

PROPORTIONING INTER-REGIONAL LOSSES TO REGIONS

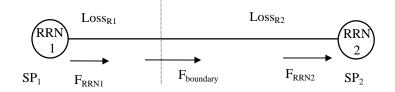
PREPARED BY:	Keng Loh
DOCUMENT NO:	Enter Document Number
VERSION NO:	Enter Version Number
EFFECTIVE DATE:	03/09/2009
ENTER STATUS:	Final

Australian Energy Market Operator Ud ABN 94 072 010 327

www.aemo.com.au info@aemo.com.au

Table of Contents

1.	Introduction	3
2.	Determining the Marginal Loss Factor Between Reference Node and Boundary	4
3.	Calculation of Loss Factors	5
4.	Calculation of Losses	6
5.	Victoria – NSW interconnector	7
Арре	ndix A:	12
Арре	ndix B:	14


1. Introduction

Notional interconnectors are used to provide a simple radial link representation of all the individual transmission lines that form the physical interconnection between adjacent regional reference nodes. This allows a simple, but effective, model to be used for processes such as dispatch and settlements in the National Electricity Market (NEM). From 1 July 2008, following the abolition of the Snowy region, there are five notional interconnectors:

- the South Pine 275 kV Regional Reference Node (RRN) in the Queensland region and Sydney West 330 kV RRN in the NSW region – (QNI & Terranora);
- the Thomastown 66 kV RRN in the Victorian region and Sydney West 330 kV RRN in the NSW region;
- the Torrens Island 66 kV RRN in the South Australian region and Thomastown 66 kV bus in the Victorian region (Heywood & Murray Link).

Integration of the inter-regional (MLF-1) equations is used to determine the losses on each notional interconnector. The following report considers how this inter-regional loss can be separated into the amount belonging to each of the two regions connected by the link.

This separation of losses is required to allow the inter-regional flow at each end of the link to be determined from the flow at the region boundary. By doing this the inter-regional settlement surplus can be determined.

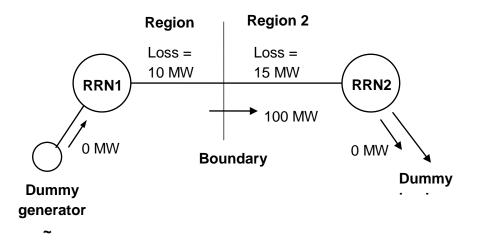
For the above simple model:

F _{boundary}	= Inter-regional flow at the region boundary		
Loss _{R1}	= Proportion of inter-regional loss located in Region 1		
Loss_{R2}	= Proportion of inter-regional loss located in Region 2		
F _{RRN1}	= Inter-regional flow at Regional Reference Node 1		
	= F _{boundary} + Loss _{R1}		
F _{RRN2}	= Inter-regional flow at Regional Reference Node 2		
	= F _{boundary} - Loss _{R2}		

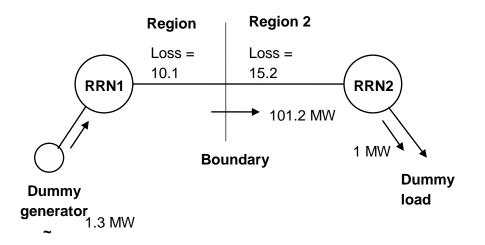
If SP_1 is the Spot Price in region 1 and SP_2 is the Spot Price in region 2 then the Interregional Settlement Surplus (IRSS) can be calculated from:

 $IRSS = F_{RRN2} * SP_2 - F_{RRN1} * SP_1$

2. Determining the Marginal Loss Factor Between Reference Node and Boundary


The inter-regional loss factor between Regional Reference Nodes (RRNs) can be determined by injecting 1 MW of load at the receiving end reference node, and recording the generation required to supply this load from the sending end reference node.

In the National Electricity Market this is performed for a wide range of system conditions, and regression analysis is used to produce an equation describing the variation of inter-regional loss factors with important system parameters. The average loss for a notional interconnector is determined by integrating its inter-regional loss factor equation with respect to notional link flow.


It is proposed that a similar approach be adopted to allow the average losses in each region traversed by the notional link to be determined. This will ensure consistency between the methods used to determine the total losses and individual region losses.

