0585                    |
| Somerton Power Station                | 66        | AGLSOM                         | VTTS1                  | VSOM        | 0.9943                    | 0.9939                    |
| Sunshine Energy Park                  | 66        | SUNSHINE                       | VKTS1                  | VKTS        | 1.001                     | 1.0026                    |
| Symex Embedded Gen                    | 66        | SYMEX1                         | VFBT1E                 | VFBT        | 1.0023                    | 1.0036                    |
| Tatura                                | 22        | TATURA01                       | VSHT1                  | VSHT        | 1.06                      | 1.0585                    |
| Toora Wind Farm                       | 66        | TOORAWF                        | VMWT5                  | VMWT        | 0.9719                    | 0.9703                    |
| Wonthaggi Wind Farm                   | 22        | WONWP                          | VMWT7                  | VMWT        | 0.9719                    | 0.9703                    |
| Wyndham Landfill Site<br>Generator    | 66        | WYNDW                          | VATS1                  | VATS        | 1.0016                    | 1.0081                    |
| Yambuk Wind Farm                      | 66        | YAMBUKWF                       | VTGT1                  | VTGT        | 1.0421                    | 1.0356                    |



## South Australia (regional reference node is Torrens Island PS 66)

## South Australia Loads

| Location                            | Voltage | TNI code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|-------------------------------------|---------|----------|---------------------------|---------------------------|
| Angas Creek                         | 33      | SANC     | 1.0144                    | 1.0124                    |
| Ardrossan West                      | 33      | SARW     | 0.9588                    | 0.9481                    |
| Baroota                             | 33      | SBAR     | 0.9857                    | 0.9821                    |
| Berri                               | 66      | SBER     | 1.0334                    | 1.0913                    |
| Berri (POWERCOR)                    | 66      | SBE1     | 1.0334                    | 1.0913                    |
| Blanche                             | 33      | SBLA     | 0.9870                    | 1.0322                    |
| Blanche (POWERCOR)                  | 33      | SBL1     | 0.9870                    | 1.0322                    |
| Brinkworth                          | 33      | SBRK     | 0.9841                    | 0.9808                    |
| Bungama Industrial                  | 33      | SBUN     | 0.9810                    | 0.9770                    |
| Bungama Rural                       | 33      | SBUR     | 0.9809                    | 0.9770                    |
| Clare North                         | 33      | SCLN     | 0.9909                    | 0.9837                    |
| Dalrymple                           | 33      | SDAL     | 0.9285                    | 0.9155                    |
| Davenport                           | 275     | SDAV     | 0.9691                    | 0.9669                    |
| Davenport                           | 33      | SDAW     | 1.0080                    | 0.9648                    |
| Dorrien                             | 33      | SDRN     | 1.0183                    | 1.0050                    |
| East Terrace                        | 66      | SETC     | 1.0076                    | 1.0049                    |
| Happy Valley                        | 66      | SHVA     | 1.0114                    | 1.0076                    |
| Hummocks                            | 33      | SHUM     | 0.9758                    | 0.9662                    |
| Kadina East                         | 33      | SKAD     | 0.9794                    | 0.9672                    |
| Kanmantoo                           | 11      | SKAN     | 1.0212                    | 1.0153                    |
| Keith                               | 33      | SKET     | 1.0095                    | 1.0257                    |
| Kilburn                             | 66      | SKLB     | 1.0023                    | 1.0032                    |
| Kincraig                            | 33      | SKNC     | 1.0021                    | 1.0253                    |
| Lefevre                             | 66      | SLFE     | 0.9997                    | 1.0002                    |
| Leigh Creek                         | 33      | SLCC     | 1.0099                    | 1.0022                    |
| Leigh Creek South                   | 33      | SLCS     | 1.0070                    | 1.0003                    |
| Magill                              | 66      | SMAG     | 1.0068                    | 1.0091                    |
| Mannum                              | 33      | SMAN     | 1.0202                    | 1.0176                    |
| Mannum - Adelaide Pipeline 1        | 3.3     | SMA1     | 1.0235                    | 1.0223                    |
| Mannum - Adelaide Pipeline 2        | 3.3     | SMA2     | 1.0227                    | 1.0212                    |
| Mannum - Adelaide Pipeline 3        | 3.3     | SMA3     | 1.0209                    | 1.0195                    |
| Middleback                          | 132     | SMBK     | 0.9789                    | 0.9830                    |
| Middleback                          | 33      | SMDL     | 0.9787                    | 0.9820                    |
| Millbrook                           | 33      | SMLB     | 1.0069                    | 1.0060                    |
| Mobilong                            | 33      | SMBL     | 1.0204                    | 1.0171                    |
| Morgan - Whyalla Pipeline 1         | 3.3     | SMW1     | 1.0164                    | 1.0386                    |
| Morgan - Whyalla Pipeline 2         | 3.3     | SMW2     | 1.0062                    | 1.0180                    |
| Morgan - Whyalla Pipeline 3         | 3.3     | SMW3     | 0.9967                    | 0.9991                    |
| Morgan - Whyalla Pipeline 4         | 3.3     | SMW4     | 0.9944                    | 0.9911                    |
| Morphett Vale East                  | 66      | SMVE     | 1.0090                    | 1.0115                    |
| Mt Barker                           | 66      | SMBA     | 1.0211                    | 1.0094                    |
| Mt Gambier                          | 33      | SMGA     | 0.9905                    | 1.0299                    |
| Mt Gunson                           | 33      | SMGU     | 0.9752                    | 0.9827                    |
| Murray Bridge - Hahndorf Pipeline 1 | 11      | SMH1     | 1.0203                    | 1.0197                    |
| Murray Bridge - Hahndorf Pipeline 2 | 11      | SMH2     | 1.0216                    | 1.0209                    |



