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IMPORTANT NOTICE 

Purpose 

AEMO has prepared this document to provide information about its transmission connection point 

forecasting methodology for the National Electricity Market (NEM), as at the date of publication.   

Disclaimer 

This document or the information in it may be subsequently updated or amended. This document does 

not constitute legal or business advice, and should not be relied on as a substitute for obtaining detailed 

advice about the National Electricity Law, the National Electricity Rules, or any other applicable laws, 

procedures or policies. AEMO has made every effort to ensure the quality of the information in this 

document but cannot guarantee its accuracy or completeness.   

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and 

consultants involved in the preparation of this document: 

¶ make no representation or warranty, express or implied, as to the currency, accuracy, reliability or 

completeness of the information in this document; and 

¶ are not liable (whether by reason of negligence or otherwise) for any statements or representations 

in this document, or any omissions from it, or for any use or reliance on the information in it. 

Version control 

Version Release date  Changes  

1 29/7/2016  The original connection point forecasting methodology was produced by ACIL Allen, and 
published in 2013. A number of subsequent improvements have been made to the 
methodology, and have been documented in each connection point forecasting report. 

This version is the first version of a consolidated AEMO Connection Point Forecasting 
Methodology, including elements of the original ACIL Allen methodology and  
subsequent improvements. 
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1. INTRODUCTION 

In its role as independent market and system operator, AEMO develops maximum demand (MD) 

forecasts for each transmission connection point, to provide a higher level of detail than AEMOôs 

National Electricity Forecasting Report (NEFR) about changes in demand and observations on  

local trends. 

Together with the regional level maximum demand forecasts published in the NEFR, the transmission 

connection point forecasts provide an independent and transparent view of electricity demand in  

the National Electricity Market (NEM), supporting efficient network investment and policy decisions for 

the long-term benefit of consumers. 

1.1 Connection point definition 

AEMOôs definition of a transmission connection point 

is the physical point at which the assets owned by a 

transmission network service provider (TNSP) meet 

the assets owned by a distribution network service 

provider (DNSP), as illustrated (right).  

These may also be known as bulk supply 

points (BSPs), terminal stations, or exit points, and in 

the NEMôs market metering and settlements 

processes they are called transmission node  

identities (TNIs).1  

Connection points may be connected to one another 

at the distribution network level. In situations where 

this interconnectivity is extensive, AEMO develops a 

forecast for the aggregated load. 

1.2 Methodology outline 
AEMOôs Connection Point Forecasting Methodology 

has nine steps, outlined in Figure 1. Each of the steps 

is explained in detail in this methodology document.  

A detailed flowchart focussing on the key steps is 

included in Appendix A. 

Figure 1 AEMO Connection Point forecasting methodology 

 

 

                                                      
1 For a complete list of TNIs, refer to List of regional boundaries and Marginal Loss Factors for the 2016ï17 financial year.  

Available at: http://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Security-and-reliability/Loss-factor-and-regional-boundaries. 

http://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Security-and-reliability/Loss-factor-and-regional-boundaries
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1.3 Forecast scope 

In general, the connection point forecasts prepared by AEMO: 

¶ Apply to active power in megawatts (MW) at each connection point (see Section 2.8 for information 

about reactive power estimates). 

¶ Exclude transmission system losses and power station auxiliary loads. 

Where there is just one customer at a connection point, AEMO only publishes forecasts if the customer 

has given permission.  
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2. METHODOLOGY 

AEMOôs connection point forecasting methodology is designed for forecasting maximum electricity 

demand. At the core of the methodology, forecasting is based on the trend in historical maximum 

demands levels that have had the effects of weather and structural changes removed. Once the trend is 

projected into the future, as a baseline forecast, post model adjustments are made to account for 

drivers influencing future demand that are not already included in the baseline. Finally, the forecasts are 

reconciled to a system-level forecast to incorporate effects of other drivers not already explicitly 

accounted for, such as forecast population growth, changes in electricity prices, the impact of energy 

efficiency in appliances and buildings, and the uptake of rooftop photovoltaic (PV).  

2.1 Data collection 

 

 

Data used in the connection point forecasting process can be grouped into three categories: 

¶ Measured data: including electricity demand, and minimum and maximum daily temperatures. 

¶ Modelled data: obtained from parallel modelling processes (undertaken by AEMO or  

external parties). 

¶ Descriptive data: provided to AEMO from Distribution Network Service Providers (DNSPs) via an 

annual data collection exercise before the start of the forecasting process. 