This approach is illustrated below:

1. Prior to 1 MW load injection

2. 1 MW load injection

3. Calculation of Loss Factors

• RRN2 loss factor relative to RRN1 :

Is equal to the generation required at RRN1 to supply an increase in load of exactly 1 MW at RRN2, ie.,

 $MLF_{21} = 1.30$

• RRN2 Loss factor relative to the region boundary :

This is obtained in the same way as above by moving the dummy generator to region boundary. The corresponding generation for 1 MW load injection at RRN2 is 1.2 MW. Thus,

 $MLF_{2B} = 1.20$

• Region Boundary loss factor relative to RRN1 :

can be obtained as above by determining the dummy generation at RRN1 corresponding to a 1 MW load injection at the boundary, or

 $MLF_{B1} = MLF_{21} / MLF_{2B}$ = 1.30 / 1.20= 1.083

In the NEM, several of the region boundaries are defined by more than one bus. In such cases, it is not possible to obtain the loss factors between the region boundaries and RRNs

by applying this approach directly. Rather, the loss factors for the each of the boundary buses are first calculated. They are then averaged to give a single loss factor at the region boundary.

In this example, the MLFs are calculated for a flow of 100 MW and the corresponding losses are as shown. It can be seen that when calculating the MLFs by injecting 1 MW at the receiving and end and calculating the additional generation at the sending end, it is not important that the value of losses be available. Thus the MLFs can be calculated simply for any flows.

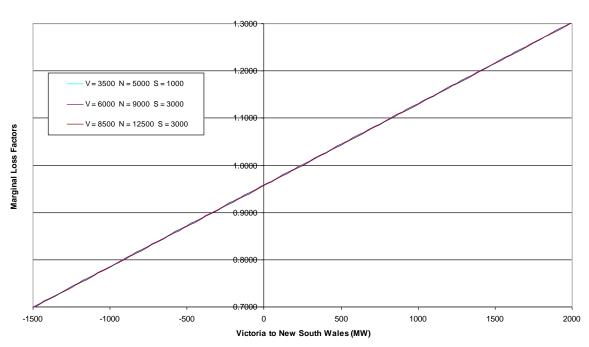
By performing a large number of loadflow studies covering a wide range of inter-regional flows at different levels of demand and following the process outlined above, equations describing the variation of region boundary loss factor against important system parameters can be determined. By integrating these equations the average inter-regional losses for each region traversed by the notional link can be determined.

4. Calculation of Losses

As the MLF is a measure of the additional losses for an increment of a MW of load at various levels of line flows, integrating the MLF equation with respect to line flow will give the losses as a function of line flow. Losses and MLFs increase with distance and impedance. However, additional line flow only increases losses if it flows in the same direction as the existing net flow and the resulting MLF is greater than one. If the flow is against the current net flow, total losses on the system will be reduced and the MLF will then be less than one.

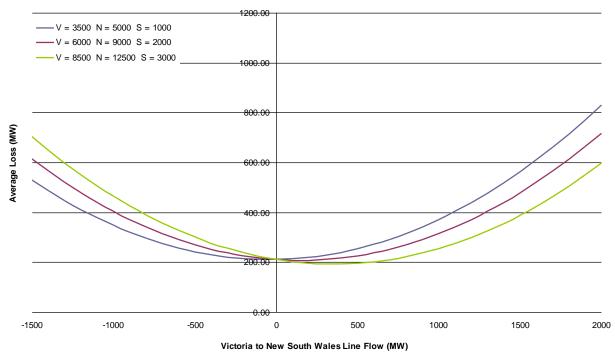
The resulting loss equation for the example above from integrating the MLF equation will give the variation in losses with line flows. This equation is relatively easy to obtain, because the integration constant is simply zero due to the initial condition of zero loss for zero line flow. However, the NEM is a five region (node) model with notional interconnectors between them linking the regional reference node (RRN) of one region to an adjacent RRN. An equivalent five node system with all loads and generation attached to the RRNs is extremely difficult to determine. And as the interconnector flows are measured at the region boundaries, the losses when the interconnector flow is zero will not be zero due to the system loads at the time. Thus the MLF obtained by calculating the additional generation for I MW load injection will give the correct marginal loss for an interconnector between two RRNs, but the resulting equation obtained by integrating the MLF equation will not give the losses on the notional interconnector but rather the total system loss which includes the interconnector loss.

The losses for the notional interconnector between two RRNs can be approximated by integrating the MLF equation and applying the initial condition of zero loss at zero interconnector flow. This is illustrated below for the NSW – Victoria interconnector.