| Location                            | Voltage | TNI code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|-------------------------------------|---------|----------|---------------------------|---------------------------|
| Murray Bridge - Hahndorf Pipeline 3 | 11      | SMH3     | 1.0215                    | 1.0185                    |
| Neuroodla                           | 33      | SNEU     | 0.9885                    | 0.9862                    |
| New Osborne                         | 66      | SNBN     | 0.9999                    | 1.0004                    |
| North West Bend                     | 66      | SNWB     | 1.0154                    | 1.0387                    |
| Northfield                          | 66      | SNFD     | 1.0037                    | 1.0050                    |
| Para                                | 66      | SPAR     | 1.0036                    | 1.0037                    |
| Parafield Gardens West              | 66      | SPGW     | 1.0018                    | 1.0028                    |
| Pimba                               | 132     | SPMB     | 0.9758                    | 0.9846                    |
| Playford                            | 33      | SPAA     | 0.9697                    | 0.9644                    |
| Port Lincoln                        | 33      | SPLN     | 0.9723                    | 0.9824                    |
| Port Pirie                          | 33      | SPPR     | 0.9866                    | 0.9824                    |
| Roseworthy                          | 11      | SRSW     | 1.0140                    | 1.0073                    |
| Snuggery Industrial                 | 33      | SSNN     | 0.9806                    | 1.0231                    |
| Snuggery Rural                      | 33      | SSNR     | 0.9803                    | 1.0212                    |
| South Australian VTN                |         | SJP1     | 1.0003                    | 1.0030                    |
| Stony Point                         | 11      | SSPN     | 0.9774                    | 0.9735                    |
| Tailem Bend                         | 33      | STAL     | 1.0098                    | 1.0165                    |
| Templers                            | 33      | STEM     | 1.0138                    | 1.0028                    |
| Torrens Island                      | 66      | STSY     | 1.0000                    | 1.0000                    |
| Waterloo                            | 33      | SWAT     | 0.9993                    | 0.9892                    |
| Whyalla                             | 33      | SWHY     | 0.9790                    | 0.9770                    |
| Whyalla Terminal BHP                | 33      | SBHP     | 0.9767                    | 0.9770                    |
| Woomera                             | 132     | SWMA     | 0.9742                    | 0.9845                    |
| Wudina                              | 66      | SWUD     | 0.9852                    | 0.9973                    |
| Yadnarie                            | 66      | SYAD     | 0.9716                    | 0.9828                    |



## South Australia Generators

Г

| Location                                                    | Voltage | Dispatchable Unit<br>ID (DUID) | Connection<br>Point ID |      | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|-------------------------------------------------------------|---------|--------------------------------|------------------------|------|---------------------------|---------------------------|
| Cathedral Rocks Wind Farm                                   | 132     | CATHROCK                       | SCRK                   | SCRK | 0.8827                    | 0.8982                    |
| Clements Gap Wind Farm                                      | 132     | CLEMGPWF                       | SCGW1P                 | SCGW | 0.9644                    | 0.9590                    |
| Dry Creek PS Unit 1                                         | 66      | DRYCGT1                        | SDCA1                  | SDPS | 1.0072                    | 1.0067                    |
| Dry Creek PS Unit 2                                         | 66      | DRYCGT2                        | SDCA2                  | SDPS | 1.0072                    | 1.0067                    |
| Dry Creek PS Unit 3                                         | 66      | DRYCGT3                        | SDCA3                  | SDPS | 1.0072                    | 1.0067                    |
| Hallet Brown Hill Wind Farm                                 | 275     | HALLWF1                        | SHPS2W                 | SHPS | 0.9746                    | 0.9722                    |
| Hallet Hill Wind Farm (Hallet 2                             | 075     |                                |                        |      | 0.0700                    | 0.0750                    |
| Wind Farm)                                                  | 275     | HALLWF2                        | SMOK1H                 | SMOK | 0.9763                    | 0.9758                    |
| Hallet PS                                                   | 275     | AGLHAL                         | SHPS1                  | SHPS | 0.9746                    | 0.9722                    |
| Ladbroke Grove PS Unit 1                                    | 132     | LADBROK1                       | SPEW1                  | SPEW | 0.9741                    | 0.9960                    |
| Ladbroke Grove PS Unit 2                                    | 132     | LADBROK2                       | SPEW2                  | SPEW | 0.9741                    | 0.9960                    |
| Lake Bonney Wind Farm                                       | 33      | LKBONNY1                       | SMAY1                  | SMAY | 0.9388                    | 0.9868                    |
| Lake Bonney Wind Farm<br>Stage 2                            | 33      | LKBONNY2                       | SMAY2                  | SMAY | 0.9388                    | 0.9868                    |
| Lake Bonney Wind Farm<br>Stage 3<br>Leigh Creek Northern PS | 33      | LKBONNY3                       | SMAY3W                 | SMAY | 0.9388                    | 0.9868                    |
| Load 2                                                      | 33      | NPSNL2                         | SLCCL                  | SLCC | 1.0099                    | 1.0022                    |
| Mintaro PS                                                  | 132     | MINTARO                        | SMPS                   | SMPS | 0.9819                    | 0.9731                    |
| Mt Millar Wind Farm                                         | 33      | MTMILLAR                       | SMTM1                  | SMTM | 0.8973                    | 0.9425                    |
| North Brown Hill Wind Farm                                  | 275     | NBHWF1                         | SBEL1A                 | SBEL | 0.9659                    | 0.9763                    |
| Northern PS Unit 1                                          | 275     | NPS1                           | SNPA1                  | SNPS | 0.9655                    | 0.9601                    |
| Northern PS Unit 2                                          | 275     | NPS2                           | SNPA2                  | SNPS | 0.9655                    | 0.9601                    |
| O.C.P.L. Unit 1                                             | 66      | OSB-AG                         | SNBN1                  | SOCP | 0.9998                    | 1.0003                    |
| Pelican Point PS                                            | 275     | PPCCGT                         | SPPT                   | SPPT | 0.9988                    | 0.9995                    |
| Playford Northern PS Load 1                                 | 33      | NPSNL1                         | SPAAL                  | SPAA | 0.9697                    | 0.9644                    |
| Playford PS                                                 | 275     | PLAYB-AG                       | SPSD1                  | SPPS | 0.9677                    | 0.9644                    |
| Port Lincoln 3                                              | 33      | POR03                          | SPL31P                 | SPL3 | 0.8633                    | 0.8933                    |
| Port Lincoln PS                                             | 132     | POR01                          | SPLN1                  | SPTL | 0.8654                    | 0.8856                    |
| Quarantine PS Unit 1                                        | 66      | QPS1                           | SQPS1                  | SQPS | 1.0000                    | 1.0000                    |
| Quarantine PS Unit 2                                        | 66      | QPS2                           | SQPS2                  | SQPS | 1.0000                    | 1.0000                    |
| Quarantine PS Unit 3                                        | 66      | QPS3                           | SQPS3                  | SQPS | 1.0000                    | 1.0000                    |
| Quarantine PS Unit 4                                        | 66      | QPS4                           | SQPS4                  | SQPS | 1.0000                    | 1.0000                    |
| Quarantine PS Unit 5                                        | 66      | QPS5                           | SQPS5Q                 | SQPS | 1.0000                    | 1.0000                    |
| Snowtown Wind Farm                                          | 33      | SNOWTWN1                       | SNWF1T                 | SNWF | 0.9283                    | 0.9163                    |
| Snuggery PS Unit 1                                          | 132     | SNUG1                          | SSGA1                  | SSPS | 0.9497                    | 0.9432                    |
| Snuggery PS Unit 2                                          | 132     | SNUG2                          | SSGA2                  | SSPS | 0.9497                    | 0.9432                    |
| Snuggery PS Unit 3                                          | 132     | SNUG3                          | SSGA3                  | SSPS | 0.9497                    | 0.9432                    |
| Torrens Island PS A Unit 1                                  | 275     | TORRA1                         | STSA1                  | STPS | 0.9998                    | 1.0007                    |
| Torrens Island PS A Unit 2                                  | 275     | TORRA2                         | STSA2                  | STPS | 0.9998                    | 1.0007                    |
| Torrens Island PS A Unit 3                                  | 275     | TORRA3                         | STSA3                  | STPS | 0.9998                    | 1.0007                    |
| Torrens Island PS A Unit 4                                  | 275     | TORRA4                         | STSA4                  | STPS | 0.9998                    | 1.0007                    |
| Torrens Island PS B Unit 1                                  | 275     | TORRB1                         | STSB1                  | STPS | 0.9998                    | 1.0007                    |
| Torrens Island PS B Unit 2                                  | 275     | TORRB2                         | STSB2                  | STPS | 0.9998                    | 1.0007                    |
| Torrens Island PS B Unit 3                                  | 275     | TORRB3                         | STSB3                  | STPS | 0.9998                    | 1.0007                    |
| Torrens Island PS B Unit 4                                  | 275     | TORRB4                         | STSB4                  | STPS | 0.9998                    | 1.0007                    |
| Torrens Island PS Load                                      | 275     | TORNL1                         | STSYL                  | STPS | 0.9998                    | 1.0007                    |