The following tables outline the key sources of data used to develop the connection point forecasts and 

the methodology step associated with the data. For further details on application of the data, see the 

relevant section of the methodology document. 
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Table 1 Measured data 

Category Description Source Used in 

TNI Demand 
Half-hourly MW demand, metered at transmission side of each 
connection point 

AEMO Data Preparation 

Generation 
Half-hourly MW output from generators connected to the 
distribution network 

AEMO Data Preparation 

NMI Demand Half-hourly MW demand for large industrial loads AEMO Data Preparation 

Reactive Power 
MVAr data, generally from SCADA feeds from transmission 
network transformers 

AEMO Reactive Power 

Historical Installed 
Capacity of 
Rooftop PV  

Capacity and installation date of rooftop PV systems, grouped 
by postcode 

 

Capacity of rooftop PV systems installed, grouped by 
connection point 

CER 

 

 

 

DNSPs 

Data Preparation, 
Post Model 
Adjustments 

Number of meters 
Number of NMIs registered at each connection point, grouped 
by TNI and postcode 

AEMO 
Post Model 
Adjustments 

Weather 
Daily maximum and minimum temperatures at selected 
weather stations 

BOM 
Data Preparation, 
Normalisation 

* Note one PV data source is used to determine installed capacity, with the secondary source used as validation. 

Table 2 Modelled data 

Category Description Source Step 

Population Population projections by sub-region State governments Baseline Forecast 

PV Traces Model data predicting PV output at connection point 
locations 

AEMO (NEFR) Data Preparation 

Regional Forecast Maximum demand forecasts by NEM region AEMO (NEFR) Reconcile to 
System Forecast 

Regional Forecast of 
Installed Rooftop PV 
Capacity  

Regional Forecast of Installed Rooftop PV Capacity AEMO (NEFR) Post Model 
Adjustments 

Energy Efficiency Forecast impact of energy efficiency on maximum 
demand, by NEM region 

AEMO (NEFR) Post Model 
Adjustments 

DNSP Forecast Maximum demand forecast, grouped by connection 
point 

DNSPs Verification of 
results 

Table 3 Descriptive data 

Category Description Source Used in 

Embedded Generation Capacity, NMI and related connection point of embedded 
generators 

AEMO Data Preparation 

Block, Transfer and 
Shed Loads 

Detail on historical and future step changes to load at each 
connection point 

AEMO, 
DNSPs 

Data Preparation 

Demand Mix Quantity of customers at each connection point, split by 
category (residential/commercial/industrial/agricultural) 

DNSPs Determining 
historical trend, 
Post Model 
Adjustments 

Development Plans Description of any recent or upcoming changes to network 
configuration 

DNSPs Data Preparation, 
verification of 
results 

Meshed Networks Description of any sections of the network that are meshed 
(connection points linked on distribution network side) 

TNSP, 
DNSPs 

Data Preparation 



AEMO CONNECTION POINT FORECASTING METHODOLOGY 

© AEMO 2016  9 

2.2 Data preparation 

 

 

Data preparation includes three main stages, with a number of sub-steps. An outline is as follows: 

1. Developing the underlying demand trace by: 

a. Removing the effect of embedded generation from the connection point load trace. 

b. Removing the effect of industrial loads from the connection point load trace. 

c. Removing the effect of rooftop photovoltaic (PV) generation from the connection point  

load trace. 

2. Making historical adjustments to the data to account for block loads and transfers. 

3. Converting half-hourly data to daily data. 

2.2.1 Developing underlying residential/commercial historical demand trace 

Historical load data at each connection point is used as the starting point for determining underlying 

demand, which is the basis of AEMOôs connection point forecasts. This is generally collected from 

AEMOôs databases, including TNI, National Meter Identifier (NMI), and/or Supervisory Control and Data 

Acquisition (SCADA) data.  

Once historical load data has been collected for each connection point, AEMO undertakes the following 

steps to remove the effect of embedded generators, industrial loads, and rooftop PV from the traces. 

Embedded generators 

Embedded generators are generators that are connected to the distribution network and reduce the 

load as measured at a connection point. Half-hourly data for embedded generators is sourced from 

AEMOôs databases. 

To determine the load at the connection point without the effect of the embedded generator, the 

generation is added back to the measured connection point load.  

Connection point forecasting uses a list of embedded generators consistent with the regional forecasts 

in the NEFR. However, in some cases additional generators may be included if they are likely to have a 

significant impact on the demand forecast at a connection point. The list only includes generators that 

have a dedicated meter, separate from customer load. 

Embedded industrial loads 

Embedded industrial loads are industrial loads that are connected to the distribution network and 

increase the load as measured at a connection point.  

To determine the load at the connection point without the effect of the embedded industrial load, the 

load is removed from the measured connection point load. Each industrial load is modelled separately 

and added back to the connection point forecast as a post model adjustment. 
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Distributed rooftop PV generation 

Historical rooftop PV generation at half-hourly intervals is estimated using the historical installed 

capacity of rooftop PV systems at each connection point, which is produced from one of the two 

following sources: 

¶ Data provided by the relevant DNSP. 

¶ Data from the Clean Energy Regulator (CER). 

Using these data sources, the amount of installed rooftop PV at each connection point, on a monthly 

basis, is determined.  