5. Victoria – NSW interconnector

The inter-regional loss factor equation for the **Victoria - NSW** link is provided in Appendix A. The average loss equation for the notional link, obtained by integrating the loss factor equation is included in Appendix B.

The equation describing the variation in "**region boundary referred to Victoria RRN and to NSW RRN**" loss factor with significant system conditions, and the resultant average loss equation are also provided in the Appendices.


Figure 1 is a plot of the MLFs for Sydney West 330 kV (RRN of NSW) referred to Thomas Town 66 (RRN of Vic) against the Vic-NSW transfers. Integrating this MLF equation and applying the appropriate initial condition resulted in the average loss between the Vic RRN and the NSW RRN as shown in figure 2, which is simply the average loss of the Vic and NSW regions. The effect of the interconnector on losses can be seen in figures 1 and 2. During low Vic to NSW transfers, the losses reduce as the transfer increases up to about 300 MW at which point the losses begin to increase again. This is due to the interconnector flow at these levels flowing against the resultant net flows from the system loads. This is also clearly shown by the less than 1.0 MLF values for these transfers.

It can be seen that the marginal loss factors for a notional interconnector linking adjacent RRNs can be obtained readily. The average loss for this link cannot, however, be obtained as simply, because a two node equivalent with each and every systems loads in the regions transfer to the RRNs is difficult, if not impossible to determine. As discussed in the introduction above, the losses for the regions are required for determining the regional settlement surplus. It is proposed to approximate the losses between the RRNs by integrating the MLF equation with the integration constant set to zero by setting the losses to zero for zero interconnector flow. This is shown in figure 3. It can be seen that the effect of having zero loss at zero interconnector flow is that the losses are negative over a small part on the right hand side. The effect of the counter net flow at these levels is also captured by this approximate loss equation, though negative losses have no meaning in practice. Fortunately, the amount of negative losses is small in general, and experience so far has shown that their impact on regional settlement surpluses is insignificant.

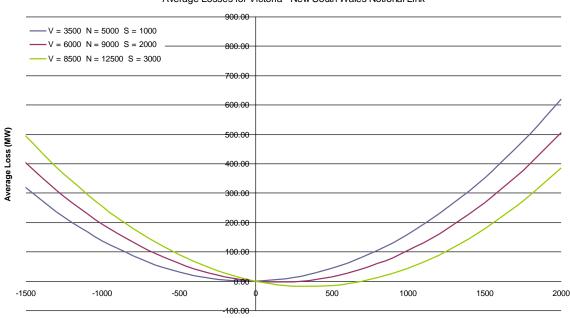

MLF (Sydney West 330 referred toThomastown 66)

FIGURE 1: MARGINAL LOSS FACTOR VS TRANSFER FOR VIC-NSW NOTIONAL INTERCONNECTOR

Average Losses for Victoria - New South Wales Notional Link

FIGURE 2: AVERAGE LOSS VS TRANSFERS BETWEEN THOMASTOWN 66 & SYDNEY WEST 330

Average Losses for Victoria - New South Wales Notional Link

Victoria to New South Wales Line Flow (MW)

FIGURE 3: AVERAGE LOSS VS TRANSFERS FOR VIC-NSW NOTIONAL INTERCONNECTOR

In determining the losses in each region, the negative losses from the notional interconnector loss equation would result in incorrect proportioning of the losses between the regions. However, as the notional interconnector loss in figure 3 is a subset of the average region loss in figure 2, it is proposed to allocate losses between the regions using the average region loss.

Table 1 shows the losses for a number of Vic-NSW transfers from the MLF calculations for the Vic-NSW notional interconnector. The losses for the Vic and NSW regions were determined using the corresponding "region boundary referred to RRN" equation and the total interconnector losses using the average loss equation shown in figure 2. It can be seen that for each interval the sum of the region losses equal the total losses. Averaging these losses for the year will then give the proportion of losses for each region as shown in table 2.