| Location               | Voltage | Dispatchable Unit<br>ID (DUID) | Connection<br>Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|------------------------|---------|--------------------------------|------------------------|-------------|---------------------------|---------------------------|
| Waterloo Wind Farm     | 132     | WATERLWF                       | SWLE1R                 | SWLE        | 0.9776                    | 0.9741                    |
| Wattle Point Wind Farm | 132     | WPWF                           | SSYP1                  | SSYP        | 0.8436                    | 0.8254                    |



## South Australia Embedded Generators

| Location                        | Voltage | Dispatchable<br>Unit ID (DUID) | Connection<br>Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss<br>Factor |
|---------------------------------|---------|--------------------------------|------------------------|-------------|---------------------------|---------------------------|
| Amcor Glass UN 1                | 11      | AMCORGR                        | SRSW1E                 | SRSW        | 1.0140                    | 1.0073                    |
| Angaston Power Station          | 33      | ANGAS1                         | SDRN1                  | SANG        | 0.9505                    | 0.9169                    |
| Angaston Power Station          | 33      | ANGAS2                         | SDRN2                  | SANG        | 0.9505                    | 0.9169                    |
| Lonsdale PS                     | 66      | LONSDALE                       | SMVE1                  | SMVE        | 1.0090                    | 1.0115                    |
| Pt Stanvac Unit 1               | 66      | STANV1                         | SMVE3P                 | SMVE        | 1.0090                    | 1.0115                    |
| Pt Stanvac Unit 2               | 66      | STANV2                         | SMVE4P                 | SMVE        | 1.0090                    | 1.0115                    |
| Starfish Hill Wind Farm         | 66      | STARHLWF                       | SMVE2                  | SMVE        | 1.0090                    | 1.0115                    |
| Tatiara Meat Co                 | 33      | TATIARA1                       | SKET1E                 | SKET        | 1.0095                    | 1.0257                    |
| Terminal Storage Mini-<br>Hydro | 11      | TERMSTOR                       | SNFD1                  | SNFD        | 1.0037                    | 1.0050                    |



## Tasmania (regional reference node is George Town 220 kV)

## Tasmania Loads

| Location                | Voltage | TNI code | 2010/11 Loss Factor | 2011/12 Loss Factor |
|-------------------------|---------|----------|---------------------|---------------------|
| Arthurs Lake            | 6.6     | TAL2     | 1.0181              | 1.0103              |
| Avoca                   | 22      | TAV2     | 1.0387              | 1.0457              |
| Boyer SWA               | 6.6     | TBYA     | 1.0457              | 1.0545              |
| Boyer SWB               | 6.6     | TBYB     | 1.0502              | 1.0561              |
| Bridgewater             | 11      | TBW2     | 1.0527              | 1.0540              |
| Burnie                  | 22      | TBU3     | 0.9947              | 0.9952              |
| Chapel St.              | 11      | TCS3     | 1.0531              | 1.0487              |
| Comalco                 | 220     | TCO1     | 1.0009              | 1.0005              |
| Creek Road              | 33      | TCR2     | 1.0545              | 1.0527              |
| Derby                   | 22      | TDE2     | 1.0184              | 1.0243              |
| Derwent Bridge          | 22      | TDB2     | 0.9716              | 0.9854              |
| Devonport               | 22      | TDP2     | 0.9979              | 0.9968              |
| Electrona               | 11      | TEL2     | 1.0673              | 1.0705              |
| Emu Bay                 | 11      | TEB2     | 0.9950              | 0.9960              |
| Fisher (Rowallan)       | 220     | TFI1     | 0.9795              | 0.9735              |
| George Town             | 22      | TGT3     | 1.0038              | 1.0027              |
| George Town (Basslink)  | 220     | TGT1     | 1.0000              | 1.0000              |
| Gordon                  | 22      | TGO2     | 1.0342              | 1.0366              |
| Greater Hobart Area VTN |         | TVN1     | 1.0543              | 1.0526              |
| Greater Tamar Area VTN  |         | TVN2     | 1.0153              | 1.0151              |
| Hadspen                 | 22      | THA3     | 1.0130              | 1.0144              |
| Hampshire               | 110     | THM2     | 0.9918              | 0.9939              |
| Huon River              | 11      | THR2     | 1.0654              | 1.0688              |
| Kermandie               | 11      | TKE2     | 1.0688              | 1.0713              |
| Kingston                | 11      | TKI2     | 1.0637              | 1.0605              |
| Knights Road            | 11      | TKR2     | 1.0675              | 1.0699              |
| Lindisfarne             | 33      | TLF2     | 1.0552              | 1.0549              |
| Meadowbank              | 22      | TMB2     | 1.0210              | 1.0317              |
| Mowbray                 | 22      | TMY2     | 1.0156              | 1.0170              |
| New Norfolk             | 22      | TNN2     | 1.0432              | 1.0501              |
| Newton                  | 22      | TNT2     | 0.9902              | 0.9895              |
| Newton                  | 11      | TNT3     | 0.9828              | 0.9684              |
| North Hobart            | 11      | TNH2     | 1.0535              | 1.0517              |
| Norwood                 | 22      | TNW2     | 1.0179              | 1.0190              |
| Palmerston              | 22      | TPM3     | 1.0088              | 1.0126              |
| Port Latta              | 22      | TPL2     | 0.9767              | 0.9778              |
| Que                     | 22      | TQU2     | 0.9782              | 0.9860              |
| Queenstown              | 22      | TQT2     | 0.9791              | 0.9749              |
| Queenstown              | 11      | TQT3     | 0.9848              | 0.9840              |
| Railton                 | 22      | TRA2     | 0.9945              | 0.9961              |
| Risdon                  | 33      | TRI4     | 1.0536              | 1.0533              |
| Risdon                  | 11      | TRI3     | 1.0510              | 1.0540              |
| Rokeby                  | 11      | TRK2     | 1.0566              | 1.0554              |
| Rosebery                | 44      | TRB2     | 0.9807              | 0.9797              |
| Savage River            | 22      | TSR2     | 1.0072              | 1.0116              |