Monthly installed capacity data from the CER is received on a postcode basis and converted to a 

connection point basis using AEMO data by: 

1. Calculating the percentage of retail NMIs in each postcode associated with each connection point. 

2. Allocating the CER rooftop PV installed capacity to connection points, based on percentages 

calculated in step 1. 

Once the installed rooftop PV capacity has been determined, a half-hourly rooftop PV generation trace 

is developed for each month where historical data was required.  

The half-hourly rooftop PV generation trace is developed as follows: 

1. Preparing a half-hourly normalised generation trace2, using the University of Melbourne 

(UoM)/AEMO rooftop PV generation model.3 

2. Multiplying the normalised generation trace by the installed capacity for the relevant month and 

connection point. 

To determine the load at the connection point without the effect of the rooftop PV generation, the 

generation is added back to the measured connection point load, as demonstrated in Figure 2. 

                                                      
2 The normalised trace has values between 0 and 1 for each half hourly interval. A value of 1 indicates the distributed rooftop PV systems at that 

connection point are generating at their rated capacity, and 0 indicates no generation from rooftop PV systems. 
3 Methodology Summary ï NEM Rooftop PV Generation Model. Available at: http://www.aemo.com.au/Electricity/National-Electricity-Market-

NEM/Planning-and-forecasting/National-Electricity-Forecasting-Report. 

http://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/National-Electricity-Forecasting-Report
http://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/National-Electricity-Forecasting-Report
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Figure 2 Example of load traces by component used to develop underlying demand trace 

 

2.2.2 Historical adjustments 

In the historical data, there will often be evidence of load transfers and block loads (step changes in 

demand caused either by large customers connecting or changing demand patterns) which have a 

significant impact on the maximum demand trend at the connection point level. Information on some 

historical block loads and transfers is provided by the relevant DNSP, where available, and additional 

block loads and transfers are detected through visualisation of the historical data.  

Figure 3 shows an example of detecting the presence of a block load visually. In this figure it is 

apparent that in the first historical summer, a temporary increase is present in the second half of the 

season. Upon observing an event such as this, and verifying that it is atypical using other information 

(DNSP advice, weather data and network knowledge), an adjustment is made in the historical data to 

remove the impact.  

Figure 3 Visual detection of block load 

 
 

2.2.3 Developing daily data 

When the data preparation steps outlined above have been completed, daily maximum demand values 

are calculated for each connection point. These values are used in the subsequent modelling stages. 
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2.3 Normalising historical data 

 

 

Electricity demand is highly influenced by weather, but, as weather varies yearly, it is necessary to 

maintain consistency of comparison through a process known as weather normalisation.  

The normalisation process can be broken down into the following main steps and sub-steps, with this 

process applied to each year and season (summer and winter) for each connection point. 

1. Extract appropriate data for model. 

2. Apply exclusions to demand. 

3. Fit a linear method to the data. 

4. Apply weather normalisation. 

2.3.1 Extracting data set  

A linear regression model is built for each historical year and season, for each connection point. 

The data required to develop this model is the daily maximum demand, maximum temperature, and 

minimum temperature from the year and season being assessed, as well as the adjacent years (or two 

adjacent years, in the case of the first and last historical year).  

For example: 

¶ To develop a linear regression for the 2013 summer of a particular connection point, demand and 

temperature data would be extracted from the summers of 2012, 2013, and 2014 from that 

connection point and associated weather station. 

¶ To develop a model for the last historical year, for example summer of 2016, then the demand and 

temperature data would be extracted for the summers of 2014, 2015, and 2016. 

Weather station selection 

It is necessary to select daily maximum and minimum temperature data from a weather station that is 

most appropriate to the connection point being examined. 

The aspects that identify the suitability of a weather station include: 

¶ Demandïweather relationship (R-squared value of linear fit with maximum temperature). 

¶ 90% of weather data should be present. 

¶ 30 years of historical weather data is available if possible and station is currently operating. 

¶ Distance from weather station to connection point, used as indicative of representativeness. 

These factors, together with the forecasterôs qualitative assessment, are used to determine the most 

suitable weather station for a given connection point. 
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2.3.2 Exclusions 

The following exclusions are applied to the model data set before fitting a linear regression. 

Days 

Truncation of the data set to exclude daily maximum demand from weekends, public holidays, and the 

Christmas period is applied. 

Mild temperatures 

A plot of maximum demand and temperature is prepared and used as a visual aid to filter the data set 

prior to fitting a linear regression. 

Demand points at mild temperatures are removed from the data set as demand at these times appear 

uncorrelated with temperature.   

Note that in winter and often in Tasmania in summer it will be higher temperatures that are filtered 

because maximum demand occurs during cold weather. 

Unusual demands 

There may be reasons to remove other data points for a more realistic relationship between maximum 

demand and weather. These can include discrepancies occurring as a result of load switching or 

outages at a connection point. 

The figures below show the exclusion steps discussed above.  

Figure 4 shows the original daily data set for a single season ï maximum demand and maximum 

temperature data obtained from the data extraction stage. 