	VIC	NSW	Total
VIC to NSW	Losses	Losses	Losses
-894.067	75.46199	232.6284	319.5439
-765.389	70.07108	213.4106	294.0557
-752.996	68.97139	211.2977	290.6532
-693.177	66.4922	202.5632	278.9433
-650.69	65.35729	196.5474	271.4789
-597.266	64.14509	189.8741	263.3111
-501.368	62.52997	178.8941	250.2786
-554.321	63.24983	184.6132	256.9115
-492.124	62.80971	177.6835	249.3065
-463.811	62.46154	175.0409	246.255
-494.235	62.25657	178.7743	249.946
-532.412	60.76871	184.4125	254.3308
-447.883	59.15458	176.1247	244.157
-298.07	59.02397	161.5331	228.8517
-162.217	61.08817	149.4961	218.3471
-38.964	64.64849	139.8785	211.8478
19.916	66.80219	135.8738	209.8147
7.976	66.35391	136.6425	210.1694
136.096	72.3178	128.4599	207.5427
328.902	83.86254	119.5314	209.7062
496.534	96.87197	114.1569	216.9936
669.246	112.0084	112.3987	230.2013
718.874	117.4251	111.7251	234.8482
404.431	89.8303	115.5362	211.3432
405.673	91.03282	114.5332	211.4733
399.69	91.87363	113.7401	211.4777
361.716	90.14161	114.3744	210.4385
-121.158	60.12841	148.2277	216.1447
-183.004	56.8532	155.0079	220.007
-275.092	52.28542	165.73	226.6839
-243.706	53.1488	162.3648	224.0134
-219.592	53.96085	159.7068	222.0252
-122.226	58.85186	149.1277	215.8038
132.079	74.88724	126.0336	207.4909
331.622	90.29212	112.5249	208.5087
515.257	106.3333	104.2109	215.5694

TABLE 1: SYSTEM LOSSES VS VIC-NSW NOTIONAL INTERCONNECTOR FLOW

Notional interconnector	Proportioning factor	Region applied to
Queensland – New South Wales (QNI)	0.57	New South Wales
Queensland – New South Wales (Terranora Interconnector)	0.65	New South Wales
Victoria – New South Wales	0.61	New South Wales
Victoria – South Australia (Heywood)	0.70	Victoria
Victoria – South Australia (Murraylink)	0.72	Victoria

TABLE 2: PROPORTIONING OF INTER-REGIONAL LOSSES TO REGIONS

Appendix A:

Inter-Regional Loss Factor Equations

Notional Link Loss Factor Equations

1. Sydney West 330 - Thomastown 66 notional link

Inter-regional loss Factor = 0.9649 + 1.7257E-04*VNt – 1.4631E-05*Vd + 5.7202E-06*Nd + 1.4938E-05*Sd

2. South Pine 275 - Sydney West 330 notional link

QNI:

Inter-regional loss Factor = 0.9751 + 1.8839E-04*NQt -7.9144E-07*Nd + 1.1623E-05*Qd

Terranora:

Inter-regional loss Factor = 1.0726 + 1.5930E-03*Flow_t

3. Torrens Island 66 - Thomastown 66 notional link

Heywood:

Inter-regional loss Factor = 1.0235 + 3.5816E-04*VSAt - 4.6640E-06*Vd + 5.9808E-06*Sd

Murraylink:

Inter-regional loss Factor = 1.0596 + 2.9540E-03*Flow_t

Proportional Loss Factor Equations

1.

a) Vic/NSW boundary - Thomastown 66 notional link

Vic Loss Factor = 1.1265 + 6.4407E-05*VNt - 7.1282E-06*Vd - 2.9712E-06*Nd - 1.6496E-05*Sd

b) Sydney West 330 - Vic/NSW boundary notional link

NSW Loss Factor = 0.8483 + 1.0490E-4*VNt - 5.6866E-06*Vd + 7.8271E-06*Nd + 2.63897E-05*Sd

2.

QNI

a) NSW/Qld boundary - Sydney West 330 notional link

NSW Loss Factor = 0.9830 + 1.3597E-4*NQt + 1.6945E-06*Nd - 3.1352E-07*Qd

b) South Pine 275 - NSW/Qld boundary notional link

Qld Loss Factor = 0.9886 + 5.5599E-05*NQt - 2.6840E-06*Nd + 1.3059E-05*Qd

Terranorra

a) NSW/Qld boundary - Sydney West 330 notional link

NSW Loss Factor = 1.0384 + 1.6676E-03*Flow

b) South Pine 275 - NSW/Qld boundary notional link

Qld Loss Factor = 1.0343 - 1.4491E-04*Flow

3.