| Location    | Voltage | TNI code | 2010/11 Loss Factor | 2011/12 Loss Factor |
|-------------|---------|----------|---------------------|---------------------|
| Scottsdale  | 22      | TSD2     | 1.0181              | 1.0203              |
| Smithton    | 22      | TST2     | 0.9629              | 0.9626              |
| Sorell      | 22      | TSO2     | 1.0674              | 1.0582              |
| St. Marys   | 22      | TSM2     | 1.0571              | 1.0677              |
| Starwood    | 110     | TSW1     | 1.0010              | 1.0005              |
| Temco       | 110     | TTE1     | 1.0037              | 1.0032              |
| Trevallyn   | 22      | TTR2     | 1.0146              | 1.0163              |
| Triabunna   | 22      | TTB2     | 1.0694              | 1.0780              |
| Tungatinah  | 22      | TTU2     | 0.9736              | 0.9847              |
| Ulverstone  | 22      | TUL2     | 0.9976              | 0.9984              |
| Waddamana   | 22      | TWA2     | 0.9906              | 0.9999              |
| Wayatinah   | 11      | TWY2     | 1.0239              | 1.0254              |
| Wesley Vale | 11      | TWV2     | 0.9988              | 0.9933              |
| Wilmot      | 220     | TSH1     | 0.9830              | 0.9768              |



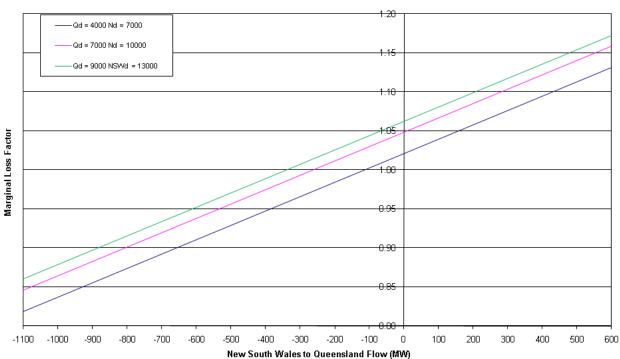
## Tasmania Generators

| Location                        | Voltage | Dispatchable<br>Unit ID (DUID) | Connection<br>Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12<br>Loss Factor |
|---------------------------------|---------|--------------------------------|------------------------|-------------|---------------------------|------------------------|
| Basslink (George                |         |                                |                        |             |                           |                        |
| Town)                           | 220     | BLNKTAS                        | TGT11                  | TGT1        | 1.0000                    | 1.0000                 |
| Bastyan                         | 220     | BASTYAN                        | TFA11                  | TFA1        | 0.9618                    | 0.9516                 |
| Bell Bay No.3                   | 110     | BBTHREE1                       | TBB11                  | TBB1        | 0.9996                    | 0.9979                 |
| Bell Bay No.3                   | 110     | BBTHREE2                       | TBB12                  | TBB1        | 0.9996                    | 0.9979                 |
| Bell Bay No.3                   | 110     | BBTHREE3                       | TBB13                  | TBB1        | 0.9996                    | 0.9979                 |
| Bluff Point and<br>Studland Bay |         |                                |                        |             |                           |                        |
| Wind Farms                      | 110     | WOOLNTH1                       | TST11                  | TST1        | 0.9175                    | 0.9072                 |
| Butlers Gorge                   | 110     | BUTLERSG                       | TBG11                  | TBG1        | 0.9622                    | 0.9770                 |
| Catagunya                       | 220     | LI_WY_CA                       | TLI11                  | TLI1        | 1.0240                    | 1.0203                 |
| Cethana                         | 220     | CETHANA                        | TCE11                  | TCE1        | 0.9767                    | 0.9698                 |
| Cluny                           | 220     | CLUNY                          | TCL11                  | TCL1        | 1.0283                    | 1.0231                 |
| Devils gate                     | 110     | DEVILS_G                       | TDG11                  | TDG1        | 0.9804                    | 0.9735                 |
| Fisher                          | 220     | FISHER                         | TFI11                  | TFI1        | 0.9795                    | 0.9735                 |
| Gordon                          | 220     | GORDON                         | TGO11                  | TGO1        | 1.0070                    | 1.0030                 |
| John Butters                    | 220     | JBUTTERS                       | TJB11                  | TJB1        | 0.9561                    | 0.9448                 |
| Lake Echo                       | 110     | LK_ECHO                        | TLE11                  | TLE1        | 0.9933                    | 0.9744                 |
| Lemonthyme                      | 220     | LEM_WIL                        | TSH11                  | TSH1        | 0.9830                    | 0.9768                 |
| Liapootah                       | 220     | LI_WY_CA                       | TLI11                  | TLI1        | 1.0240                    | 1.0203                 |
| Mackintosh                      | 110     | MACKNTSH                       | TMA11                  | TMA1        | 0.9519                    | 0.9410                 |
| Meadowbank                      | 110     | MEADOWBK                       | TMB11                  | TMB1        | 1.0189                    | 1.0138                 |
| Paloona                         | 110     | PALOONA                        | TPA11                  | TPA1        | 0.9835                    | 0.9752                 |
| Poatina                         | 220     | POAT220                        | TPM11                  | TPM1        | 1.0040                    | 1.0071                 |
| Poatina                         | 110     | POAT110                        | TPM21                  | TPM2        | 0.9912                    | 0.9962                 |
| Reece No.1                      | 220     | REECE1                         | TRCA1                  | TRCA        | 0.9550                    | 0.9451                 |
| Reece No.2                      | 220     | REECE2                         | TRCB1                  | TRCB        | 0.9539                    | 0.9396                 |
| Repulse                         | 220     | REPULSE                        | TCL12                  | TCL1        | 1.0283                    | 1.0231                 |
| Rowallan                        | 220     | ROWALLAN                       | TFI12                  | TFI1        | 0.9795                    | 0.9735                 |
| Tamar Valley<br>CCGT            | 220     | TVCC201                        | TTV11A                 | TTV1        | 0.9993                    | 0.9988                 |
| Tamar Valley<br>OCGT            | 110     | TVPP104                        | TBB14A                 | TBB1        | 0.9996                    | 0.9979                 |
| Tarraleah                       | 110     | TARRALEA                       | TTA11                  | TTA1        | 0.9703                    | 0.9835                 |
| Trevallyn                       | 110     | TREVALLN                       | TTR11                  | TTR1        | 1.0097                    | 1.0096                 |
| Tribute                         | 220     | TRIBUTE                        | TTI11                  | TTI1        | 0.9564                    | 0.9391                 |
| Tungatinah                      | 110     | TUNGATIN                       | TTU11                  | TTU1        | 0.9617                    | 0.9672                 |
| Wayatinah                       | 220     | LI_WY_CA                       | TLI11                  | TLI1        | 1.0240                    | 1.0203                 |
| Wilmot                          | 22      | LEM WIL                        | TSH11                  | TSH1        | 0.9830                    | 0.9768                 |