Figure 4 Daily maximum demand vs maximum temperature original data 

 

 

In Figure 5, an exclusion was applied to remove the data points from weekends, holidays, and during 

the Christmas period. 
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Figure 5 Weekends, holidays, and Christmas period removed 

 

 

Demand during low temperatures is poorly correlated with maximum temperature. To improve the linear 

relationship at the high demand end of the spectrum, days with low temperatures will be excluded in 

this example (days with maximum temperature below 27 degrees were removed). The result is shown 

in Figure 6. 

Figure 6 Excluding low temperature demand points 

 

 

Figure 7 shows demand values after removing two atypical days which occurred because of an outage 

(seen in Figure 6 with demand below 20 MW). The inclusion of these outliers in the linear regression 
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would reduce the quality of the regression fit. As such, it is appropriate to remove these points.  

This is an example of removing atypical events to improve the weather-demand relationship for  

maximum demand.  

Figure 7 After removal of outage events  

 

 

2.3.3 Model fitting 

After the necessary exclusions are applied, the following linear model is fitted to the data. 

ὓὈ ά ὓὥὼ ὝὩάὴὲ ὓὭὲ ὝὩάὴὴ ὣὩὥὶρ ή ὣὩὥὶς ὧ ‐ 

Where  

ὓὈ άὥὼὭάόά ὨὩάὥὲὨ έὲ Ὠὥώ Ὠ 

ὓὥὼὝὩάὴ άὥὼὭάόά ὸὩάὴὩὶὥὸόὶὩ έὲ Ὠὥώ Ὠ 

ὓὭὲὝὩάὴ άὭὲὭάόά ὸὩάὴὩὶὥὸόὶὩ έὲ Ὠὥώ Ὠ 

ὣὩὥὶρȟὣὩὥὶς ὦὭὲὥὶώ ὺὥὶὭὥὦὰὩί Ὢέὶ Ὠὥὸὥ Ὢὶέά ὥὨὮὥὧὩὲὸ ώὩὥὶί ὸέ ὸὬὩ ώὩὥὶ ὩὼὥάὭὲὩὨ 

ὧ ὸὬὩ ώ ὭὲὸὩὶὧὩὴὸ 

‐ άέὨὩὰ Ὡὶὶέὶ 

 

The binary data-pooling variables Year1 and Year2 are used if the forecaster elects to pool demand 

data from a moving three-year window, when developing the relationship. If no pooling is selected by 

the forecaster, these variables have no effect.  

The standard deviation of the residuals from the model fitting process is combined with a mean of zero 

to develop a normal distribution of residuals, used later during weather normalisation.  

The R-squared term of the model fit is used to determine whether the connection point is weather 

sensitive (whether daily demand is associated with daily temperature) as shown in Table 4.  
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Table 4 Weather sensitivity test  

R squared Value Outcome 

< 0.3 Not weather sensitive 

 Ó 0.3 Weather Sensitive 

 

Connection points that are judged to be weather-insensitive are modelled using a constant model of  

the form: 

ὓὈ ὧ  ‐ 

where 

ὧ ὸὬὩ ώ ὭὲὸὩὶὧὩὴὸ 

‐ άέὨὩὰ Ὡὶὶέὶ 

 

Figure 8 summarises the steps in the data extraction, exclusion, and linear regression fitting stages. 

Figure 8 Fitting the demand-weather relationship 

 

2.3.4 Weather normalisation 

The weather normalisation process is primarily used to remove the influence of year-to-year variability 

in weather and provide a distribution of possible maximum demands. Demand levels at the lower end of 

the distribution are more likely to be exceeded than demand levels at the higher end. 

Each year and season of data for a connection point is weather normalised, therefore this sectionôs 

descriptions focus on weather normalising a single year and season.  
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Weather data 

To apply weather normalisation, the full 30-year record of historical daily maximum and minimum 

temperature data is collected from the weather station selected for the connection point. The data for 

the season of interest is retained.  

Simulating daily maximum demand 

Using the model developed as shown in Section 2.3.3, each year of historical weather data is used to 

predict a set of daily maximum demands. A random error amount is drawn from the normal distribution 

of residuals (developed in Section 2.3.3) and added to the predictions. This accounts for demand 

variability not captured in the weather-demand relationship.  

The process of drawing and adding error values is performed n times, such that there will be n sets of 

estimated daily demand data for chosen year in the historical weather data set. The highest daily 

demand in each set is retained as the maximum demand, such that there are n maximum demands for 

that year. The next year of historical weather data is used in the same process, and so on until all the 

weather data has been processed.  

Connection points that are judged to be weather-insensitive are normalised using the predictions of the 

constant model and the same error sampling procedure as described.  

Maximum demand distribution 

If 30 years of weather data are used in the simulation process, and 500 error sampling events are 

undertaken each time, then 15,000 maximum demands are produced. These form the maximum 

demand distribution. Using this distribution, the 10%, 50% and 90% probability of exceedance (POE) 

levels are obtained from the 90th, 50th, and 10th percentiles respectively. 