Heywood Link

a) Vic/SA boundary - Thomastown 66 notional link

Vic Loss Factor = 1.0250 + 2.0880E-05*VSAt - 4.4514E-06*Vd + 5.9479E-06*Sd

b) Torrens Island 66 - Vic/SA boundary notional link

SA Loss Factor = 0.9984 + 3.3284E-04*VSAt - 2.1117E-07*Vd - 1.4558E-07*Sd

Murraylink

a) Vic/SA boundary - Thomastown 66 notional link

Vic Loss Factor = 1.1078 + 1.1918E-03*Flow

b) Torrens Island 66 - Vic/SA boundary notional link

SA Loss Factor = 0.9533 + 1.4673E-03*Flow

Where,

- Qd = Queensland demand
- Vd = Victorian demand
- Nd = New South Wales demand
- Sd = South Australia demand
- NQt = transfer from New South Wales to Queensland
- VNt = transfer from Victoria to New South Wales
- VSAt = transfer from Victoria to South Australia

Appendix B:

Inter-Regional Loss Equations

Notional Link Loss Equations

1. Sydney West 330 - Thomastown 66 notional link

Inter-regional loss = $(-0.0351 - 1.4631E-05*Vd + 5.7202E-06*Nd + 1.4938E-05*Sd)*VNt + 0.8629E-04*VNt^{2} + 210.4232$

2. South Pine 275 - Sydney West 330 notional link QNI:

Inter-regional loss = $(-0.0249 - 7.9144E-07*Nd + 1.1623E-05*Qd)*NQt + 0.9420E-04*NQt^2 + 183.0929$

Terranora:

Inter-regional loss = 0.0726*Flow_t + 0.7965E-03*Flow_t² + 33.2756

3. Torrens Island 66 - Thomastown 66 notional link

Heywood:

Inter-regional loss =(0.0235 - 4.6640E-06*Vd + 5.9808E-06*Sd)*VSAt + 1.7908E-04*VSAt2 + 47.6288

Murraylink:

Inter-regional loss = 0.0596*Flow_t + 1.4770E-03*Flow_t² + 44.4581

Proportional Loss Equations

1.

a) Vic/NSW boundary - Thomastown 66 notional link

Vic Loss = (0.1265 - 7.1282E-06*Vd - 2.9712E-06*Nd - 1.6496E-05*Sd)*VNt +

3.2204E-05*VNt² + 66.0394

b) Sydney West 330 - Vic/NSW boundary notional link

NSW Loss = (-0.8483 - 5.6866E-06*Vd + 7.8271E-06*Nd)*VNt + 2.63897E-05*Sd

+ 0.5245E-4*VNt² + 137.1857

2.

QNI

a) NSW/QId boundary - Sydney West 330 notional link

NSW Loss = (-0.0170 + 1.6945E-06*Nd - 3.1352E-07*Qd)*NQt + 0.6799E-4*NQt² + 76.2441

b) South Pine 275 - NSW/Qld boundary notional link

Qld Loss = (-0.0114 - 2.6840E-06*Nd + 1.3059E-05*Qd)*NQt + 2.7800E-05*NQt² + 106.0970.....

Terranorra

a) NSW/Qld boundary – Sydney West 330 notional link

NSW Loss = 0.0384*Flow + 0.8338E-03*Flow² + 15.8556

b) South Pine 275 - NSW/Qld boundary notional link

Qld Loss = 0.0343*Flow - 0.7246E-04*Flow² + 15.6728

3.

Heywood Link

a) Vic/SA boundary - Thomastown 66 notional link

Vic Loss = (0.0250 - 4.4514E-06*Vd + 5.9479E-06*Sd)*VSAt + 1.0440E-05*VSAt² + 39.5520

b) Torrens Island 66 - Vic/SA boundary notional link

SA Loss = (-0.0016 - 2.1117E-07*Vd - 1.4558E-07*Sd)*VSAt + 1.6642E-04*VSAt² + 8.1278

Murraylink

a) Vic/SA boundary - Thomastown 66 notional link

Vic Loss = 0.1078*Flow + 0.5959E-03*Flow² + 38.1978

b) Torrens Island 66 - Vic/SA boundary notional link

SA Loss = -0.0467*Flow + 0.7337E-03*Flow² + 6.2859

Where,

Qd = Queensland demand

Vd = Victorian demand

- Nd = New South Wales demand
- Sd = South Australia demand
- NQt = transfer from New South Wales to Queensland

- VNt = transfer from Victoria to New South Wales
- VSAt = transfer from Victoria to South Australia