## Tasmania Embedded Generators

| Location | Voltage | Dispatchable<br>Unit ID<br>(DUID) | Connection<br>Point ID | TNI<br>code | 2010/11<br>Loss<br>Factor | 2011/12 Loss<br>Factor |
|----------|---------|-----------------------------------|------------------------|-------------|---------------------------|------------------------|
| Remount  | 22      | REMOUNT                           | TMY21                  | TMY2        | 1.0156                    | 1.0170                 |




## 8 Appendix B: Inter-regional loss factors equations for 2011/12

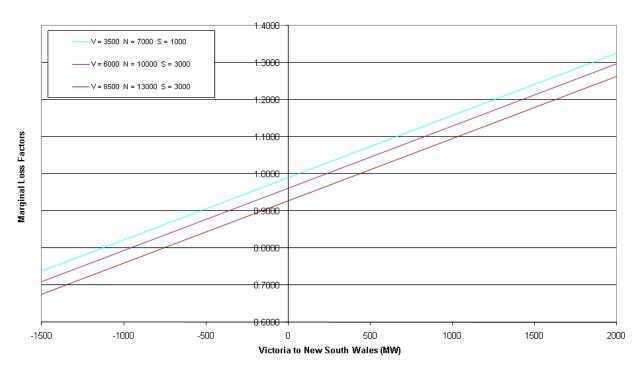
Loss factor equation (South Pine 275 referred to Sydney West 330) = 0.9964+ 1.8369E-04\*NQt -3.9581E-06\*Nd + 1.3024E-05\*Qd Loss factor equation (Sydney West 330 referred to Thomastown 66) = 1.0247+ 1.6789E-04\*VNt -1.9279E-05\*Vd + 1.1680E-05\*Nd -2.6149E-05\*Sd Loss factor equation (Torrens Island 66 referred to Thomastown 66) = 1.0104+ 2.8491E-04\*VSAt -8.8115E-06\*Vd + 2.5182E-05\*Sd where, Qd = Queensland demand Vd = Victorian demand Nd = New South Wales demand

- Sd = South Australian demand
- NQt = transfer from New South Wales to Queensland
- VNt = transfer from Victoria to New South Wales
- VSAt = transfer from Victoria to South Australia

The loss factor for the regulated Murraylink and Terranora interconnector is provided in Appendix D.



#### MLF(South Pine 275 referred to Sydney West 330)


Figure B1: South Pine 275 referred to Sydney West 330 marginal loss factor verses NSW to Qld flow

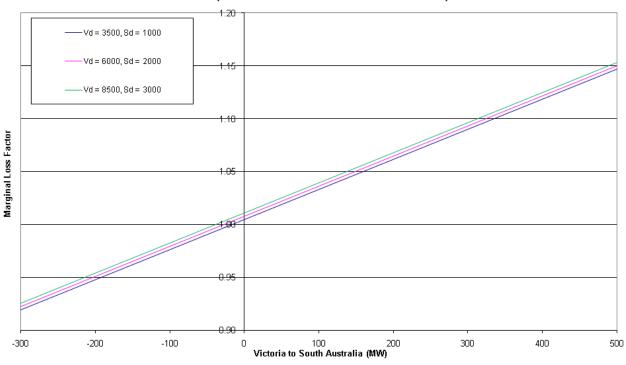


### **Coefficient statistics**

| Coefficient                                | Q <sub>d</sub> | N <sub>d</sub> | NQt        | CONSTANT   |
|--------------------------------------------|----------------|----------------|------------|------------|
| Coefficient value                          | 1.3024E-05     | -3.9581E-06    | 1.8369E-04 | 0.9964     |
| Standard error values for the coefficients | 2.3326E-07     | 1.6413E-07     | 5.0468E-07 | 9.6426E-04 |
| Coefficient of determination (R2)          | 0.9118         |                |            |            |
| Standard error of the y estimate           | 0.0179         |                |            |            |






#### MLF (Sydney West 330 referred toThomastown 66)

## Figure B2: Sydney West 330 referred to Thomastown 66 marginal loss factor versus Victoria to NSW flow

### **Coefficient statistics**

| Coefficient                                    | S <sub>d</sub> | N <sub>d</sub> | V <sub>d</sub> | VNt        | CONSTANT   |
|------------------------------------------------|----------------|----------------|----------------|------------|------------|
| Coefficient value                              | -2.6149E-05    | 1.1680E-05     | -1.9279E-05    | 1.6789E-04 | 1.0247     |
| Standard error values for the coefficients     | 1.3226E-06     | 2.9937E-07     | 5.8568E-07     | 6.0144E-07 | 1.9528E-03 |
| Coefficient of determination (R <sup>2</sup> ) | 0.8914         |                |                |            |            |
| Standard error of the y estimate               | 0.0311         |                |                |            |            |