Figure 9 summarises the process for weather normalisation to obtain the weather normalised 

maximum demand. AEMOôs published forecasts apply to the 10% POE and 50% POE. The 90% POE 

level is used internally when assessing the distribution. 
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Figure 9 Weather normalisation 

 

2.4 Determining historical trend 

 

 

Having obtained the historical weather normalised maximum demand values for each historical demand 

year, the trend is used to predict future maximum demand at the 10% and 50% POE levels. Two types 

of trend are tested ï a linear trend and a cubic trend. 

2.4.1 Linear trend 

A linear trend is fitted to the historical weather normalised maximum demand values over the historical 

years for a given connection point. This method is the default trend used to extrapolate and forecast 

demand into the future. However, as demand growth is not always linear, a cubic trend is also fitted and 

compared to the linear trend for goodness-of-fit. 
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2.4.2 Cubic trend 

To fit the cubic trend a horizon year and horizon value are appended to the data set. If this is not done, 

over-extrapolation of the cubic trend occurs and can lead to non-intuitive forecasts. This horizon year 

and horizon value act to constrain the cubic trend so that realistic forecasts are produced. 

Horizon year and horizon value 

The horizon year is set to be a number of years after the end of the forecast period, typically between 

10 and 20 years after the end of the forecast period.  

A range of horizon values are tested to determine the cubic model to be used in forecasting. The range 

of horizon values are set to be centred on a value that is determined by the compound average growth 

rate of the historical data. In the case that the historical growth rate is observed to be decreasing, a 

threshold is applied to the position of the horizon value range to minimise the possibility of non-intuitive 

decreases in forecasts.  

Cubic model 

With a range of horizon values to test, individual cubic models of the form shown below are fitted to 

each horizon value together with the historical data. The base year is by default set to 1999. 

 

-$ Í ὸ Î ὸ Ð ὸ ὧ  ‐  

where 

ὸ ÌÏÇώὩὥὶὦὥίὩὣὩὥὶ 

ὧ ὸὬὩ ώ ὭὲὸὩὶὧὩὴὸ 

‐ άέὨὩὰ Ὡὶὶέὶ 

and,  

άȟὲȟὴ ὥὶὩ ὧέὩὪὪὭὧὭὩὲὸί 

 

To determine which of these cubic models produces the best fit for the data, a Davidson-Mackinnon  

J-test is applied. This tests whether fitted values of the cubic model add statistically significant 

explanatory power to the linear model and, if so, the cubic model can be preferred over the linear 

model. From this, the most suitable horizon value and its corresponding cubic model is determined.  

2.4.3 Selecting a linear or cubic trend 

Two tests are applied to judge whether to adopt the cubic trend in preference to the linear trend: 

1. Outlier test, which checks whether the last historical data point adds explanatory power when 

singled out with a binary dummy variable.  

2. The J-test, as discussed in section 2.4.2. 

If either of the tests indicate that the linear model is to be rejected in preference of the cubic model then 

the cubic model is adopted. 

Figure 10 shows an example of the cubic trend. 
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Figure 10 Cubic fit and forecast 

 

2.5 Baseline forecast 

 

 

2.5.1 Initial baseline forecast 

After a trend-line has been fitted to the historical data, an initial baseline forecast is produced by 

extrapolating the historical trend through the forecast period. It is initial because the forecast is yet to 

undergo review. An alternate forecast may still be adopted.  

2.5.2 Reviewing forecast 

Before the baseline forecast is adopted, each connection point forecast is reviewed. 

There may be many reasons the historical trend is not considered a reliable indication of future 

demand. Example situations include: 

¶ Agricultural loads ï variability in cropping practices, harvest times and volumes, and irrigation 

requirements can create variability in the historical trend. 

¶ Pumping loads ï pumping loads can often be switching on and off and are often driven by water 

availability and demand, thus creating variability in the historical trend. 
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¶ Recent historical data appear to trend differently to earlier data ï Figure 11 shows an example 

where the historical data is seen to increase in recent years while decreasing in earlier historical 

years. A decreasing linear trend is fitted when it may be more appropriate to have the forecast flat 

or increasing. 

¶ Crossing POEs ï when 10% and 50% POE forecasts cross over.  This is demonstrated  

in Figure 12. 

¶ Limited historical data or new connection point ï sometimes a historical trend cannot  

be developed. 

If there is strong evidence to suggest that the forecast is not likely to provide a reasonable indication of 

future demand, an alternate forecast will be adopted (Section 2.5.3). 

Figure 11 Increasing in recent years 

 

Figure 12 Crossing POE trends 
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2.5.3 Adopting an alternate forecast 

Selecting an appropriate alternate forecast requires an understanding of the connection point and the 

composition of the load. An alternate forecast can be: 

¶ The alternate historical trend (linear or cubic) to the initial selection.  

¶ A zero percent growth rate for industrial-dominated connection points. 

¶ Growth in line with population growth for residential/commercial connection points. 

If either a flat forecast (zero growth) or a forecast in line with population growth is deemed appropriate, 

a suitable starting point for the forecast needs to be selected. As a default, this will be the normalised 

values for the last historical year.  

2.6 Post model adjustments 

 

 

A number of post model adjustments are made to the forecasts to capture future changes in demand 

that are not accounted for in the baseline forecast. 

The post model adjustments made are intended to account for the impact of the following: 

¶ Distributed rooftop PV systems ï the baseline forecast was produced using data with the effect of 

rooftop PV removed. Therefore, this effect needs to be added back to the forecast. 

¶ Energy efficiency ï an adjustment is made to each forecast in order to account for reductions in 

demand due to energy efficiency related policies, when modelled separately in the 

regional forecast. 

¶ Block loads and transfers ï additional loads that are highly likely to come on-line in the forecast 

period are added to the forecast. 

2.6.1 Rooftop PV 

The baseline forecasts produced assume that there is no distributed rooftop PV reducing grid demand. 

The rooftop PV adjustment is calculated in multiple steps as follows, for each connection point  

and season: 

1. Produce a typical normalised rooftop PV generation trace for high demand days. 

2. Determine a typical underlying demand trace for high demand days.  

3. Prepare a forecast of rooftop PV installed capacity at each connection point. 

4. Produce a typical peak demand day underlying demand trace for each forecast year, by scaling 

the typical underlying demand trace to the baseline forecast MD figures. Scale the normalised PV 

trace to the rooftop PV installed capacity at the connection point. Subtract the forecast rooftop PV 

trace from the forecast underlying demand trace, for each forecast year.  

5. Calculate the new daily maximum demand, for each forecast year. 
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Determining rooftop PV generation trace on high demand days 

The UoM/AEMO rooftop PV model provides a historical half-hourly time series of normalised distributed 

rooftop PV generation at each connection point. The top five demand days in each season are 

determined from the demand data and the rooftop PV generation on these days is grouped by half-hour 

intervals. A spline is then fitted to the resulting data set and the resulting profile, shown in Figure 13, is 

used as the connection point specific rooftop PV generation profile for high demand days. 

Figure 13 Normalised rooftop PV generation for high demand days 

 

Typical underlying demand trace on high demand days 

To produce the typical underlying demand trace, the adjusted demand data for the previous five years 

is grouped into half-hourly bins for each season (see example in Figure 14). From this data, the 99th 

percentile value from each bin is taken to represent the demand on a typical high demand day.  

Figure 14 Historical underlying demand, grouped into half-hourly bins for summer 

 
 

Installed rooftop PV capacity forecast 

The regional forecast of installed capacity of rooftop PV is allocated across connection points, based on 
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connection point had 10% of the regionôs rooftop PV capacity in the most recent historical year, it is 

assumed it will have 10% of the regionôs distributed rooftop PV capacity throughout the forecast period. 

The breakdown of installed rooftop PV capacity by connection point is determined as in section 2.2.1.  

Calculating the rooftop PV adjustment 

At each year in the forecast, the typical demand trace and the typical rooftop PV generation trace are 

scaled so that they are representative of the installed capacity and demand forecast for the year. The 

demand trace is scaled for each POE level forecast. The normalised rooftop PV trace is scaled using 

the forecast of rooftop PV installed capacity.  

The rooftop PV generation (negative values) is added to the demand trace, producing the ówith rooftop 

PV (grid demand)ô trace. The difference between the new maximum demand and the old maximum 

demand (without rooftop PV) is recorded as the adjustment.  

Figure 15 demonstrates this process, whereby to produce the grid demand trace, the rooftop PV 

generation is deducted from the underlying demand trace. 

Figure 15 Example daily profile of demand and rooftop PV generation 
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2.6.3 Block loads and transfers 

Information regarding new block loads and transfers between terminal stations is provided to AEMO by 

the relevant DNSPs. This is reviewed and applied to the forecast as an increase or decrease in the load 

at that connection point.  

Figure 16 displays a baseline forecast prior to block loads being added and after block load is added in 

the year 2020. 

Figure 16 Baseline and adjusted forecasts 
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2.7 Reconcile to system forecast 

 

In this stage the forecasts are reconciled to a regional forecast.  

The methodology described in previous sections focuses on developing non-coincident forecasts for 

each connection point. They are non-coincident because they do not necessarily coincide with the time 

of the system peak. Coincident forecasts, on the other hand, represent the demand of the connection 

point coinciding with the time of the system peak. Both non-coincident and coincident connection point 

forecasts are reconciled. 

2.7.1 Coincident connection point forecasts 

The following steps are undertaken to produce coincident reconciled connection point forecasts, 

through reconciliation with the regional forecast: 

1. Calculate diversity factors. 

2. Calculate diversified coincident forecast. 

3. Calculate coincident scaling factor. 

4. Calculate coincident forecast. 

Industrial loads are usually not included in the reconciliation process, because their drivers of demand 

are usually site-specific and already accounted for in the unreconciled forecast. 