## Figure B3: Torrens Island 66 referred to Thomastown 66 marginal loss factor versus Victoria to SA flow

#### **Coefficient statistics**

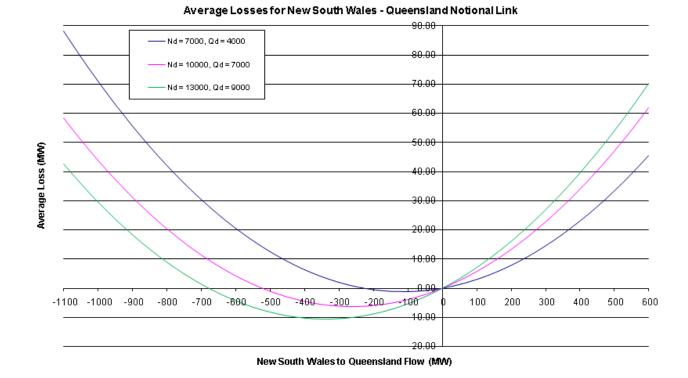
| Coefficient                                | S <sub>d</sub> | V <sub>d</sub> | VSAt       | CONSTANT   |
|--------------------------------------------|----------------|----------------|------------|------------|
| Coefficient value                          | 2.5182E-05     | -8.8115E-06    | 2.8491E-04 | 1.0104     |
| Standard error values for the coefficients | 7.1463E-07     | 2.6671E-07     | 9.6542E-07 | 8.7924E-04 |
| Coefficient of determination $(R^2)$       | 0.8579         |                |            |            |
| Standard error of the y estimate           | 0.0173         |                |            |            |



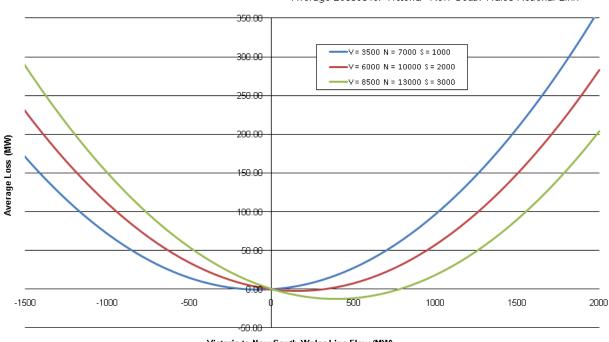
## 9 Appendix C: Inter-regional loss equations for 2011/12

The loss equation is derived by integrating the equation (Loss factor - 1) with respect to the interconnector flow, i.e.

Losses =  $\int (Loss factor - 1) dFlow$ 


Then, with the loss factor equations in Appendix B, we get the following inter-regional loss equations for each interconnector.

South Pine 275 referred to Sydney West 330 notional link average losses =  $(-0.0036-3.9581E-06*Nd + 1.3024E-05*Qd)*NQt + 9.1847E-05*NQt^2$ Sydney West 330 referred to Thomastown 66 notional link average losses =  $(0.0247-1.9279E-05*Vd + 1.1680E-05*Nd - 2.6149E-05*Sd)*VNt + 8.3943E-05*VNt^2$ Torrens Island 66 referred to Thomastown 66 notional link average losses =  $(0.0104-8.8115E-06*Vd+2.5182E-05*Sd)*VSAt + 1.4245E-04*VSAt^2$ where,


- Qd = Queensland demand
- Vd = Victorian demand
- Nd = New South Wales demand
- Sd = South Australia demand
- NQt = transfer from New South Wales to Queensland
- VNt = transfer from Victoria to New South Wales
- VSAt = transfer from Victoria to South Australia

The loss model for regulated Murraylink and Terranora interconnector is provided in Appendix D.





## Figure C1: NSW to Queensland notional link losses versus NSW to Queensland notional link flow



Average Losses for Victoria - New South Wales Notional Link

Victoria to New South Wales Line Flow (MW)

### Figure C2: Victoria to NSW notional link losses versus Victoria to NSW notional link flow



Average Losses for Victoria - SA Notional Link

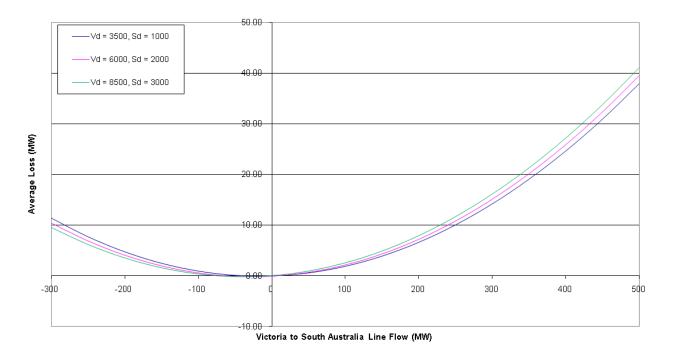
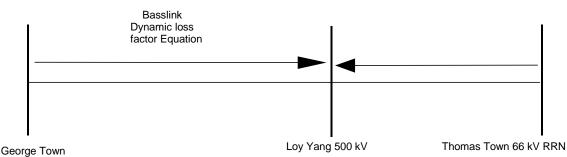



Figure C3: Victoria to SA notional link losses versus Victoria to SA notional link flow




# 10 Appendix D: Basslink, Terranora Interconnector and Murraylink loss factor models and loss equations for 2011/12

### Basslink

The loss factor model for Basslink is made up of the following portions:

- George Town 220 kV intra-regional loss factor referred to Tasmania RRN Georgetown 220 = 1.0000
- Receiving end dynamic loss factor referred to the sending end=  $0.99608 + 2.0786* 10^{-4} * P_{(receive)}$ , where  $P_{(receive)}$  is the Basslink flow measured at the receiving end.
- Basslink (Loy Yang Power Station Switchyard) intra-regional loss factor referred to Thomas Town 66 kV = 0. 9753.



220 kV RRN

The equation describing the losses between the George Town 220 kV and Loy Yang 500 kV connection points can be determined by integrating the (loss factor equation - 1), giving:

 $P_{(send)} = P_{(receive)} + [(-3.92 \times 10^{-3}) * P_{(receive)} + (1.0393 \times 10^{-4}) * P_{(receive)}^{2} + 4]$ 

where:

 $P_{(send)}$  – Power in MW measured at the sending end,

 $P_{(receive)}$  – Power in MW measured at the receiving end.

New model is limited from 40MW to 630MW. Model fails below 40MW however; this is within the  $\pm$ 50 MW no-go zone requirement for the Basslink operation.