Calculate diversity factors 

To estimate each connection pointôs demand at the time of the regional peak, diversity factors are 

calculated. A diversity factor is defined as 

ὈὭὺὩὶίὭὸώ Ὂὥὧὸέὶ 
ὈὩάὥὲὨ ὥὸ ὸὭάὩ έὪ ὙὩὫὭέὲὥὰ ὖὩὥὯ 

ὖὩὥὯ ὨὩάὥὲὨ
  

and can be calculated for all types of load and seasons. 

As an example, a connection point may have a peak demand of 100 MW, but a demand of 80 MW at 

the time of the regional peak demand. In this case the diversity factor would be 0.8. 

Diversity factors are calculated from historical demand data, taking the average of the most recent five 

years where possible.  

Calculate diversified co-incident forecast 

After diversity factors are calculated, they are applied to the forecast. Table 5 provides an example. 

Table 5 Example of diversified forecast 

Year Non-coincident connection point 
maximum demand forecast (MW) 

Diversity Factor Coincident (unreconciled) connection 
point forecast (MW) 

2017 100 0.8 80.0 

2018 102 0.8 81.6 
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Calculate coincident scaling factor and coincident forecast 

The next step is to determine the scaling factor that needs to be applied to ensure that the sum of 

coincident connection point forecasts matches the coincident regional forecast. An example is shown  

in Table 6. 

Each reconciled coincident connection point forecast is then calculated by scaling the diversified 

connection point forecast using the coincident scaling factor, as outlined in Table 7. 

Table 6 Example of scaling factors 

Year Regional forecast (MW) Sum of coincident (unreconciled) 
connection point forecast (MW) 

Coincident Scaling 
Factor 

2017 8,798 9,062 0.971 

2018 8,868 9,028 0.982 

2019 8,992 9,046 0.994 

2020 9,082 9,028 1.006 

2021 9,155 8,990 1.018 

2022 9,228 8,952 1.031 

2023 9,358 8,965  1.044 

2024 9,451 8,941 1.057 

2025 9,527  8,898 1.071 

2026 9,584 8,836 1.085 

* Scaling factors are calculated for each season and POE level. One common scaling factor is used for the region. 

Table 7 Example of coincident forecast 

Year Coincident (unreconciled) 
connection point forecast 
(MW) 

Coincident Scaling factor Coincident (reconciled) connection 
point forecast (MW) 

2017 80 0.971 77.7 

2018 81.6 0.982 80.1 

2019 83.2 0.994 82.7 

2020 84.8 1.006 85.3 

2021 86.8 1.018 88.4 

2022 88.0 1.031 90.7 

2023 89.6 1.044 93.5 

2024 91.2 1.057 96.4 

2025 92.8 1.071 99.4 

2026 94.4 1.085 102.4 

* Scaling factors are calculated for each season and POE level. One common scaling factor is used for the region. 

2.7.2 Non-coincident connection point forecasts 

The non-coincident connection point forecasts are reconciled to the growth rate of the regional forecast 

using an indexing approach. 

Calculate growth indices 

Growth indices are calculated for the regional forecast and the aggregate connection point forecasts, in 

reference to the first year. An example is in Table 8.  
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Table 8 Example of growth indices 

Year Regional forecast (MW) Regional Forecast 
growth index 

Sum of non-coincident 
connection point forecasts 

(MW) 

Aggregate connection point 
forecast growth index 

2017 8,798 1 
10,069 1 

2018 8,868 1.008 10,031 0.996 

2019 8,992 1.022 10,035 0.997 

2020 9,082 1.032 10,031 0.996 

2021 9,155 1.041 9,989 0.992 

2022 9,228 1.049 9,946 0.988 

2023 9,358  1.064 9,960 0.989 

2024 9,451 1.074 9,934 0.987 

2025 9,527 1.083 9,886 0.982 

2026 9,584 1.089 9,818 0.975 

Calculate the non-coincident index ratio 

An initial index ratio of the regional forecast growth index and the aggregate connection point forecast 

growth index is calculated as shown: 

ὍὲὭὸὭὥὰ ὍὲὨὩὼ ὙὥὸὭέ 
ὙὩὫὭέὲὥὰ ὪέὶὩὧὥίὸ ὫὶέύὸὬ ὭὲὨὩὼ

ὃὫὫὶὩὫὥὸὩ ὧέὲὲὩὧὸὭέὲ ὴέὭὲὸ ὪέὶὩὧὥίὸ ὫὶέύὸὬ ὭὲὨὩὼ
 

 

To allow the growth rate of the connection point forecast to dominate in earlier forecast years and the 

regional forecast growth to dominate in later forecast years, a blending factor is applied. This gives a 

smooth transition from the short-term trend-based connection point forecast into the longer-term 

regional trend. 