### Murraylink (Regulated)

From 9 October 2003 Murraylink commenced operation as a regulated interconnector. To be compliant with Clause 3.6.1(a), the regulated Murraylink loss model needs to consist of a single dynamic MLF from the Victorian RRN to the South Australian RRN.

For the purposes of the AEMO market systems the measurement point of the regulated Murraylink interconnector is the 132 kV connection to the Monash converter. This effectively forms part of the boundary between the Victorian and South Australian regions.

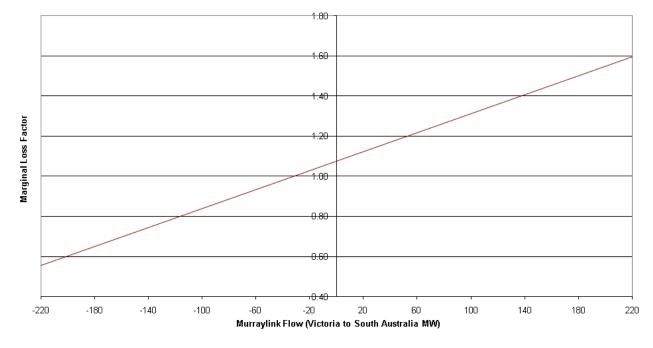
The losses between Red Cliffs 220 kV and Monash 132 kV connection points in relation to flow are as described previously by the following equation:

 $= (0.0039 * \text{Flow}_{t} + 2.8182 * 10^{-4} * \text{Flow}_{t}^{2})$ 

AEMO determined the following MLF model using regression analysis:

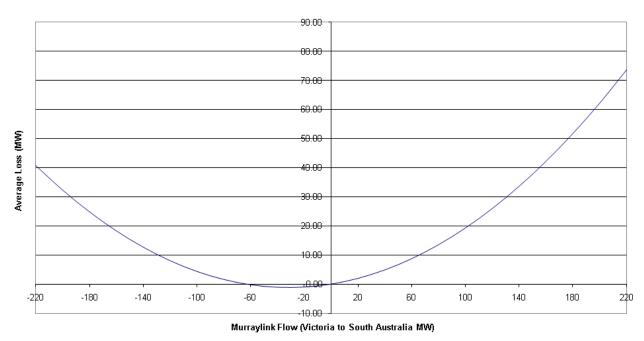
Murraylink MLF (Torrens Island 66 referred to Thomastown 66) =  $2.3649E-03*Flow_t + 1.0748$ 

AEMO found that the simple model consisting of a constant and a Murraylink flow coefficient was suitable because most of the variation of the loss factor is due to variations in the Murraylink flow and other potential explanatory variables did not significantly improve the model.


The regression statistics for this Murraylink loss factor model are presented in the following table.

| Coefficient                                    | <i>Flow</i> <sub>t</sub> | CONSTANT   |
|------------------------------------------------|--------------------------|------------|
| Coefficient Value                              | 2.3649E-03               | 1.0748     |
| Standard error values for the coefficient      | 3.3031E-06               | 2.3145E-04 |
| Coefficient of determination (R <sup>2</sup> ) | 0.9670                   |            |
| Standard error of the y estimate               | 0.0284                   |            |

The loss model for a regulated Murraylink interconnector can be determined by integrating (MLF-1), giving:


Murraylink loss = 0.0748\*Flowt + 1.1825E-03\*Flowt<sup>2</sup>





Murraylink MLF (Torrens Island 66 referred to Thomastown 66)

### Figure D1: Torrens Island 66 referred to Thomastown 66 marginal loss factor versus Murraylink flow (Victoria to SA)



Average Losses for Murraylink Interconnector (Torrens Island 66 referred to Thomastown 66)

## Figure D2: Murraylink notional link losses versus Murraylink flow (Victoria to SA)



### **Regulated Terranora Inerconnector (Previously Directlink)**

From 21 March 2006 Terranora interconnector commenced operation as a regulated interconnector. To be compliant with Clause 3.6.1(a), the regulated Terranora interconnector loss model needs to consist of a single dynamic MLF from the New South Wales RRN to the Queensland RRN.

For the purposes of the AEMO market systems the measurement point of the regulated Terranora interconnector is 10.8 km north from Terranora on the two 110 kV lines between Terranora and Mudgeeraba. This effectively forms part of the boundary between the New South Wales and Queensland regions.

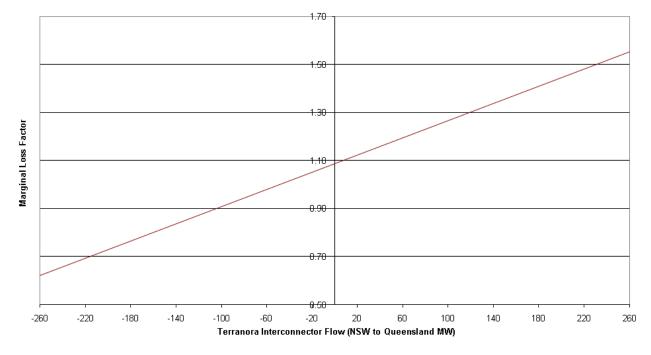
The losses between the Mullumbimby 132 kV and Terranora 110 kV connection points in relation to flow are as described previously by the following equation:

$$= (-0.0013 * \text{Flow}_{t} + 2.7372 * 10^{-4} * \text{Flow}_{t}^{2})$$

AEMO determined the following Terranora interconnector MLF model using regression analysis:

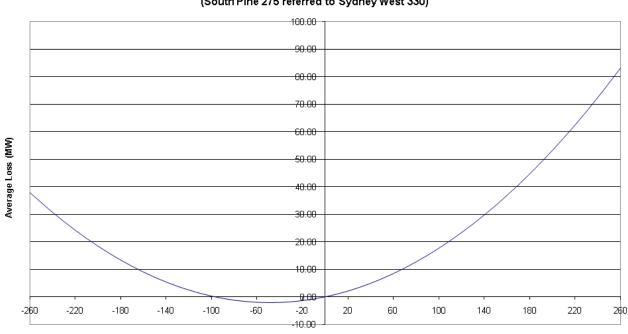
Terranora interconnector MLF (South Pine 275 referred to Sydney West 330) = 1.0872 + 1.7913E-03\*Flowt

AEMO found that the simple model consisting of a constant and a Terranora interconnector flow coefficient was suitable because most of the variation of the loss factor is due to variations in the Terranora interconnector flow and other potential explanatory variables did not significantly improve the model.