Using this blending factor the final index ratio is determined with the formula: 

ὍὲὨὩὼ ὙὥὸὭέ ὃὴὴὰὭὩὨὍὲὭὸὭὥὰ ὍὲὨὩὼ ὙὥὸὭέρ ὄὰὩὲὨὭὲὫὊὥὧὸέὶρ 

This formula is applied to the results of Table 8 to produce the index ratios in Table 9. 

Table 9 Example index ratios 

Year Regional Forecast 
growth index 

Aggregate connection 
point forecast growth 
index 

Initial Index 
Ratio 

Blending Factor Index Ratio 

2017 1 1 1 
0 1 

2018 1.008 0.996 1.012 0.25 1.003 

2019 1.022 0.997 1.026 0.5 1.013 

2020 1.032 0.996 1.036 0.75 1.027 

2021 1.041 0.992 1.049 1 1.049 

2022 1.049 0.988 1.062 1 1.062 

2023 1.064 0.989 1.075 1 1.075 

2024 1.074 0.987 1.089 1 1.089 

2025 1.083 0.982 1.103 1 1.103 

2026 1.089 0.975 1.117 1 1.117 

Calculate non-coincident forecasts 

The non-coincident reconciled connection point forecast is calculated by taking the unreconciled version 

and applying the index ratio, as outlined in Table 10. 
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Table 10 Example of non-coincident connection point forecast 

Year Non-coincident (unreconciled) 
connection point forecast (MW) 

Index Ratio Non-coincident (reconciled) 
connection point forecast (MW) 

2017 100 1 100 

2018 102 1.003 102.3 

2019 104 1.013 105.3 

2020 106 1.027 108.9 

2021 108 1.049 113.3 

2022 110 1.062 116.8 

2023 112 1.075 120.4 

2024 114 1.089 124.1 

2025 116 1.103 127.9 

2026 118 1.117 131.8 

2.7.3 The implied diversity factor 

After reconciling the coincident and non-coincident forecasts separately, implied diversity factors exist. 

In instances where the reconciliation process increases the coincident forecast to the extent that it is 

higher than the reconciled non-coincident forecast, the implied diversity factor exceeds 1. This has the 

highest possibility of occurring when the original historical diversity factor was already close to 1.  

To address this, a method of capping the implied diversity factors is applied. In this method, if an 

implied diversity factor is found to be greater than 1 its value is capped at 1 and the non-coincident 

reconciled forecast is recalculated to be equal to its coincident counterpart. 

For example, if the unreconciled non-coincident forecast is 100 MW and the diversity factor is 0.98, then 

the coincident forecast is calculated to be 98 MW. If a scaling factor of 1.05 is applied to the coincident 

forecast, then the coincident forecast is reconciled upwards and becomes 103 MW. If this has 

happened in the first forecast year, then the index ratio for the non-coincident forecast is 1 and 

therefore the implied diversity factor is 1.03. In accordance with the methodology the diversity factor is 

capped at 1, so the non-coincident forecast is recalculated to be 103 MW.   
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2.8 Reactive power (MVAr) estimates 

 

 

Reactive power estimates are generated based on the active power forecasts and an estimate of the 

power factor for each connection point, which is held constant throughout the outlook period. They 

represent the reactive power demand at the time of maximum active power demand. 

The power factor is estimated using active and reactive power measured at the distribution side of the 

connection point transformer(s).  

The following steps are undertaken to produce non-coincident and coincident reactive power estimates 

for each connection point: 

¶ Estimate power factor for each season. 

¶ Apply power factor to active power forecasts. 

Estimate power factor used 

Power factors are calculated using active and reactive power values from the top 1% of half-hour 

demand periods in each season and year, ranked by active power. The average value is then adopted 

as the typical power factor for each year and season. 

Giving consideration to the trend of calculated average power factors, a reasonable estimate of future 

power factors is determined by (in order of preference): 

¶ Averaging the power factor over the previous two years if power factors are within a narrow band 

of tolerance, 0.03 of each other and there are two years of data available for that  

connection point. 

¶ Averaging the power factor over the previous three years if power factors are within a broader 

band of tolerance, 0.07 of each other and there are only three years of data available for that 

connection point. 

¶ Averaging the power factor over all the previous years of available data and using this long-term 

average as the estimated future power factor if the most recent power factor estimate is within a 

band of tolerance, 0.1 from the long term average. 

¶ Taking the average power factor in the top 1% of MW periods in the most recent year if there is 

only a single year of data for the connection point. 

¶ Should none of the methods listed above apply to the set of average season/year power factor 

data, the estimated future power factor is set to average value from top 1% of MW demand periods 

in the previous season/year. 

For each of the criteria listed above, a lagging/leading assessment is also undertaken, whereby a 

óleadingô label is determined if the reactive power is negative for the majority of these periods, otherwise 

a ólaggingô label is applied.   