The regression statistics for this Terranora interconnector loss factor model are presented in the following table.

| Coefficient                                    | Flow <sub>t</sub> | CONSTANT   |
|------------------------------------------------|-------------------|------------|
| Coefficient value                              | 1.7913E-03        | 1.0872     |
| Standard error values for the coefficients     | 4.9222E-06        | 7.8917E-04 |
| Coefficient of determination (R <sup>2</sup> ) | 0.8832            |            |
| Standard error of the y estimate               | 0.0342            |            |

The loss model for a regulated Terranora interconnector can be determined by integrating (MLF-1), giving:


Terranora interconnector loss = 0. 0872\*Flowt + 8.9563E-04\*Flowt<sup>2</sup>





Terranora Interconnector MLF (South Pine 275 referred to Sydney West 330)

### Figure D3: South Pine 275 referred to Sydney West 330 marginal loss factor versus Terranora interconnector flow (NSW to Queensland)



Average Losses for Terranora Interconnector (South Pine 275 referred to Sydney West 330)

Terranora Interconnector Flow (NSW to Queensland MW)

### Figure D4: Terranora interconnector notional link losses versus flow (NSW to Queensland)



# 11 Appendix E: The Proportioning Inter-regional Losses to Regions for 2011/12

The AEMO dispatch engine (NEMDE) implements inter-regional loss factors by allocating the interregional losses defined by the equations in Appendix C to the two regions associated with the notional interconnector.

The factors used to proportion the inter-regional losses to the two regions are calculated by supplying an increment of load at one RRN from the second RRN. The incremental changes to the inter-regional losses in each region can be found from the changes to the interconnector flow and additional generation at the second RRN. The proportion of inter-regional losses in each region is then averaged over various system conditions to produce a single static factor. A detailed description of the process is defined in the AEMO document "Proportioning Inter-Regional Losses to Regions", which is available on the AEMO website.

The document "Proportioning Inter-Regional Losses to Regions" specifies the calculation of the proportioning of the inter-regional losses to regions. This document is available from the AEMO website at: http://www.aemo.com.au/electricityops/701.html.

The following table provides the factors that will be used to proportion the inter-regional losses to the associated regions for the 2011/12 financial year.

| Notional interconnector                                    | Proportioning factor | Applied to      |
|------------------------------------------------------------|----------------------|-----------------|
| Queensland – New South Wales (QNI)                         | 0.44                 | New South Wales |
| Queensland – New South Wales (Terranora<br>Interconnector) | 0.41                 | New South Wales |
| Victoria – New South Wales                                 | 0.66                 | New South Wales |
| Victoria – South Australia (Heywood)                       | 0.85                 | Victoria        |
| Victoria – South Australia (Murraylink)                    | 0.87                 | Victoria        |

### 12 Appendix F: Regions and Regional Reference Nodes

### Regional Reference Nodes

| Region          | Regional Reference Node                |
|-----------------|----------------------------------------|
| Queensland      | South Pine 275kV node                  |
| New South Wales | Sydney West 330kV node                 |
| Victoria        | Thomastown 66kV node                   |
| South Australia | Torrens Island Power Station 66kV node |
| Tasmania        | George Town 220 kV node                |

### Physical Location of Region Boundary Metering Points

The physical metering points defining the region boundaries are located at:

• Between the Queensland and New South Wales regions



- At Dumaresq Substation on the 8L and 8M Dumaresq to Bulli Creek 330kV lines<sup>12</sup>;
- 10.8km north of Terranora on the two 110kV lines between Terranora and Mudgeeraba (lines 757 & 758). Metering at Mudgeeraba adjusted for that point.
- Between the New South Wales and Victorian regions
  - At Wodonga Terminal Station (WOTS) on the 060 Wodonga to Jindera 330kV line;
  - At Red Cliffs Terminal Station (RCTS) on the Red Cliffs to Buronga 220kV line;
  - At Murray Switching Station on the MSS to UTSS 330kV lines;
  - At Murray Switching Station on the MSS to LTSS 330kV line;
  - At Guthega Switching Station on the Guthega to Jindabyne PS 132kV line;
  - At Guthega Switching Station on the Guthega to Geehi Dam Tee 132kV line.
- Between the Victorian and South Australian regions
  - At South East Switching Station (SESS) on the SESS to Heywood 275kV lines.
  - At Monash Switching Station (MSS) on the Berri (Murraylink) converter 132kV line.
- Between the Victorian and Tasmanian regions

Basslink is not a regulated interconnector, rather it is an MNSP with the following metering points allocated:

- At Loy Yang 500 kV Power Station.
- At George Town 220 kV Switching Station.

### 13 Appendix G: List of New and Modified Connection Points for 2011/12

| Name                          | Voltage<br>(kV) | Connection<br>Point ID | TNI  | Region |
|-------------------------------|-----------------|------------------------|------|--------|
| Gunning Wind Farm             | 132             | NYS12A                 | NYS1 | NSW    |
| Kurnell                       | 132             | NKN1                   | NKN1 | NSW    |
| Kurri                         | 11              | NKU1                   | NKU1 | NSW    |
| Ourimbah                      | 132             | NOR1                   | NOR1 | NSW    |
| Ourimbah                      | 66              | NOR6                   | NOR6 | NSW    |
| Tomago (Ausgrid)              | 132             | NTME                   | NTME | NSW    |
| Tomago (CE)                   | 132             | NTMC                   | NTMC | NSW    |
| Woodlawn Wind Farm            | 330             | NCWF2W                 | NCWF | NSW    |
| Blackstone                    | 110             | QBKS                   | QBKS | QLD    |
| Bowen North                   | 66              | QBNN                   | QBNN | QLD    |
| Pandolin                      | 132             | QPAN                   | QPAN | QLD    |
| Clare North                   | 33              | SCLN                   | SCLN | SA     |
| Lake Bonney Wind Farm Stage 3 | 33              | SMAY3W                 | SMAY | SA     |
| North Brown Hill Wind Farm    | 275             | SBEL1A                 | SBEL | SA     |
| Port Lincoln 3                | 33              | SPL31P                 | SPL3 | SA     |
| Waterloo Wind Farm            | 132             | SWLE1R                 | SWLE | SA     |
| Mortlake Unit 1               | 500             | VM0P1O                 | VM0P | VIC    |
| Mortlake Unit 2               | 500             | VM0P2O                 | VM0P | VIC    |

<sup>&</sup>lt;sup>12</sup> The metering at Dumaresq is internally scaled to produce an equivalent flow at the NSW/Queensland State borders.